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Optimal Quantization with Branched Optimal
Transport distances

Paul Pegon∗ and Mircea Petrache†

September 15, 2023

We consider the problem of optimal approximation of a target measure by an atomic
measure with N atoms, in branched optimal transport distance. This is a new branched
transport version of optimal quantization problems. New difficulties arise, as in previously
known Wasserstein semi-discrete transport results the interfaces between cells associated
with neighboring atoms had Voronoi structure and satisfied an explicit description. This de-
scription is missing for our problem, in which the cell interfaces are thought to have fractal
boundary. We study the asymptotic behaviour of optimal quantizers for absolutely continu-
ous measures as the number N of atoms grows to infinity. We compute the limit distribution
of the corresponding point clouds and show in particular a branched transport version of
Zador’s theorem. Moreover, we establish uniformity bounds of optimal quantizers in terms
of separation distance and covering radius of the atoms, when the measure is d-Ahlfors regu-
lar. A crucial technical tool is the uniform in N Hölder regularity of the landscape function,
a branched transport analog to Kantorovich potentials in classical optimal transport.

Keywords. optimal transport, branched transport, quantization, clustering, optimal partitions, uniform
point configurations, Gamma-convergence, convergence of measures.
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Notation
Notation on traffic plans

TPd space of traffic plans on Rd

TP(µ−, µ+) set of traffic plans P on Rd such that (e0)]P = µ−, (e∞)]P = µ+ where µ± ∈M +(Rd)

Pn
?−⇀ P weak-? convergence in M +(Γd) in the duality with C (Γd)

ΘP(x) :=
´

Γd #γ−1({x}) dP(γ), multiplicity at x w.r.t. P
ΣP := {x : ΘP(x) > 0} network associated with P.

Mα(P) :=
´
Rd ΘP(x)αH 1(x), α-mass of P;

We use the conventions 0b = +∞ if b < 0, 00 = 1, and +∞× 0 = 0.

1 Introduction
In this work we study for the first time the asymptotics and uniformity properties of Optimal Quan-
tization with interactions given via Branched Optimal Transport distances, which we will also call, for
brevity, Branched Quantization. The fields of Branched Optimal Transport and Optimal Quantization
both have a large variety of applications but have not been connected before. We give a very short
review and motivations of both, after which we point out why building a connection is interesting to
explore.

1.1 Branched Optimal Transport and Optimal Quantization motivations
Branched Optimal Transport (or Branched Transport for short) is an umbrella term for a class of
optimization problems, related to classical optimal transport, in which mass particles are assumed to
interact (as opposed to traveling independently) while moving from a source to a target distribution.
The interaction favours the transportation of particles in a grouped way by lowering the transportation
cost, which is justified in many practical situations by an economy of scale. A consequence of this
assumption is that the particles’ paths form a one-dimensional network with a branched structure. The
most common model assumes a cost of the form ` ×mα to move a group of particles of total mass m
over a distance `, where α ∈ [0, 1], so that the cost is a concave power of the mass. This problem was
first introduced in [Gil67], in a discrete setting, to optimize communications network, and was extended
to two different continuous settings in [Xia03b; MSM03] (both are actually equivalent [PS06; Peg17b]).
For an introduction to the theory of branched transport we refer to the book [BCM09b]. In pure
mathematics, mass minimization amongst 1-dimensional flat G-chains with fixed boundary provides
versions of branched transport, see e.g. [Xia04; PS06; MM16] and the fundamental results in [Fle66;
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Whi99a; Whi99b]. We also mention [PZ18] for a first result on the classification of groups G that
produce branching. This last work, together with the classification of homotopy groups of spheres and
the classification [HR08] indicates that branched transport costs must commonly appear in connections
between vortices of nonlinear Sobolev maps. This has recently lead to important insights into weak
density results such as [Bet20]. Branched transport is also connected to size-minimization problems
[DH03] and the Steiner problem [MM16], network transport systems [Dur06; But+09], superconduc-
tivity [Con+18], traffic flow optimization [ILB21], models of tree roots and branches [BS18; BPS20],
models of river systems [RR01], mailing problems [Col+17], urban planning problems [BW15], amongst
others. Finding the optimal branched transport map is in general NP-hard (while for classical optimal
transport the complexity is O(n3 logn) for n−point masses), therefore computational approximations
are an interesting direction of research, see [OS11], [Mon17].

Classical optimal quantization problems consider the question of how to discretize a given positive
measure ν ∈ M+(X) (in which X = Rd or X is a more general metric space), in such a way that the
discrete N−point approximant νN ∈ M(Rd) is at minimum distance according to a distance or cost
c : X ×X → (0,∞) (which usually is a power of the distance over X = Rd, i.e. c(x, y) = |x− y|p, p ≥ 1,
see [Mér11]). We refer to general rerference books [GL00], [GG12] for an overview of the problem.
Historical first references are [Fej59] and [Ger79]. Applications of optimal quantization range from from
clustering [MB02], [Boo+09], to signal processing [GG92], to numerical integration/quadrature [Pag98],
to economy [BS72]. The quantization problem can be reformulated as a semi-discrete optimal transport
problem, see e.g. [Mér11], and important applications appeared in material science [BPT14; BC21;
BPR23]. Asymptotics and continuum limits of the problem as the number of discretization points tends
to infinity have been studied for the classical optimal quantization problems by Zador [Zad82] and by
Bouchitté et al. [BJM02][BJM11], and we also mention the important work of Gruber [Gru04].

Further problems that are not directly formulated as a quantization problem but can be seen as
generalizations of the problem in the same way as the case of introducing a branched transport distance
is, appear in minimization of energies of a large number of "charges" under Riesz-Coulomb interactions:
see the book [BHS19], and the crystallization survey [BL15]. We mention the related problems of
optimal unconstrained polarization [HPS20], jellium equidistribution [PR18], Voronoidal tessellations
[DFG99], power diagrams [AHA98], clustering [Sax+17], amongst others.

In this work, we focus on the case in which the cost underlying an optimal quantization problem is
replaced by a branched transport cost. The motivations for formulating this new problem come from
both a mathematically interesting new difficulty, and for the potential of direct applications.
Mathematically, the most important difficulty with quantization problems under branched transport

distances, is that the regularity of interfaces is not known, and the interfaces do not satisfy an explicit
condition. This makes Branched Quantization much more challenging than classical optimal quantiza-
tion, and required us to give replacements for the main steps in the proof. We expect that our approach
will allow to study some classes of problems involving random interfaces as well, since we do not make
direct use of properties of the interfaces in our estimates.
In terms of applicability, in computational problems many clustering problems use classical distances

only due to their being "a simple first choice" and complex clustering tasks are better approximated via
hierarchical tree-like clustering structures, such as those formed by branched transport networks. Many
biological models such as the study of plant root competition (a natural extension to models such as
[BS18]) would directly lead to branched quantization formulations. The same goes for supply chains
modelling, in which several sources have to be optimized in order to supply a target density of users.

1.2 Main results
In this section we give simplified statements of our asymptotics and uniformity results for optimal
branched quantizers, using a minimal amount of definitions. For further full definitions and background
results, see Section 2.
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We will define in Section 2.1 traffic plans P between probability measures µ, ν, as suitable measures
over 1−Lipschitz curves transporting µ to ν. For α ∈ [0, 1] we define the α-mass Mα(P) as the integral
of the α-th power of the transported mass flux ΘP (called multiplity), over the network ΣP induced by
P, when the latter is 1-rectifiable (see full definition in Section 2.1). It is indeed proportional to mα× `
when moving a total mass m over a distance `. Then for N ≥ 1 we consider the branched optimal
quantization problem defined as

Eα(ν,N) := min {dα (µ, ν) : # sptµ ≤ N} , (1.1)

in which dα is the branched transport distance, given as the infimum of α−mass Mα(P) amongst traffic
plans P transporting µ to ν. An optimimzer for this minimization problem is called an optimal N−point
quantizer of µ.
Recall that a natural scaling power is β := 1 + dα − d, which will be used below. Furthermore,

Ahlfors regularity condition on a measure µ requires that the measure of balls centered in its support
is comparable to Lebesgue measure (see (4.2) for the precise definition).
Then the first main result is a branched transport version of a result by Zador [Zad82] valid for

classical quantization.

Theorem 1.1 (See Theorem 3.5). Let ν be a d-Ahlfors regular probability measure on Ω ⊆ Rd. Then:

(A) if (µN )N∈N is a sequence of optimal N -point quantizers µN ,

µ�N
.= (# sptµN )−1 ∑

{x:µN ({x})>0}
δx

?−⇀ Cν
α

α+ 1
d ,

where C =
(´

Ω ν(x)
α

α+ 1
d dx

)−1
.

(B) assimilating ν with its density with respect to the Lebesgue measure L d,

lim
N→∞

Nβ/dEα(ν,N) = cα,d

(ˆ
Ω
ν(x)

α

α+ 1
d dx

)α+ 1
d

; (1.2)

The above theorem is a consequence of a more precise Γ−convergence result of dα-distance to the
continuum along sequences with fixed limit mass density and support density, given in Theorem 3.1.
The result of Theorem 3.1 is the branched transport analogue of the asymptotic result of [BJM11] for
classical optimal quantization.

Our uniformity results reinstate the for branched quantization, the general strategy of [Gru04], valid
for classical quantization. This result describes bounds on the covering radius and on the separation
distance for optimal quantizers, both at the natural scale of cN−1/d, which is coherent with the principle
that for an optimal quantizer, roughly speaking, an euclidean ball of volume c/N is assigned to each of
N points in the quantizer support. The covering radius bound quantifies the property that the atoms
of an optimal quantizer are never farther than c1N

−1/d from the support of the quantized measure µ,
and the separation bound indicates that the atoms of the quantizer are never closer than c2N

−1/d from
each other.

Theorem 1.2 (See Theorem 5.1). Let ν be a compactly supported d-Ahlfors regular measure on Rd and
µN =

∑
1≤i≤N miδxi be an N -point optimal quantizer with atoms X = {xi}1≤i≤N . Then the covering

radius ω(spt ν,X ) and separation distance δ(X ) enjoy the following bounds:

ω(spt ν,X ) := sup
x∈spt ν

min
i
d(xi, x) ≤ c2N

−1/d,

δ(X ) := min
j 6=k

d(xj , xk) ≥ c1N
−1/d.

for some constants c1, c2 > 0 that do not depend on N .
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The new technical result that allows to prove our uniformity results is given in Theorem 4.1, and
gives a uniform Hölder control of the so-called landscape function, a substitute for classical Kantorovich
potentials in Branched Transport theory. Recall that classical Optimal Transport theory, so-called
Kantorovich duality allow to transform the problem to a dual version based on Kantorovich potentials
(see e.g. [San15]). In turn, Kantorovich potentials can be used to show that for optimal quantization
with cost |x− y|p interfaces of the quantization cells are straight (see e.g. in [MT21]).

In Branched Transport there is no precise analogue of Kantorovich duality, but optimal Kantorovich
potentials have a partial analogue in the landscape function. As a reference for the single-source land-
scape function zPx (corresponding to case N = 1 in our notation) see e.g. [PSX19] and references
therein. The basic properties of zPx are recalled in Proposition 2.2. For general N , in Theorem 4.1 we
prove the following result, for which need a weaker property of a quantizer to be mass-optimal, i.e. we
require it to be a minimizer restricted to the class of measures for which the support of the quantizer
competitors is kept fixed but the masses are allowed to vary.

Theorem 1.3 (see Theorem 4.1). Let ν ∈Mc(Rd) be a compactly supported d-Ahlfors regular measure,
and let P ∈ TP(µ, ν) be an optimal traffic plan where µ =

∑N
i=1miδxi is a N -point mass-optimal

quantizer of ν with respect to (xi)1≤i≤N . There exists a unique function zP : spt ν → R+ that we call
landscape function associated with P which locally coincides with the single-source landscape functions
zPxi and is β-Hölder continuous for β := 1 + dα− d ∈ (0, 1], with a Hölder constant independent on N .

We emphasize that in the proof of Theorem 1.2 we make crucial use of the uniform in N Hölder
control of zP, without which we do not expect the same results to hold.

1.3 Structure of the paper
• In Section 2 we complete the definitions underlying our main theorems, recall important foun-

dational results in Branched Optimal Transport and establish preliminary results on the optimal
quantization and partition problems.

• In Section 3 we prove our main Γ-convergence and asymptotic results, Theorem 3.1 and Theo-
rem 1.2.

• In Section 4 we prove the above Theorem 1.3 on the regularity of the landscape function.

• In Section 5 we prove the uniformity result of Theorem 1.2.

2 Background and preliminaries
2.1 Background in branched optimal transport
In this section we set up the static “Lagrangian” model of branched optimal transport based on traffic
plans developed by [BCM05] and [MSM03]. The main reference on branched optimal transport is the
book [BCM09b]. The presentation, notation and definitions that we adopt in this paper have been
slightly simplified following more recent works.

Traffic plans

A traffic plan P on Rd is a finite positive measure on the set of 1-Lipschitz curves Γd := Lip1(R+,Rd),
endowed with the metrizable topology of uniform convergence on compact sets, which is concentrated
on the set of curves with finite stopping time:

P({γ ∈ Γd : T (γ) = +∞}) = 0, (2.1)
where for every γ ∈ Γd,

T (γ) := inf{τ ≥ 0 : γ constant on [τ,+∞)} ∈ [0,+∞]. (2.2)

5



Given two probability measures µ± ∈M +(Rd), we say that a traffic plan P transports µ− to µ+, and
we write P ∈ TP(µ−, µ+) if one recovers µ− and µ+ by assigning the mass of each curve to its initial
or final point, namely if (e0)]P = µ− and (e∞)]P = µ+ where e0(γ) = γ(0) and e∞(γ) = limt→∞ γ(t)
for every γ ∈ Γd. The measures µ− and µ+ are respectively called the source and sink measures of P.
For every x ∈ Rd, the multiplicity

ΘP(x) :=
ˆ

Γd
#γ−1({x}) dP(γ) (2.3)

represents the amount of curves, measured by P, which visit x (each curve being counted as many times
as it visits x). The network of P is the (possibly empty) 1-rectifiable set1

ΣP := {x ∈ Rd : ΘP(x) > 0}. (2.4)

The traffic plan P is said rectifiable if there exists a 1-rectifiable set Σ such that

H 1(γ(R+) \ Σ) = 0 for P-almost every γ ∈ Γd, (2.5)

in which case (2.5) holds with Σ = ΣP. It is said simple if it is concentrated on simple curves, i.e.
curves γ ∈ Γd such that γ is constant on [s, t] whenever γ(s) = γ(t) and s < t.

Finally, two traffic plans, P1,P2 are said disjoint if there exists two disjoint sets A1, A2 ⊆ Rd such
that for i ∈ {1, 2},

H 1(γ(R+) \Ai) = 0 for Pi-almost every γ ∈ Γd. (2.6)

For rectifiable traffic plans P1,P2, it is equivalent to

H 1(ΣP1 ∩ ΣP2) = 0. (2.7)

Concatenation of traffic plans

We follow the presentation of concatenations provided in [CDM19, §3.3]. If γ1, γ2 ∈ Γd have finite
stopping time and γ1(+∞) = γ2(0) we set for every t ∈ R+

(γ1 : γ2)(t) :=
{
γ1(t) if t ∈ [0, T (γ1)),
γ2(t− T (γ1)) if t ∈ [T (γ1),+∞).

We denote this map by conc : Λd ⊆ Γd × Γd → Γd.
If P1,P2 ∈ TPd are such that (e∞)]P1 = (e0)]P2, we say that P is a concatenation of P1 and P2

if there exists a measure P̄ ∈ M +(Γd × Γd), called a recovery plan, which is concentrated on Λd and
satisfies

P = conc#P̄ (2.8)
(pi)]P̄ = Pi where pi : (γ1, γ2) 7→ γi for i ∈ {1, 2}. (2.9)

We denote by (P1 : P2) the set of concatenations of P1 and P2. We will need some properties of
concatenations that are summarized in the following proposition, extracted from [CDM19, §3.3].

Proposition 2.1 ([CDM19, Lemma 3.6]). If P1,P2 ∈ TPd are such that (e∞)]P1 = (e0)]P2, then:

(i) (P1 : P2) is nonempty,

(ii) (e0)]P = (e0)]P1 and (e∞)]P = (e∞)]P2 for every P ∈ (P1 : P2),

(iii) for every P ∈ (P1 : P2), ΘP = ΘP1 + ΘP2 and thus Mα(P) ≤Mα(P1) + Mα(P2),

(iv) if P ∈ (P1 : P2) and P′ ∈ (P′1 : P′2) then P + P′ ∈ (P1 + P′1 : P2 + P′2).
1It is 1-rectifiable by [Peg17b, Section 2.1] or [BCM05, Lemma 6.3].
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The α-mass functional and the irrigation problem

For α ∈ [0, 1], the α-mass2 of a traffic plan is defined as

Mα(P) =


ˆ

ΣP

ΘP(x)α dH 1(x) if P is rectifiable,

+∞ otherwise.
(2.10)

If µ± are two positive measures on Rd of equal (finite) mass, the irrigation problem then reads as

inf
{
Mα(P)

∣∣∣P ∈ TP(µ−, µ+)
}
, (Iα)

and we denote by dα(µ−, µ+) this infimum value. We say that ∈OTP(µ−, µ+) if it realizes the infimum
in (Iα).
Let us state or recall some results that we shall use thoughout the paper.

(1) Irrigability and irrigation distance. Contrary to the classical optimal transport problem, for
some pair of compactly supported measures (µ−, µ+) and some exponent α it is possible that
(2.10) admits no competitor of finite α-mass, typically when the measures spread on a set of large
dimension while the exponent α is too small. However, when α > 1− 1

d , there exists a competitor of
finite α-mass for any pair of measures (µ−, µ+) of same total mass which are compactly supported
on Rd, as shown3 in [Xia03a]. In particular

α > 1− 1
d

and K ⊆ Rd compact

=⇒ dα is a distance on P(K) which metrizes the weak-∗ convergence of C (K)′.
(2.11)

(2) Existence for the irrigation problem. Whenever (Iα) admits a competitor of finite cost, it
admits an minimizer. It results for example from the existence of Eα minimizers established in
[BCM09b], where Eα is a more complicated variant4 of Mα, knowing that Eα ≥Mα, with equality
for Eα minimizers.

(3) Upper estimates on the α-mass. If α > 1− 1
d , there exists a constant CBOT = CBOT(α, d) ∈

(0,+∞) such that for any compactly supported measures µ± of same total mass,

dα(µ−, µ+) ≤ CBOT diam(spt(µ+ − µ−))‖µ+ − µ−‖α. (2.12)

Indeed, it is proven in [Xia03a] that dα(δ0, µ) ≤ C(α, d)/2 for every µ ∈P([−1/2, 1/2]d) and some
constant C(α, d) ∈ (0,∞), from which we deduce dα(µ−, µ+) ≤ Crmα when diam(spt(µ−+µ+)) ≤
r and ‖µ−‖ = ‖µ+‖ = m using the triangle inequality and the 1-homogeneity in space and α-
homogeneity in mass of the α-mass. Applying this to the measures µ̃± = µ± − µ− ∧ µ+ yields
(2.12) since ‖µ̃±‖ = ‖µ+ − µ−‖/2, spt(µ+ − µ−) = spt(µ̃+ + µ̃−), and dα(µ−, µ+) = dα(µ̃−, µ̃+).

(4) First variation of the α-mass. If P, P̃ are traffic plans with Mα(P) <∞, then

Mα(P̃) ≤Mα(P) + α

ˆ
Γd
ZP(γ) d(P̃−P)(γ), (2.13)

where

ZP(γ) :=
ˆ
γ

Θα−1
P =

ˆ
γ(R)

ΘP(x)α−1#γ−1(x) dH 1(x). (2.14)

2It is the equivalent for traffic plans, of the α-mass of currents.
3It is shown in the Eulerian model based on vector measures, but adapting the proof in our Lagrangian setting is
straightforward, or one can also invoke the equivalence of the models [Peg17b].

4The reason for using this functional Eα instead of the α-mass was that it was only possible at that time to establish the
lower semicontinuity of Eα (on suitable subsets).
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The proof of (2.13) relies on the concavity of m 7→ mα applied to ΘP̃ = ΘP + (ΘP̃ −ΘP) and on
Fubini’s theorem (we refer to [BCM09b] or [Peg17b]). Notice that the integral

´
ZP d(P̃ − P) is

well-defined (possibly infinite) since by Fubini’s theorem

∞ >Mα(P) =
ˆ

Γd
ZP dP

and
´

Γd ZP dP̃ ∈ [0,∞].

(5) Single-path property. If P ∈ TP(mδs, ν) is an optimal traffic plan, it is simple and satisfies
the single-path property, which be stated in the single-source case as follows: for every x ∈ ΣP,
there exists a (unique) curve parameterized by arc length γP,x : [0, `]→ Rd such that P-a.e. curve
γ passing by x follows the trajectory of γP,x, i.e. if tx(γ) ednotes the unique t ∈ [0, T (γ)] such
that γ(t) = x,

for P-a.e. γ s.t. x ∈ γ(R+), γ̃[0,tx(γ̃)] = γP,x, (2.15)

where γ̃ denotes the unit-speed reparameterization of γ ∈ Γd. This fact is stated in [BCM09b,
Proposition 7.4].

Landscape function for a single source

Given an optimal irrigation plan P ∈ TP(mδs, ν), following [San07] we say that a curve γ is P-good if,
recalling the notation (2.14),

• ZP(γ) =
´
γ ΘP(x)α−1 dx < +∞,

• for all t < T (γ),
ΘP(γ(t)) = P({γ̃ ∈ Γ(Rd) : γ = γ̃ on [0, t]}).

It is proven in [San07] that any traffic plan P which is optimal (with finite cost) is concentrated on the
set of P-good curves, and that for all P-good curve γ, the quantity ZP(γ) depends only on the final
point γ(∞) of the curve, thus we may define the landscape function zP as follows:

zP(x) :=
{
ZP(γ) if γ is an P-good curve s.t. x = γ(∞),
+∞ otherwise. (2.16)

We summarize the properties on the landscape function, extracted from [San07], that we shall need.

Proposition 2.2. If P ∈ TP(mδs, ν) is optimal with Mα(P) < ∞, α ∈ [0, 1), and zP is its landscape
function, then zP is lower semicontinuous and finite on ΣP ∪ spt ν. Moreover:

(A) zP(x) ≥ d(x, s) for every x ∈ Rd ;

(B) the α-mass may be expressed in terms of zP:

dα(mδs, µ) = Mα(P) =
ˆ

Γd
ZP(γ) dP(γ) =

ˆ
Rd
zP(x) dν(x);

(C) if P̃ ∈ TP(mδs, ν̃) is a traffic plan concentrated on P-good curves, then:

Mα(P̃) ≤Mα(P) + α

ˆ
Rd
zP d(ν̃ − ν),

and the inequality is strict if ΘP̃ −ΘP is not zero H 1-a.e. on ΣP;

(D) in particular, zP is an upper first variation of the irrigation distance, in the sense that for every
ν̃ ∈M +(Rd),

dα(‖ν̃‖δp, ν̃) ≤ dα(‖ν‖δs, ν) + α

ˆ
Rd
zP d(ν̃ − ν).
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2.2 The optimal quantization problem and mass-optimal quantizers
The optimal branched quantization problem is the following:

Eα(ν,N) := min {dα (µ, ν) : ‖µ‖ = ‖ν‖ and # sptµ ≤ N} . (2.17)

An admissible candidate µN in this problem will be called a quantizer of ν, and a solution will be
called an N -point optimal quantizer of ν. Existence of optimal quantizers is shown next.

Theorem 2.3. For any finite positive measure ν ∈M (Rd) and any N ∈ N∗, the optimal quantization
problem (2.17) admits a solution.

Proof. Take an integer N ≥ 1 and ν a finite positive measure on Rd, assuming without loss of generality
that it has unit mass. Suppose that Eα(ν,N) < +∞ (otherwise there is nothing to prove) and take
(µn)n∈N a minimizing sequence with supn∈N dα(µn, ν) =: Λ < +∞. Let us show that it is tight. Take
ε > 0 and R ≥ Λ/ε large enough such that ν(Rd \BR/2) ≤ ε/2. If Pn ∈ TP(µN , ν) is an optimal traffic
plan, then

Λ ≥Mα(Pn) ≥
ˆ

Γd
L(γ) dPn(γ)

≥
ˆ

Γd
L(γ)1{γ:γ(0)∈Rd\BR,γ(∞)∈BR/2} dPn(γ)

≥ R(µn(Rd \BR)− ν(Rd \BR/2)),

which implies that
µn(Rd \BR) ≤ Λ/R+ ν(Rd \BR/2) ≤ ε.

As a consequence, (µn) admits a subsequence converging narrowly to some µ ∈P(Rd). Necessarily, µ
has at most N atoms as well and by lower semicontinuity of dα for the weak convergence of probability
measures µ is a N -point optimal quantizer.

We will consider a class of quantizers which include optimal quantizers and that we call mass-optimal
quantizers. They will be used to establish the full Γ-convergence result in Section 3, and may also
provide a notion of Voronoï cells, called Voronoï basins, in the setting of branched optimal transport
(see Remark 4.5).

Definition 2.4 (Mass-optimal quantizers). Let ν ∈ M (Rd) be a finite positive measure and X =
{xi}1≤i≤N be a set of cardinal N . If µ is a measure supported on X such that the masses of its atoms
are chosen in the best way to approximate ν in dα distance, i.e. dα(µ, ν) = dα(X , ν) where

dα(X , ν) := inf
{
dα(µ′, ν) : sptµ′ ⊆ X

}
, (2.18)

we say that µ is an N -point mass-optimal quantizer with respect to {xi}1≤i≤N .

We will also need to decompose any traffic plan P ∈ TP(µ, ν), where µ is purely atomic, with respect
to the atoms of µ, also called the sources of P.

Definition 2.5 (Restrictions and basins from a source). If P ∈ TP(µ, ν) where µ is purely atomic and
x is an atom of µ, the restriction of P from the source x is defined by

Px := P {γ ∈ Γd : γ(0) = x}, (2.19)

so that the following source decomposition of P holds:

P =
∑

x∈sptµ
Px. (2.20)

The decomposition is said disjoint if all these restrictions (Px)x∈sptµ are pairwise disjoint. We also
introduce the support of the sink measure of Px, also called the basin from x with respect to P:

Bas(P, x) := spt((e∞)]Px). (2.21)
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In the next lemma, we show that the source decomposition of an optimal plan between a measure and
a mass-optimal quantizer is disjoint in the above sense, and that the corresponding sink measures are
mutually singular. This result plays a key role in the proof of equivalence between optimal quantization
and optimal partition, and will also be crucial in Section 4 to define and study the landscape function,
and to show the disjointness of irrigation basins.

Lemma 2.6 (Disjointness properties of mass-optimal quantizers). Let µ =
∑N
i=1miδxi be an N -point

mass-optimal quantizer of ν ∈M +
c (Rd) with respect to X := {xi}1≤i≤N and P ∈ TP(µ, ν) be an optimal

traffic plan. Then:

(i) the traffic plans Pxi are disjoint, in the sense that the measures ΘPxiH 1 are mutually singular. In
particular they realize the minimum–cost branched transport distance between their own marginals,
and

Mα(P) =
N∑
i=1

Mα(Pxi);

(ii) the irrigated measures νi := (e∞)]Pxi are mutually singular.

Proof. Let us start by proving (i). By contradiction, assume that for some i 6= j, ΘPxiH 1 and ΘPxjH
1

are not mutually singular, and we contradict the optimality of P. Then there exists a Borel set A ⊆ ΣP
and a constant m0 > 0 such that H 1(A) > 0 and ΘPxi (x) ∧ ΘPxj (x) ≥ m0 for every x ∈ A. Pick a
point x ∈ A with x 6= xi and x 6= xj and consider for k ∈ {i, j} a traffic plan

Pk ≤ P {γ ∈ Γd : γ(0) = xk, x ∈ γ(R+)} such that ‖Pk‖ = m0.

For every ε ∈ [0, 1], we will build a traffic plan Pε, obtained from P by taking a fraction ε of Pi, replacing
for each curve γ of Pi the curve segment between xi and x by a segment of a curve γ̃ of Pj from xj
to x. To do this, consider the map tx : γ 7→ min γ−1({x}) and the restriction maps r−x : γ 7→ γ|[0,tx(γ)],
r+
x : γ 7→ γ|[tx(γ),+∞). Then

(e∞)](r−x )]Pj = (e0)](r+
x )]Pi = m0δx,

and by Proposition 2.1 (i) the concatenation Q ∈ ((r−x )]Pj : (r+
x )]Pi) is defined. For ε ∈ [0, 1) set

Pε := P + ε(Q−Pi).

We shall do the converse operation for ε ∈ (−1, 0), namely

Pε := P− ε(Q′ −Pj), where Q′ ∈ ((r−x )]Pi : (r+
x )]Pj).

Notice that for both possible signs of ε we have ΣPε ⊆ ΣP and

ΘPε = ΘP + ε∆Θ where ∆Θ := Θ(r−x )]Pj −Θ(r−x )]Pi . (2.22)

Indeed if for example ε ≥ 0 then by Proposition 2.1 (iii) we have ΘQ = Θ(r−x )]Pj + Θ(r+
x )]Pi , and (2.22)

follows because ΘPi = Θ(r−x )]Pi + Θ(r+
x )]Pi .

Now, the initial measure µε := (e0)]Pε of Pε is still supported in {xi : 1 ≤ i ≤ n} and its final measure
is still ν, thus by mass-optimality of µ,

ˆ
Rd

Θα
P dH 1 = Mα(P) ≤Mα(Pε) =

ˆ
ΣP

(ΘP + ε∆Θ)α dH 1.

For k ∈ {i, j}, by the single-path property recalled in (2.15), P-a.e. curve starting at xk and visiting x
follows a trajectory given by a single (simple, parameterized by arc length) curve γk such that γk(0) = xk,
γk(∞) = x and γk(R+) ⊆ ΣP ; in particular, Θ(r−x )]Pk = m01γk(R+). Since xi, xj , x are distinct points,
we get

H 1({y ∈ ΣP : ∆Θ(y) 6= 0}) = H 1(γi(R+)∆γj(R+)) > 0,
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and as α ∈ (0, 1), the function ε 7→
´

ΣP
(Θ + ε∆Θ)α dH 1 is strictly concave on (−1, 1). But it is

minimized at ε = 0: a contradiction. Consequently, ΘPxiH 1 and ΘPxjH
1 are mutually singular for

every i 6= j.

Since P =
∑N
i=1 Pxi , we get that Mα(P) =

∑N
i=1 Mα(Pxi), and the optimality of each Pxi for

i ∈ {1, . . . , N} follows from that of P.
Let us now prove (ii). For every i ∈ {1, . . . , N}, the traffic plan Pxi being optimal with a single

source, we may consider its landscape functions zPi as in (2.16). By contradiction assume that νi ⊥ νj
does not hold for some i 6= j. Then we have:

m := ‖ν̃‖ > 0 where ν̃ := νi ∧ νj .

For k ∈ {i, j} consider a plan Pk ≤ Pxk such that Pk ∈ TP(mδxk , ν̃), and define for ε ∈ (−1, 1) \ {0}
the competitor

Pε = P + ε(Pj −Pi).

Its initial measure (e0)]Pε is still supported on xi : 1 ≤ i ≤ N and its final measure is still ν, thus by
mass-optimality of µ we get

Mα(P) = dα(X , ν) ≤Mα(Pε)
≤
∑
k 6=i,j

Mα(Pxk) + Mα(Pxi − εPi) + Mα(Pxj + εPj)

<
∑
k 6=i,j

Mα(Pxk) + Mα(Pxi)− αε
ˆ
Rd
zPxi d(e∞)]Pi + Mα(Pxj ) + αε

ˆ
Rd
zPxj d(e∞)]Pj

= Mα(P) + αε

ˆ
Rd

(zPxj − zPxi ) dν̃,

where we have used the first variation inequality Proposition 2.2 (C) twice on the third line. The
inequality in the third line is strict for ε ∈ (−1, 1) \ {0}, because for k ∈ {i, j}, ΘPk ≤ ΘPxk thus for
every y ∈ Rd such that ΘPk(y) > 0 we have |ε|ΘPk < ΘPxk : this strict inequality holds on a H 1-positive
subset of ΣPxk . We can now choose ε such that ε

´
Rd(zPxj − zPxi ) dν̃ ≤ 0, and we get the contradiction

Mα(P) <Mα(P).

2.3 The optimal partition problem and equivalence with optimal quantization
For any finite nonnegative measure ν, we define

Cα(ν) := inf
x∈Rd

dα(‖ν‖δx, ν). (2.23)

Given a compactly supported measure ν on Rd and an integerN > 1, we define the optimal (branched)
ν-partition problem as:

inf
{

N∑
i=1

Cα(ν Ωi) : (Ωi)1≤i≤N ⊆ spt ν, ν(Rd \
⋃
i

Ωi) = 0 and µ(Ωi ∩ Ωj) = 0 (∀i 6= j)
}
. (2.24)

It may be equivalently written in terms of measures as:

inf


N∑
i=1

Cα(νi) : (νi)1≤i≤N , ν =
∑

1≤i≤N
νi and νi ⊥ νj (∀i 6= j)

 . (2.25)

For more classical costs, e.g. corresponding to Wasserstein distance Wp, it is straightforward to see
that optimal quantization is equivalent to an optimal partition problem, where the optimal partitions
are given by Voronoi diagrams associated with a finite set of points. With our branched transportation
cost Cα (corresponding to distance dα), the situation is a priori much more difficult, since there is no
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clear decomposition of the target space into regions associated with the atoms of a quantizer: on the
contrary, in branched transport it is expected that several atoms are first collected together along a
graph, then irrigate some part of the target measure, so that we cannot associate these irrigated points
with a single atom. However, we shall see that such situations do not occur for optimal quantizers,
resulting in the equivalence between the optimal quantization and optimal partition problems.
Note that the existence of minimizers for (2.25) is not direct from functional analysis results, since

the condition νi ⊥ νj does not pass to weak limits of measures. To prove existence of solutions, we
introduce the following relaxed optimal partition problem

inf


N∑
i=1

Cα(νi) : (νi)1≤i≤N , ν =
∑

1≤i≤N
νi

 . (2.26)

We shall see below that the optimal quantization problem and the original and relaxed partition problems
are equivalent (Theorem 2.7), and obtain existence to (2.25) in Corollary 2.8.
Theorem 2.7 (Optimal Quantization ' Optimal Partition). Given a measure ν ∈M +

c (Rd), the mini-
mal values of the optimal quantization problem (2.17) and the optimal partition problem (2.25), as well
as its relaxation (2.26), are equal. Furthermore the minimizers of these problems are related as follows:
(i) If µN =

∑N
i=1miδxi is solution of (2.17) with optimal plan P ∈ TP(µN , ν) then the irrigated

measures νi := (e∞)]Pxi for 1 ≤ i ≤ N form an optimizer of (2.25).

(ii) If (νi)1≤i≤N is an optimizer of (2.25) and if for every i, xi ∈ Rd and Pi ∈ TP(‖νi‖δxi , νi) are
optimal, i.e. Cα(νi) = dα(‖νi‖δxi , νi) = Mα(Pi), then µN :=

∑N
i=1‖νi‖δxi is an optimizer for

(2.17) and P :=
∑N
i=1 Pi ∈ TP(µN , ν) is an optimal traffic plan.

(iii) The optimal partition problem (2.25) and the relaxed problem (2.26) have the same minimizers
and minimal value.

Proof of Theorem 2.7. Denote by Eαp (ν,N) and Eαpr(ν,N) the infima of (2.25) and (2.26) respectively
and take µ =

∑N
i=1miδxi a minimizer of (2.17), which exists by Theorem 2.3, and an optimal traffic

plan P ∈ TP(µ, ν). By Lemma 2.6 (ii), the irrigated measures νi = (e∞)]Pxi are mutually singular and
ν =

∑N
i=1 νi. In particular, (νi)1≤i≤N is a competitor for (2.25). Besides, by Lemma 2.6 (i) the traffic

plans Pxi ∈ TP(miδxi , νi) are disjoint and optimal, thus:

Eαp (ν,N) ≤
N∑
i=1

Cα(νi) ≤
N∑
i=1

dα(miδxi , νi) =
N∑
i=1

Mα(Pxi) = Mα(P) = Eα(ν,N). (2.27)

Viceversa, take a ε-minimizer (νi)1≤i≤N of (2.26) for some fixed ε > 0. We can form a competitor for
(2.17) by simply taking for each νi a point xi that is optimal, i.e. such that dα(‖νi‖δxi , νi) = Cα(νi),
and setting µ :=

∑N
i=1‖νi‖δxi . Moreover, taking for every i ∈ {1, . . . , N} an optimal traffic plan

Pi ∈ TP(‖νi‖δxi , νi), the traffic plan P :=
∑N
i=1 Pi belongs to TP(µ, ν) where µ has at most N atoms,

and therefore by subadditivity of the α-mass:

Eα(ν,N) ≤ dα(µ, ν) ≤Mα(P) ≤
N∑
i=1

Mα(Pi)

=
N∑
i=1

dα(‖νi‖δxi , νi) =
N∑
i=1

Cα(νi) = Eαpr(ν,N) + ε.

(2.28)

Since ε is arbitrary, this shows Eα(ν,N) = Eαpr(ν,N) = Eαp (ν,N) and (i) holds because of (2.27) in
the first part of the proof ; it implies in particular existence for the optimal partition problem and its
relaxation. Besides, taking now (νi)1≤i≤N a minimizer of the relaxed partition problem (2.26) instead of
an ε-minimizer, and plugging it in the inequalities (2.28) (now ε = 0), shows that the quantizer µ built
as above is optimal for ν, and the traffic plan P (also built as above) is optimal in TP(µ, ν). From (i)
we deduce that the νi’s are actually mutually singular and (νi)1≤i≤N is an minimizer of (2.25), which
in turn implies (iii).
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As direct corollary from Theorem 2.3 and Theorem 2.7, we obtain existence for the optimal partition
problem.

Corollary 2.8. For any finite positive measure ν ∈ M (Rd) and any N ∈ N∗, the optimal partition
problem (2.25) admits a solution.

2.4 Asymptotic energy scaling and asymptotic constant
We start by proving a general upper bound on the optimal quantization error by N points.

Lemma 2.9. Let ν ∈ M +
c (Rd) be a finite measure and α ∈

(
1− 1

d , 1
]
. If ν is supported on a cube Q

of edge length r, it holds:
Eα(ν,N) ≤ C(α, d)N−β/dr‖ν‖α,

recalling that C(α, d) = 2Eα(L d [0, 1]d, 1)

Proof. Suppose that Q := [−1/2, 1/2]d and take n ∈ N∗ such that nd ≤ N < (n+ 1)d. Divide the cube
Q into nd subcubes {Qi}1≤i≤nd of edge length 1

n . We have

Eα(ν,N) ≤ Eα(ν, nd) ≤
nd∑
i=1
Eα(ν Qi, 1) ≤

nd∑
i=1

C(α, d)
2 n−1ν(Qi)α

≤ C(α, d)
2 n−1nd

(‖ν‖
nd

)α
= C(α, d)

2 n−β‖ν‖α ≤ C(α, d)N−β/d‖ν‖α.

We show that the optimal N -point quantization error of the unit cube behaves as some negative
power of N times a nontrivial constant cα,d, when the Lebesgue measure is α-irrigable.

Proposition 2.10. If α ∈ (1− 1
d , 1], then there exists a constant cα,d ∈ (0,+∞) such that

lim
N→+∞

Nβ/dEα(L d [0, 1]d, N) = cα,d where β := 1 + dα− d,

and Eα is the optimal branched quantization error defined in (2.17).

The proof is based on a classical result of subadditive processes in ergodic theory (see e.g. [LM02]).

Proof. Define for every borel set A ⊆ Rd and N ∈ N,

Sα(A) = Eα(L d A, bL d(A)c). (2.29)

Notice that for every N ∈ N∗, by 1-homogeneity in space and α-homogeneity in mass of the α-mass, we
have

Nβ/dEα(L d [0, 1]d, N) = 1
N
N1/d+αEα(L d [0, 1]d, N)

= 1
N
Eα(L d [0, N1/d]d, N) = S

α(QN )
N

where QN := [0, N1/d]d is a cube of volume N . By [LM02, Theorem 2.1], any nonnegative subadditive
translation-invariant function S defined on bounded Borel subsets of Rd satisfies

lim
N→+∞

S(QN )
N

= inf
n∈N∗

S([0, n)d)
nd

,

hence it suffices to show that Sα is subadditive, the invariance by translation being trivial. Subadditivity
is a direct consequence of the subadditivity of Mα and the superadditivity of the integer part. Indeed,
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take A1, A2 two disjoint bounded Borel subsets of Rd, then for any i ∈ {1, 2} an optimal quantizer µi
of L d Ai with at most bL d(Ai)c atoms, and an optimal traffic plan Pi ∈ TP(µi,L d Ai). Since
P1 + P2 ∈ TP(µ1 + µ2,L d (A1 tA2)) and the number N of atoms of µ1 + µ2 satisfies

N ≤ bL d(A1)c+ bL d(A1)c ≤ bL d(A1 tA2)c,

we obtain

Sα(A1 tA2) = Eα(L d (A1 tA2), bL d(A1 tA2)c)
≤ dα(µ1 + µ2,L

d (A1 tA2))
≤Mα(P1 + P2)
≤Mα(P1) + Mα(P2) = Sα(A1) + Sα(A2).

We have thus proven the existence of the constant cα,d ∈ [0,+∞] of the statement. It is finite because
by Lemma 2.9, with constant C(α, d) as in that lemma,

cα,d = inf
n∈N∗

Sα([0, n)d)
nd

≤ C(α, d) < +∞.

We next show that cα,d is strictly positive. By [PSX19, Theorem 2.1], the constant

eα,d := inf
{
dα(δ0, ρ) : ρ ∈P(Rd), ρ ≤ L d

}
(2.30)

is a strictly positive real number. Let µN =
∑N
i=1miδxi be an N -point optimal quantizer of L d [0, 1]d

and P ∈ TP(µN ,L d [0, 1]d) an optimal traffic plan. Using Lemma 2.6, noticing that for every
i ∈ {1, . . . , N}, νi := (e∞)]Pxi ≤ L d, and using again the homogeneity properties of the α-mass, we
get:

Eα(L d [0, 1]d, N) =
N∑
i=1

dα(miδxi , νi)

≥
N∑
i=1

m
α+ 1

d
i eα,d ≥ N(1/N)α+ 1

d eα,d,

where the last inequality is due to the convexity of m 7→ mα+ 1
d (because α+ 1

d > 1). This implies that
cα,d ≥ eα,d > 0 and concludes the proof.

3 Γ-convergence and Zador-type Theorem
We are now going to provide an equivalent for the optimal quantization error of a compactly supported
finite measure ν � L d as the number of points goes to infinity, analogous to the classical Zador’s
Theorem (see [GL00, Theorem 6.2], or the original papers [Zad64; Zad82; BW82]), which states in
particular that

EW 2
2 (ν)N−

2
d

N→+∞−−−−−→ EW 2
2 (L d [0, 1]d)‖ν‖ d

d+2
,

where EW 2
2 (ν) := inf{W2(µN , ν)2 : µN ∈MN}. We shall also be interested in the limit distribution of

centers of N -point optimal quantizers µN , i.e. to the weak limit of

µ�N := 1
# sptµ

∑
{x:µN ({x})>0}

δx.

We tackle the two questions simultaneously by establishing a (stronger) Γ-convergence result, inspired
from of [BJM02; BJM11].
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3.1 A Γ-convergence result
We establish a Γ-convergence result in the spirit of [BJM02], in a form that is slighly more concise.
We do not follow the extended approach of [BJM11], where the functionals depend on the quantizers
µN and also on an extra variable that encodes the distributions of masses (as measures over R+), since
the Γ-limit does not have a fully explicit expression in this case, and we are not able to derive useful
informations from it. Instead, the functionals FN that we consider will depend solely on sets Σ of N
points, embedded in the space of probability measures through their empirical measures 1

N

∑
s∈Σ δs,

leading to the definition

XN :=

 1
N

∑
s∈Σ

δs : #S = N

 (∀N ∈ N∗).

We fix a nontrivial closed cube K ⊆ Rd and a measure ν ∈M +(K) such that ν � L d. We consider
the sequence of functionals FN : P(K)→ [0,+∞] defined for every N ∈ N∗ by

FN,ν(ρ) =
{
Nβ/d inf{dα(µ, ν) : sptµ ⊆ spt ρ} if ρ ∈XN ,
+∞ otherwise.

(3.1)

Determining the Γ-limit of the sequence (FN )N≥1 amounts to seeking out the least (asymptotic) energy
to approximate, in the sense of branched optimal transport, the measure ν by N -point quantizers µN
while prescribing the limit density of the centers (µ�N )N≥1, which will correspond to the ρ variable. We
shall prove that the Γ-limit is the functional F∞ : P(K)→ [0,+∞] defined by

F∞(ρ) = cα,d

ˆ
Rd

ν(x)α

ρac(x)
β
d

dx, (3.2)

where we recall β = 1 + dα− d

Theorem 3.1. Let ν ∈M +(Q) where Q ⊆ Rd is a nontrivial closed cube. If ν � L d and α > 1− 1
d ,

the sequence of functionals (FN )N≥1 Γ-converges to F∞ as N →∞ with respect to weak convergence of
measures.

We are going to use the following lemmas.

Lemma 3.2. Let ν ∈M +
c (Rd) be a measure supported on a cube Q and α ∈ (1− 1

d , 1). It holds

lim
δ→0

lim inf
N→+∞

Nβ/d inf{Eα(ν ′, N) : ν ′ ≤ ν, ‖ν − ν ′‖ ≤ δ} = lim inf
N→+∞

Nβ/dEα(ν,N).

Proof. Suppose that Q is a cube of edge length r > 0. First of all, it is clear that

inf{Eα(ν ′, N) : ν ′ ≤ ν, ‖ν − ν ′‖ ≤ δ} ≤ Eα(ν,N).

for every δ ∈ (0, δ0). Now, let us take a small λ > 0. For every N large enough, by Lemma 2.9 and
subadditivity of the α-mass, we have for every ν ′ ≤ ν

Eα(ν,N + dλNe) ≤ Eα(ν ′, N) + Eα(ν − ν ′, dλNe)
≤ Eα(ν ′, N) + C(α, d)N−β/dr‖ν − ν ′‖αλ−β/d,

hence for every δ > 0

lim inf
N→+∞

Nβ/d inf{Eα(ν ′, N) : ν ′ ≤ ν, ‖ν − ν ′‖ ≤ δ}

≥(1 + λ)−β/d lim inf
N→+∞

Nβ/dEα(ν,N)− C(α, d)rδαλ−β/d.

Taking the liminf as δ → 0 and then λ→ 0 yields the result.
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Lemma 3.3. Let ν ∈M +(K) be an absolutely continuous measure over a cube K of edge length R and
(Ai)1≤i≤I be a L d-essential partition of K with diam(Ai) ≤ r for 1 ≤ i ≤ I. We set

ν ′ :=
I∑
i=1

νiL
d Ai

where νi := ν(Ai)/L d(Ai) if ν(Ai) > 0 and νi := 0 otherwise. Then there is a constant c depending
only on α and d such that

dα(ν, ν ′) ≤ cR1−βrβ‖ν ′ − ν‖α.

Proof. We know from [MS07, Proposition 0.1] (also [BCM09a, Proposition 6.16]) that

dα(µ−, µ+) ≤ cW1(µ−, µ+)β

for every probability measures µ± ∈P(Q1) and some constant c = c(α, d). Applying it to µ− = ν−ν∧ν ′
and µ+ = ν ′ − ν ∧ ν ′ with appropriate rescalings in mass and distance, we obtain

dα(ν, ν ′) ≤ dα(µ−, µ+) ≤ cW1(µ−, µ+)β‖µ−‖α−βR1−β ≤ cW∞(µ−, µ+)β‖µ−‖αR1−β.

By construction, ν and ν ′ have same mass on each Ai, thus the same goes for µ− and µ+, and since
diam(Ai) ≤ r it implies thatW∞(µ−, µ+) ≤ r. Since ‖ν−ν ′‖ = 2‖µ−‖, we obtain the desired result.

Proof of Theorem 3.1. We are going to prove successively the Γ− lim inf and Γ− lim sup inequality, i.e.

∀ρ ∈P(K), ∀(ρN )N∈N∗ ⇀ ρ, lim inf
N
FN (ρN ) ≥ F∞(ρ), (3.3)

∀ρ ∈P(K), ∃(ρN )N∈N∗ ⇀ ρ, lim sup
N

FN (ρN ) ≤ F∞(ρ). (3.4)

Proof of the Γ-liminf inequality (3.3). Let us take a sequence of probability measures ρN ⇀ ρ,
assuming without loss of generality that lim infN FN (ρN ) < +∞. Up to taking a subsequence, we may
assume that FN (ρN ) converges to lim infN FN (ρN ) and

C := sup
N
FN (ρN ) < +∞.

In particular we know that for every N ∈ N∗, ρN = 1
N

∑
s∈ΣN δs for some set ΣN of cardinal N ,

and we take a mass-optimal quantizer µN of ν with respect to ΣN , as well as an optimal traffic plan
PN ∈ TP(µN , ν), so that

FN (ρN ) = Nβ/ddα(ΣN , ν) = Nβ/ddα(µN , ν) = Nβ/dMα(PN ) = Nβ/d

ˆ
Γd
ZPN dPN (γ).

A standard strategy to show (3.3) is to express this energy as the total mass of some measure eN ,
which converges up to subsequence to some measure e, then show a lower bound on e and use the lower
semicontinuity of the total mass. In our branched optimal transport setting, in order to follow this
strategy we will have to resort to outer measures rather than measures. More precisely, we shall bound
from below the energy FN (ρN ) by the total mass E′N (K) of some suitable outer measure E′N , that in
some sense becomes becomes a measure asymptotically as N → +∞, in some sense.
Notice that

CN−β/d ≥
ˆ

Γ
ZPN (γ) dPN (γ) ≥

ˆ
Γ
L(γ) dPN (γ),

so that by Markov’s inequality

PN ({γ : L(γ) ≥MN−β/d}) ≤ C

M
. (3.5)
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Consider an increasing sequence MN tending to +∞ and such that MNN
−β/d → 0, and set

P′N := PN ΓN where ΓN := {γ : L(γ) < MNN
−β/d}. (3.6)

We define for every Borel set A ⊆ Rd:

EN (A) := Nβ/dMα(PN e−1
∞ (A)), E′N (A) := Nβ/dMα(P′N e−1

∞ (A)). (3.7)

We remark that
EN (K) = FN (ρN )

and E′N (and also EN ) is an outer measure (being countably subadditive) and not a priori a measure:
it is posssible that for two disjoint Borel sets A1, A2, the plans P′N e−1

∞ (A1) and P′N e−1
∞ (A2) are not

disjoint. However, E′N becomes additive when dist(A1, A2) > 0 and N becomes large enough. Indeed, if
MNN

−β/d ≤ 1
2 dist(A1, A2), which is the case for N large enough, then for every curve γi ∈ ΓN∩e−1

∞ (Ai),
i ∈ {1, 2},

γ1(R) ∩ γ2(R) = ∅,

which in turn implies that ΘP′N e−1
∞ (A1)H

1 and ΘP′N e−1
∞ (A2)H

1 are mutually singular, and thus

Mα(P′N e−1
∞ (A1 ∪A2)) = Mα(P′N e−1

∞ (A1)) + Mα(P′N e−1
∞ (A2))

i.e.
E′N (A1 ∪A2) = E′N (A1) + E′N (A2). (3.8)

Notice that this additivity property does not hold a priori for EN , which was the point for restricting
the measure and use E′N instead.

We know that ν-a.e. point x ∈ spt ν satisfies
 
Qr(x)

|ν − ν(x)|dx→ 0 and ν(x) ∈ (0,+∞). (3.9)

Fix such a point x, take δ > 0 such that ρ(∂Qδ(x)) = 0 (this is true for all but countably many δ’s),
where Qδ(x) denotes the closed cube x + δ[−1/2, 1/2]d, and consider the slightly smaller δ′ = τδ for
τ ∈ (0, 1) (which we will send to 1 later). We denote for every N ∈ N∗

nN,δ := #(ΣN ∩Qδ(x)), νN := (e∞)#P′N ,

and we define the δ′-rescalings around x

νδ′ := 1
δ′d

(
y 7→ y − x

δ′

)
]

(
1 ∧ ν ′

ν(x)L d Qδ′(x)

)
,

νN,δ′ := 1
δ′d

(
y 7→ y − x

δ′

)
]

(
1 ∧ νN

ν(x)L d Qδ′(x)

)
.

For N large enough, Qδ′(x) +B(0,MNN
−β/d) ⊆ Qδ(x) hence we have the lower bounds:

N−β/dE′N (Qδ′(x)) = Mα(P′N e−1
∞ (Qδ′(x)))

≥ dα((e0)#(P′N e−1
∞ (Qδ′(x))), νN Qδ′(x)) (3.10)

≥ Eα(νN Qδ′(x), nN ) (3.11)
≥ Eα(νN ∧ ν(x)L d Qδ′(x), nN ) (3.12)
= ν(x)αδ′1+dαEα(νN,δ′ , nN ).

where (3.10) follows from the definition of dα, (3.11) and (3.12) from the facts that the source measure
of P′N e−1

∞ (Qδ′(x)) is a submeasure of µN Qδ(x) (thus has at most nN atoms) and that Eα(ν, n) is
decreasing in n and increasing in ν.
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By (3.5) and (3.6), (νN,δ′)N∈N∗ is a submeasure of νδ′ such that ‖νδ′ − νN,δ′‖ ≤ C/MN
N→+∞−−−−−→ 0,

thus multipliying (3.12) by Nβ/d, passing to the liminf in N and using Lemma 3.2 yields:

lim inf
N

E′N (Qδ(x)) ≥ ν(x)α(δτ)1+dα lim inf
N→+∞

(
N

nN

)β/d
Eα(νN,δ′ , nN )nβ/dN (3.13)

= (δτ)1+dαν(x)α

ρ(Qδ(x))β/d
lim inf
n→+∞

nβ/dEα(νδ′ , n) (3.14)

because
nN
N

= ρN (Qδ)→ ρ(Qδ(x)),

since ρN ⇀ ν and ρ(∂Qδ(x)) = 0. Notice that νδ′ ≤ L d Q1 and by (3.9) that ‖νδ′‖ → 1 hence
‖νδ′ −L d Q1‖ → 0. We divide by δd, pass to the limsup as δ → 0, and then take τ → 1 recalling that
δ′ = τδ, and use Lemma 3.2 again, obtaining

lim sup
δ→0

lim infN E′N (Qδ(x))
L d(Qδ(x)) ≥ ν(x)α lim sup

δ→0

δβ

ρ(Qδ(x))β/d
lim inf

n
nβ/dEα(L d [0, 1]d, n)

= ν(x)α

ρac(x)β/d
cα,d

(3.15)

for ν-a.e. x by Radon-Nikodym Theorem.
Now, we conclude by applying a covering argument. For fixed ε ∈ (0, 1) we consider the collection Qε

of cubes Qδ(x), δ > 0, x ∈ Rd such that

(i) Qδ(x) ∈ K +Q1,

(ii) (ε−1∧ρ(x))α
(ε∨ρac(x))β/d ≥

ffl
Qδ(x)

(ε−1∧ν)α
(ε∨ρac)β/d − ε,

(iii) lim infN EN (Qδ(x))
L d(Qδ(x)) ≥ cα,d ν(x)α

ρac(x)β/d − ε.

The set of cubes Qε form a fine cover of L d-a.e. K̃ := {x ∈ K : ν(x) > 0} because of (3.15) and the
fact that for L d-a.e. x, since (µ∧ε−1)α

(ε∨νac)β/d , by Lebesgue theorem we have

lim
δ→0

 
Qδ(x)

(ε−1 ∧ ν)α

(ε ∨ ρac)β/d
= (ε−1 ∧ ν(x))α

(ε ∨ ρac(x))β/d
.

Then, by Vitali-Besicovitch covering theorem, there exists a countable family of disjoint cubes (Qδi(xi))i<I ⊆
Qε, I ∈ N ∪ {+∞}, that cover K̃ up to a L d-negligible set. Using above properties (i)-(iii) of the col-
lection Qε, we get that for every J < I,

lim inf
N

E′N (K) ≥ lim inf
N

E′N

(⋃
i≤J

Qδi(xi)
)

(3.16)

(3.8)= lim inf
N

∑
i≤J

E′N (Qδi(xi)) (3.17)

(iii)
≥
∑
i≤J

cα,d
δdi ν(xi)α

ρac(xi)β/d
− εδdi (3.18)

(i) and (ii)
≥ cα,d

∑
i≤J

ˆ
Qδi (xi)

(ε−1 ∧ ν)α

(ε ∨ ρac)β/d
− 2εL d(K +Q1). (3.19)

Taking J → I, then ε→ 0, by the monotone convergence theorem we get:

lim inf
N
FN (ρN ) ≥ lim inf

N
E′N (K) ≥ cα,d

ˆ
K

ν(x)α

ρac(x)β/d
dx = E∞(ρ).
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Proof of the Γ-limsup inequality (3.4). Let us remark that the subsets

A := P(K) ∩ L1(K), and A′ := {ρ ∈ A : ess infK ρ > 0}

are dense in the F∞ for the weak convergence of measures. Let us first show it for A. Let ρ ∈ P(K)
and assume that it decomposes as ρ = ρacL d + ρs where ρs ⊥ L d, and ρs 6= 0 (otherwise there is
nothing to prove). We know that there exists ρε,s for ε ∈ (0, 1) which are absolutely continuous with
respect to L d (Ωε ∩K), where Ωε are nondecreasing subsets of Rd such that L d(Ωε) ≤ ε, and such
that ρε,s −−−⇀

ε→0
ρs, and ‖ρε,s‖ = ‖ρs‖. We set

ρε := ρac + ρε,s,

notice that ρε ≥ ρac so that

F∞(ρ) ≥ F∞(ρε) ≥ cα,d
ˆ
K\Ωε

ν(x)α

ρac(x)β/d
dx,

and by the Monotone Convergence theorem we get F∞(ρε)
ε→0−−−→ F∞(ρ). Now let us take ρ ∈ A, and

set for every ε > 0
ρε := ρ ∨ ε

‖ρ ∨ ε‖
.

It is clear that ‖ρε‖ = 1 and ρε ⇀ ρ. Besides by monotone convergence,

F∞(ρε) = cα,d‖ρε‖β/d
ˆ
K

ν(x)α

(ρ ∨ ε)β/d
dx→ cα,d

ˆ
K

ν(x)α

ρβ/d
dx = F∞(ρ).

As a consequence, it suffices to find a recovery sequence for any given ρ ∈ A′. Several steps are standard,
thus some of the constructions will be only sketched.

Step 1. (Building approximation sequences.) Partition Rd in cubes QN,i of edge λN−1/d where λ ≥ 1 is
taken large (and will be sent to +∞ later), and define piecewise constant approximations of ν:

νN :=
∑
i

νN,iL
d QN,i where νN,i := ν(QN,i)

L d(QN,i)
(∀i).

Notice that νN → ν in L1(K). Let us build suitable N -point approximations of ρ by putting the
appropriate number of points nN,i in each cube QN,i. The number nN,i should be approximately
given by

Nρ(QN,i) = N(λN−1/d)dρN,i = λdρN,i where ρN,i := ρ(QN,i)
L d(QN,i)

(∀i).

Notice that if we take λ large enough, λdρN,i ≥ λdκ ≥ 1 where κ := ess infK ρ, and∑
i

bλdρN,ic ≤ N =
∑
i

λdρN,i ≤
∑
i

dλdρN,ie,

thus we may choose for every i an integer nN,i ≥ 1 such that

nN,i ∈ {bλdρN,ic, dλdρN,ie}
and ∑

i

nN,i = N.
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We take ΣN,i included in the interior of QN,i as the support of a nN,i-point quantizer of L d QN,i
such that

Eα(L d QN,i, nN,i) ≤ dα(ΣN,i,L
d QN,i) ≤ Eα(L d QN,i, nN,i) + 1

N1+1/d , (3.20)

and we eventually define

ΣN :=
⊔
i

ΣN,i and ρN := 1
N

∑
s∈ΣN

δs.

We know that ρN ⇀ ρ because

sup
i
|ρN (QN,i)− ρ(QNi)| ≤

1
N

sup
i
|nN,i − λdρN,i| ≤

1
N
→ 0.

By the triangle inequality and (3.20) we find the following:

FN (ρN ) = Nβ/ddα(ΣN , ν) ≤ Nβ/ddα(ΣN , νN ) +Nβ/ddα(νN , ν)

≤ Nβ/ddα
(⋃
i

ΣN,i,
∑
i

νN,iL
d QN,i

)
+Nβ/ddα(νN , ν)

≤ Nβ/d
∑
i

(
Eα(νN,iL d QN,i, nN,i) + ναN,iN

−(1+1/d)
)

+Nβ/ddα(νN , ν)
≤ Nβ/d

∑
i

Eα(νN,iL d QN,i, nN,i) (3.21)

+Nβ/ddα(νN , ν) + 1
N
‖ν‖α (3.22)

(3.23)

Step 2. (Bounding (3.21).) We have

Eα(νN,iL d QN,i, nN,i) = ναN,i(N−1/dλ)1+dαEα(Q1, nN,i),

and therefore, if we set ρ̃N :=
∑
i ρN,i1QN,i ,

Nβ/d
∑
i

Eα(νN,iL d QN,i, nN,i)

≤
∑
i

N−1ραN,iλ
1+dαEα(Q1, bλdρN,ic)

=
∑
i

ˆ
QN,i

νN (x)αEα(Q1, bλdρ̃N (x)c)λβ dx

≤
ˆ
K

νN (x)α

ρ̃N (x)β/d
Eα(Q1, bλdρ̃N (x)c)(λdρ̃N (x))β/d dx.

Now note that ρ̃N ≥ κ > 0 a.e. in K, so that

Eα(Q1, bλdρ̃N (x)c)(λdρ̃N (x))β/d ≤ sup
n≥bλdκc

Eα(Q1, n)(n+ 1)β/d ≤ cα,d(1 + ε(λ)),

where ε(λ) → 0 as λ → +∞ by Proposition 2.10. Besides, (νN ) converges to ν in L1 thus (ναN )
converges to να in L1/α thus in L1, and (ρ̃N ) converges a.e. to ρ. Therefore by the Dominated
Convergence Theorem, taking the limit N → +∞ then λ→ +∞ yields

lim sup
N→+∞

Nβ/d
∑
i

Eα(νN,iL d QN,i, nN,i) ≤ cα,d
ˆ
K

ν(x)α

ρ(x)β/d
dx.
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Step 3. (Bounding (3.22) and conclusion.) We apply Lemma 3.3 to the measures ν and ν ′ = νN :

dα(ν, νN ) ≤ cR1−β(λN−1/d)β‖ν − νN‖α,

so that
Nβ/ddα(ν, νN ) ≤ cR1−βλβ‖ν − νN‖α.

Taking the limit N → +∞, since νN → ν in L1, we get:

lim sup
N→+∞

Nβ/ddα(ν, νN ) = 0. (3.24)

By Step 2. and (3.24) we thus have

lim sup
N→+∞

FN (ρN ) ≤ cα,d
ˆ

Ω

ν(x)α

ρ(x)β/d
dx = F∞(ρ),

as desired.

Remark 3.4. There are alternative approaches for the Γ-liminf part of the proof if we assume that the
measure ν is d-Ahflors regular, since we may use the Hölder regularity of the landscape function and
its consequences (in particular the bound on the diameter of basins in terms of their masses) that are
established in Section 4. Indeed, we may use directly the outer measures EN defined for every Borel set
A by

EN (A) := Nβ/dMα(PN e−1
∞ (A)),

rather than the restrictions

eN : A 7→ Nβ/dMα(PN e−1
∞ (A) ∩ {L < MNN

−β/d}),

or even use the measures defined by
e′N (A) :=

ˆ
A
zPN dµ.

The relevance of restricting the plans (and thus of passing from EN to eN ), is that we can then guarantee
that eN satisfy additivity for sets at positive distance and N large enough. But one may check that this
property holds directly for EN thanks to Corollary 4.3 and Lemma 4.4. It is even easier with e′N which
is by definition a measure, although in this case we need to adapt the series of inequalities (3.10)-(3.12)
which give the lower bound.
Also note that similar considerations using Hölder regularity of the landscape function under Ahlfors-

regularity hypotheses may also apply to Proposition 3.6 to replace the outer measure E′N by EN or eN
in the statement on the equi-distribution of energy at the macroscopic scale.

3.2 Asymptotics of the quantization error and support of optimal quantizers
From the Γ-convergence established in the previous subsection, we may obtain the asymptotics of the
optimal quantization error (a branched optimal transport variant of Zador’s theorem) and the limit
density of the centers of optimal quantizers.

Theorem 3.5 (Extended version of Theorem 1.1). Let ν ∈M +(K) be an absolutely continuous measure
on a cube K ⊆ Rd. Then:

(A) if (µN )N∈N is a sequence of optimal N -point quantizers of ν,

µ�N
.= 1
N

∑
{x:µN ({x})>0}

δx
?−⇀ Cα,d(ν)−1ν

α

α+ 1
d ,

where Cα,d(ν) :=
´
K ν(x)

α

α+ 1
d dx ;
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(B) the leading-order asymptotics of the optimal quantization error is given by

lim
N→∞

Nβ/dEα(ν,N) = cα,dCα,d(ν)α+ 1
d . (3.25)

Proof of Theorem 3.5. Take for every N ∈ N∗ an N -point optimal quantizer µN of ν. The sequence of
probability measures (µ�N ) converges up to subsequence to a measure ρ. Since for every N ,

FN (µ�N ) = inf FN ,

by Theorem 3.1 the measure ρ minimizes the Γ-limit F∞ and

lim
N→+∞

Nβ/dEα(ν,N) = lim
N→+∞

FN (µ�N ) = F∞(ρ) .= cα,d

ˆ
K

ν(x)α

ρac(x)α+ 1
d
−1

dx.

As a consequence of minimality, ρ is absolutely continuous with respect to L d and the Euler-Lagrange
equation can be written as:

ν(x)α = (Cρ)α+ 1
d

for L d-a.e. x ∈ Ω, for a constant C which is given by

C = Cα,d(ν) :=
ˆ
K
ν(x)

α

α+ 1
d dx.

In particular ρ = Cα,d(ν)−1ν
α

α+ 1
d and

lim
N
Nβ/dEα(ν,N) = cα,dCα,d(ν)α+ 1

d =
(ˆ

K
ν

α

α+ 1
d

)α+ 1
d

.

3.3 Equidistribution results at the macroscopic scale
From the Γ-convergence result and its proof, we obtain convergence of measures (or outer measures) of
interest to understand uniformizing features at the macroscopic scale.

Proposition 3.6. Let (µN ) be a sequence of N -point optimal quantizers of ν (i.e. solutions to (2.17)).

(A) The empirical measures converge as follows:

µ�N ⇀ Cα,d(ν)−1ν
α

α+ 1
d

In particular if ν = L d K with L d(K) = 1, we obtain

1
N

#(sptµN ∩B)→ L d(B),

for every Borel set B ⊆ Ω such that L d(∂B) = 0.

(B) The energy outer measures (E′N ) converge in the following sense:

lim
N→+∞

E′N (B) = cα,dCα,d(ν)α+ 1
d

ˆ
B
ν

α

α+ 1
d

for every Borel set B such that L d(∂B) = 0. In particular if ν = L d K then

lim
N
E′N (B) = cα,dCα,d(ν)α+ 1

dL d(B).

22



Proof. The first item (A) is a direct consequence of Theorem 3.5. For (B), we follow the proof of the
Γ − lim inf inequality in Theorem 3.1 and apply the covering argument to the subcollection Q′ε ⊆ Qε
of cubes Qδ(x) which are included in a given open subset Ω of K, thus building a disjoint collection of
subcubes which cover a.e. Ω ∩ {ν > 0}. We therefore get:

lim inf
N

eN (Ω) ≥ cα,dCα,d(ν)α+ 1
d

ˆ
Ω
µ

α

α+ 1
d .

If B is a Borel set with L d(∂B) = 0, we may apply the above inequality to B<ε := {x : d(x,Bc) > ε}
and B>ε = {x : d(x,B) > ε}, and using the asymptotic additivity of EN to the sets B and B>ε which
are at positive distance, we obtain

cα,dCα,d(ν)α+ 1
d

ˆ
B<ε

µ
α

α+ 1
d ≤ lim inf

N→+∞
E′N (B<ε) ≤ lim inf

N→+∞
E′N (B) ≤ lim sup

N→+∞
E′N (B)

= lim sup
N→+∞

E′N (B ∪B>ε)− E′N (B>ε)

≤ lim sup
N→+∞

EN (K)− lim inf
N→+∞

E′N (B>ε)

≤ cα,dCα,d(ν)α+ 1
d

ˆ
K
µ

α

α+ 1
d − cα,dC

−(α+ 1
d)

µ

ˆ
B>ε

µ
α

α+ 1
d

= cα,dCα,d(ν)α+ 1
d

ˆ
K\B>ε

µ
α

α+ 1
d .

Taking the limit ε→ 0, we get the desired result of (B).

4 Landscape function for mass-optimal quantizers
This section is devoted to the landscape function, its definition and Hölder regularity. We stress that
the classical definition of landscape function from [San07], recalled in Section 2.1, is only given in the
case of a single source µ = mδx and, as already said, an optimal traffic plan with several sources may in
general not decompose disjointly according to its sources. This poses a serious issue to define and study
the landscape function in such a case. An attempt at defining the landscape function for several sources
(even in a more general setting) has been made in [Peg17a, Chapter 4], but the construction is quite
technical and the Hölder constant computed there actually explodes when the number of sources tends
to infinity. However, in the case of optimal quantizers or even mass-optimal quantizers, the disjointness
result established in Lemma 2.6 allows us to give a simple ad hoc definition of landscape function,
and we are able to show its Hölder regularity with a Hölder constant that is uniform in the number of
sources, a crucial information to establish the uniform regularity properties in Section 5.

4.1 Uniform Hölder regularity
From now on and for the rest of the article, we assume that the exponent α is above the critical threshold
in Rd:

1− 1
d
< α ≤ 1. (4.1)

Theorem 4.1 (extended version of Theorem 1.3). Let ν ∈Mc(Rd) be a compactly supported measure
which is d-Ahlfors regular with constants 0 < cA ≤ CA, i.e.

cAr
d ≤ ν(Br(x)) ≤ CArd (∀x ∈ spt ν, ∀r ≤ diam(spt ν)), (4.2)

and let P ∈ TP(µ, ν) be an optimal traffic plan where µ =
∑N
i=1miδxi is a N -point mass-optimal

quantizer of ν with respect to (xi)1≤i≤N . There exists a unique function zP : spt ν → R+ that we call
landscape function associated with P satisfying:
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(i) for every i ∈ {1, . . . , N}, zPxi = zP everywhere on Bas(P, xi);

(ii) zP is β-Hölder continuous where β := 1 + dα − d ∈ (0, 1], with a Hölder constant smaller than a
constant CH = CH(cA, CA, α, d).

Proof. Let us start by setting a candidate landscape function which is uniquely defined ν-almost every-
where on spt ν. The measures νi := (e∞)]Pxi are mutually singular and sum to ν thanks to Lemma 2.6,
thus we may define a Borel function z : spt ν → R+ such that for every i ∈ {1, . . . , N}:

z = zPxi νi-almost everywhere.

Let us show that z admits a Hölder continuous representative through Campanato estimates, following
the strategy of [San07]. Take a point x ∈ spt ν. For every r ∈ (0, 2 diam(spt ν)] denote by zr(x) the
central median of z on Br(x) with respect to ν, defined as the midpoint of the interval of values
` ∈ R+ such that Br(x) may be partitioned into two subsets A t B = Br(x) with equal mass, i.e.
ν(A) = ν(B) = ν(Br(x))/2, and such that z ≥ ` on A and z ≤ ` on B. Consider two such sets A,B for
the central median ` = zr(x) and define the following variation of ν:

ν̃ := ν − ν A+ ν B =
N∑
i=1

ν̃i

where for every i ∈ {1, . . . , N},
ν̃i := νi − νi A+ νi B.

By Lemma 2.6 again, we know that the Pxi ’s are optimal traffic plans with single source xi, thus we
may use the first variation inequality (D) of Proposition 2.2 for every i ∈ {1, . . . , N} to obtain:

dα(‖ν̃i‖δxi , ν̃i) ≤ dα(miδxi , νi) + α

(ˆ
B
zPxi dνi −

ˆ
A
zPxi dνi

)
= Mα(Pxi) + α

(ˆ
B
z dνi −

ˆ
A
z dνi

)
.

(4.3)

We set P̃ :=
∑N
i=1 P̃i where P̃i ∈ TP(‖ν̃i‖δxi , ν̃i) is an optimal traffic plan for every i ∈ {1, . . . , N}.

Summing (4.3) over i, using the subadditivity of the α-mass and the disjointness of the Pxi ’s, which
results from Lemma 2.6, yields:

Mα(P̃) ≤
N∑
i=1

Mα(P̃i) =
N∑
i=1

dα(‖ν̃i‖δxi , ν̃i)

≤
N∑
i=1

(
Mα(Pxi) + α

(ˆ
B
z dνi −

ˆ
A
z dνi

))
= Mα(P) + α

(ˆ
B
z dν −

ˆ
A
z dν

)
.

(4.4)

Notice that P̃ ∈ TP(µ̃, ν̃) where µ̃ :=
∑N
i=1‖ν̃i‖δxi . Take an optimal traffic plan Q ∈ TP(ν̃, ν) and

consider a concatenation
P′ ∈ P̃ : Q ⊆ TP(µ̃, ν),

which is defined thanks to Proposition 2.1 (i). Since spt(ν̃−ν) ⊆ B̄r(x) and ‖ν̃−ν‖ = ν(Br(x)) ≤ CArd,
by Proposition 2.1 (iii) and the branched transport upper estimate (2.12) we have:

Mα(P′) ≤Mα(P̃) + Mα(Q) ≤Mα(P̃) + CBOT 2r (CArd)α. (4.5)

Now we remark that µ̃ is still supported on {xi : 1 ≤ i ≤ N} and µ is a mass-optimal quantizer of ν
with respect to the xi’s, so that Mα(P′) is greater than Mα(P), thus by combining (4.5) and (4.4):

Mα(P) ≤Mα(P′) ≤Mα(P̃) + 2CBOTC
α
Ar

1+dα
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≤Mα(P) + α

(ˆ
B
z dν −

ˆ
A
z dν

)
+ 2CBOTC

α
Ar

1+dα.

This implies that
0 ≤ α

(ˆ
B
z dν −

ˆ
A
z dν

)
+ 2CBOTC

α
Ar

1+dα,

hence ˆ
Br(x)

|z − zr(x)| dν =
ˆ
A
z dν −

ˆ
B
z dν ≤ 2α−1CBOTC

α
Ar

1+dα. (4.6)

We now use Campanato estimates: for every x ∈ spt ν, r ≤ 2 diam(spt ν) and r′ ∈ [r/2, r],

|zr(x)− zr′(x)| ≤
 
Br′ (x)

|z − zr(x)|dν

≤ 1
ν(Br′(x))

ˆ
Br(x)

|z − zr(x)|dν ≤ 2α−1CBOTC
α
Ar

1+dα

cA(r/2)d ≤ Crβ,
(4.7)

where we have set C := 2d+1CBOTC
α
A

αcA
, and as before β = 1 + dα − d ∈ (0, 1]. Applying (4.7) to radii

r2−n, r2−n−1, we deduce that (zr2−n)n∈N is a Cauchy sequence, which in turn implies (using (4.7) again)
that the following limit exists for every x ∈ spt ν:

zP(x) := lim
r→0

zr(x) = lim
r→0

 
Br(x)

z dν.

By triangle inequality (4.7) yields

|zr(x)− zP(x)| ≤
+∞∑
n=0
|zr2−n(x)− zr2−(n+1)(x)| ≤ Crβ

1− 2−β ,

and combining with (4.6) we get  
Br(x)

|z − zP(x)|dν ≤ 2
1− 2−βCr

β.

Finally, take x, y ∈ spt ν such that r := |y − x| and use the last two inequalities to get:

|zP(y)− zP(x)| ≤ |zP(y)− zr(y)|+ |zr(y)− zP(x)|

≤ Crβ

1− 2−β +
 
Br(y)

|z − zP(x)|

≤ Crβ

1− 2−β + ν(B2r(x))
ν(Br(y))

 
B2r(x)

|z − zP(x)|dν ≤
(

1 + 2d+1(CA/cA)
1− 2−β

)
Crβ.

As a consequence, we get (ii) with

CH := 2(d+2)2
CBOTC

1+α
A

(1− 2−(1+dα−d))αc2
A

.

Let us now prove (i). Since ν-a.e. point of spt ν is a Lebesgue point of z (with respect to ν), we know
that zP = z ν-a.e. thus zP = zPxi νi-a.e., but since zPxi is lower semicontinuous and zP is continuous on
spt νi, we have zPxi ≤ zP everywhere on Bas(P, xi) = spt νi. Let us show that we actually have equality.
Given x ∈ spt νi such that zPxi (x) <∞ (otherwise there is nothing to prove), consider a Pxi-good curve
γi from xi to x. Fix r ≤ diam(spt ν), take an optimal traffic plan Q ∈ TP(ν(Br(x))δx, ν Br(x)) and
by Proposition 2.1 (i) take a concatenation

P′ ∈ (ν(Br(x))δγi)) : Q ∈ TP(ν(Br(x))δxi , ν Br(x)).
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We build the competitor
P̃ := P−P {γ(∞) ∈ Br(x)}+ P′

which belongs to TP(µ̃, ν) for some measure µ̃ which is still supported on {xi, 1 ≤ i ≤ N}. Using as
above the first variation inequality (D) of Proposition 2.2 (applied to each Pxj , j ∈ {1, . . . , N}), the
subaddditivity of the α-mass and the mass-optimality of µ we must have:

Mα(P) ≤Mα(P̃) ≤Mα(P)− α
ˆ
Br(x)

zP dν + αν(Br(x))zPxi (x) + Mα(Q)

Since Mα(Q) ≤ 2CBOTr
1+dα it implies

∀r ∈ (0,diam(spt ν)),
 
Br(x)

zP dν ≤ zPi(x) + 2CBOT
cA

rβ =⇒ zP(x) ≤ zPi(x),

hence zPxi = zP on Bas(P, xi) for every i ∈ {1, . . . , N}, i.e. (i) holds true.

4.2 Applications of the landscape function
We now generalize the properties of the single-source landscape function of Proposition 2.2 to our setting.
First, we extend the notion of P-good curve when P is a traffic plan with N sources {x1, . . . , xN} such
that the traffic plans Pxi ’s are disjoint: we say that a curve γ is P-good if it starts at some source xi
and it is Pxi-good.

Proposition 4.2. Let ν be a compactly supported d-Ahlfors regular measure, µ be a N -point mass-
optimal quantizer with respect to X := {xi}1≤i≤N and P ∈ TP(µ, ν) be an optimal traffic plan with
Mα(P) <∞, α ∈ [0, 1). We consider a nonempty subset X ′ ⊆ X and we set:

µ′ := µ X ′ ν ′ := ν
⋃
s∈X ′

Bas(P, s) P′ :=
∑
s∈X ′

Ps.

The landscape function zP : spt ν → R+ given by Theorem 4.1 satisfies:

(A) zP(x) ≥ d(x,X ′) for every x ∈ spt ν ′ ;

(B) for every X ′ ⊆ Σ, the α-distance writes as:

dα(X ′, ν ′) = dα(µ′, ν ′) = Mα(P′) =
ˆ
Rd
zP(x) dν ′(x),

(C) if P̃ ∈ TP(µ̃N , ν̃) is a traffic plan concentrated on P′-good curves, then:

Mα(P̃) ≤Mα(P′) + α

ˆ
Rd
zP d(ν̃ − ν),

and the inequality is strict if for some xi ∈ X ′, ΘP̃xi −ΘPxi is not zero H 1-a.e. on ΣPxi ;

(D) in particular, zP is an upper first variation of the irrigation distance, in the sense that for every
ν̃ ∈M +(Rd),

dα(X ′, ν̃) ≤ dα(X ′, ν ′) + α

ˆ
Rd
zP d(ν̃ − ν ′).

Sketch of proof: The results follow from Proposition 2.2 rather directly, using the result of Theorem 4.1.
For (A) it suffices to note that for every x ∈ spt ν there exists xi ∈ X such that zP(x) = zPxi (x), and thus
using Proposition 2.2 (A) we find zPxi (x) ≥ d(x, xi) ≥ d(x,X ). For the remaining points, the application
of corresponding points from Proposition 2.2 applied separately to the basins Bas(P, s), s ∈ X ′, together
with the disjointness properties from Theorem 4.1.
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Corollary 4.3. Under the assumptions of Theorem 4.1 and using the same notations, the basins
Bas(P, xi) are closed subsets of spt ν which form a partition of ν, in the sense that they are ν-essentially
disjoint and that their reunion is equal to spt ν.

Proof. The basins are closed since by definition Bas(P, xi) = spt νi where νi = (e∞)]Pxi for every
i ∈ {1, . . . , N}. Furthermore, ν =

∑N
i=1 νi implies that spt ν =

⋃N
i=1 spt νi.

Let us show that for every i 6= j, νj(Bas(P, xi)) = 0, which implies the result, since for k 6= l we can
write

ν(Bas(P, xk) ∩ Bas(P, xl)) =
N∑
j=1

νj(Bas(P, xk) ∩ Bas(P, xl))

≤ νk(Bas(P, xl)) +
∑
j 6=k

νj(Bas(P, xk)) = 0.

Suppose by contradiction that νj(Bas(P, xi)) > 0 for some i 6= j. Take as competitor

P′ = P−Pxj {γ : γ(∞) ∈ Bas(P, xi)}︸ ︷︷ ︸
Pij

+Q,

where Q ∈ TP(νj(Bas(P, xi))δxi , νj Bas(P, xi)) is chosen so that Q-a.e. curve γ is a Pxi-good curve,
which is possible because zPxi is finite everywhere on Bas(P, xi) by Theorem 4.1. Since P′ ∈ TP(µ′, ν)
where µ′ is concentrated on the xi’s, by mass-optimality of the quantizer µ, we have:

Mα(P) = dα(µ, ν) ≤ dα(µ′, ν) ≤Mα(P′).

Notice that P′ is rectifiable and ΣPij ⊆ ΣPxj and ΣQ ⊆ ΣPxi , since every Pxi-good curve is H 1-
a.e. included in ΣPxi . Besides, the Pxk ’s are disjoint by Lemma 2.6, which implies thanks to (2.7)
that the networks ΣPxk ’s are H 1-essentially disjoint. Thus the traffic plans (P′)xk ’s are disjoint.
We apply the upper first variation inequality Proposition 4.2(C) to the variation given by replacing
Pxi 7→ (P′)xi = Pxi −Pij and Pxj 7→ (P′)xj = Pxj + Q, and we get:

Mα(P) = dα(µ, ν) ≤ dα(µ′, ν) ≤Mα(P′)
= Mα(P) + (Mα(Pxi −Pij)−Mα(Pxi)) + (Mα(Pxj + Q)−Mα(Pxj ))

<Mα(P)− α
ˆ

Bas(P,xi)∩Bas(P,xj)
zPxi dνj + α

ˆ
Bas(P,xi)∩Bas(P,xj)

zPxj dνj

= Mα(P)− α
ˆ

Bas(P,xi)∩Bas(P,xj)
zP dνj + α

ˆ
Bas(P,xi)∩Bas(P,xj)

zP dνj = Mα(P),

in which we have used Theorem 4.1 and Proposition 4.2 (C), knowing that ΘPij does not vanish H 1-a.e.
on ΣPxi (or similarly that ΘQ does not vanish H 1-a.e. on ΣPxj ). This is a contradiction.

The measure of basins can be controlled from above and below for optimal plans associated with
mass-optimal quantizers.

Lemma 4.4. Under the assumptions of Theorem 4.1 and with the same notations, for every source xi
of P, we set

δ(P, xi) := max
y∈Bas(P,xi)

|y − xi|
2 .

Then we have

cBas diam(Bas(P, xi))d ≤ ν(Bas(P, xi)) ≤ CA diam(Bas(P, xi))d, (4.8)

1
2 diam(Bas(P, xi)) ≤ δ(P, xi) ≤

(
CA

2cBas

) 1
d

diam(Bas(P, xi)), (4.9)

27



cH diam(Bas(P, xi))β ≤ sup
Bas(P,xi)

zPN ≤ C
′
H diam(Bas(P, xi))β, (4.10)

where cBas := 2−d
(
CH + 2CBOT

αc1−α
A

) 1
α−1

, cH := 2−βCα−1
A and C ′H := 2βc

1
d
BasC

β
d
A .

Proof. The upper bound (first inequality) follows from the upper d-Ahlfors regularity of µ.
For the lower bound (second inequality), consider a point y ∈ Bas(P, xi) such that |y − xi| =

maxy∈Bas(P,xi)|y−xi|, which exists because Bas(P, xi) is compact. Take a Pxi-good curve γi from xi to
y and set r := |y − xi|. We build a competing traffic plan P̃ by removing P {γ ∈ Γd : γ(∞) ∈ Br(y)}
then adding an optimal traffic plan Q ∈ TP(ν(Br(xi))δxi , ν Br(y)). By optimality of P and mass-
optimality of the source measure µ, using the first variation inequality Proposition 4.2 (C), and the
branched transport upper estimate (2.12), we get

− α
ˆ
Br(y)

zP dν + CBOT(2r)ν(Br(y))α ≥ 0 =⇒
 
Br(y)

zP dν ≤ 2CBOT

αc1−α
A

rβ, (4.11)

which yields by Theorem 4.1,

zPxi (y) = zP(y)−
 
Br(y)

zP dν +
 
Br(y)

zP dν ≤ CHrβ + 2CBOT

αc1−α
A

rβ =: C ′rβ. (4.12)

Now recall the definition of landscape function in the single-source case:

C ′rβ ≥ zPxi (y) =
ˆ
γi

ΘPxi (x)α−1 dx

≥H 1(γi(R+))ν(Bas(P, xi))α−1 ≥ rν(Bas(P, xi))α−1.

(4.13)

As a consequence
ν(Bas(P, xi)) ≥ (C ′rβ−1)

1
α−1 = 2−dC ′

1
α−1 (2r)d = cBas(2r)d

where cBas := 2−d
(
CH + 2CBOT

αc1−α
A

) 1
α−1

. Notice that diam(Bas(P, xi)) ≤ 2r by the triangle inequality,
which yields (4.8) and (4.9). As for (4.10), the lower bound comes from (4.13) and the upper Ahlfors
regularity, while the upper bound comes from (4.12), which implies by the triangle inequality that

zP(x) ≤ CH |y − x|β + C ′rβ ≤ 2C ′rβ

= 22d(α−1)cα−1
Bas r

β

≤ 2βcα−1
Bas

(
CA

2cBas

)β
d

diam(Bas(P, xi))β.

= C ′H diam(Bas(P, xi))β

where C ′H := 2βc
1
d
BasC

β
d
A .

Remark 4.5 (Voronoi basins). In the case α = 1, if ν has a compact convex support Ω and P is an
optimal traffic plan between ν and a mass-optimal quantizer µ =

∑N
i=1miδxi associated with the points

(xi)1≤i≤N , then the basins will be exactly the Voronoi cells (Ω ∩ Vi)1≤i≤N given by

∀i ∈ {1, . . . , N}, Vi :=
{
x : |x− xi| = min

1≤j≤N
|x− xj |

}
. (4.14)

When α ∈ (0, 1), the basins (Bas(P, xi))1≤i≤n thus extend the notion of Voronoi cells to the case of
branched optimal transport, which we may call (branched) Voronoi basins. These Voronoi basins are
also closed sets which form a partition of the given measure ν, as stated in Corollary 4.3, but they are
much more complicated in several regards:
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• They need not be convex polyhedra, but are rather thought to exhibit fractal pairwise boundaries.

• Classical Voronoi cells do not actually depend on the measure ν or its support but may be com-
puted directly from the points (xi)1≤i≤N through (4.14), taking the intersection with the support
afterwards. On the contrary, there is a priori no reason for Voronoi basins to behave in the same
way, and it is well possible that the Voronoi basins for ν and ν ′ ≥ ν are not nested.

• Computing Voronoi basins is much more difficult, as the problem of optimizing the masses given
the points does not admit an explicit solution in the form of (4.14).

5 Uniform properties of optimal quantizers and partitions
In this section we investigate the uniform properties of optimal quantizers at the microscopic scale, i.e.
at a the scale of N−1/d, when the measure ν that is quantized is d-Ahlfors regular. Roughly speaking,
we are going to show that the atoms of a N -point optimal quantizer are distributed somewhat uniformly
at this scale, being well-separated and leaving no big hole in the support of ν, and that the basins are
somewhat round, having inner and outer balls of comparable size. We also show uniformity bounds on
the masses and energies associated with each atom.

5.1 Delone constants for optimal quantizers
Given a set X ⊆ Rd and X ⊆ Rd a finite set of points, we define the covering radius (also called mesh
norm or fill radius) of X by X , as

ω(X,X ) := sup
x∈X

min
x′∈X

d(x, x′).

It is the smallest r ≥ 0 such that the closed balls of radius r with centers in X cover X. The separation
distance (corresponding to 1/2 of the packing radius) of X is defined by

δ(X ) := min
x 6=x′,x,x′∈X

d(x, x′).

A set with finite covering radius and nonzero separation distance is called a Delone set with respect to
X, and (ω, δ) its Delone constants. Given a d-Ahlfors regular measure ν, the following theorem provides
shows that the atoms of optimal N -point quantizers are Delone sets with respect to spt ν, providing
bounds comparable to N−1/d on its Delone constants.

Theorem 5.1 (Extended version of Theorem 1.2). Let ν be a compactly supported d-Ahlfors regular
measure on Rd and µN =

∑
i≤N miδxi be an N -point optimal quantizer (i.e. a solution to (2.17)) with

atoms X = {xi}1≤i≤N . Then the covering radius ω(spt ν,X ) and separation distance δ(X ) enjoy the
following bounds:

ω(spt ν,X ) ≤ c2N
−1/d, (5.1)

δ(X ) ≥ c1N
−1/d. (5.2)

for some constants c1, c2 > 0 that do not depend on N .

Our proof is inspired from ideas of [Gru04], dealing with classical optimal transport costs. We stress
that the situation in the branched optimal transport case is much more involved, since the ground cost
is not explicit (it depends on all the trajectories and is part of the optimization defining dα), and the
shapes of basins are not known at all (they are thought to have fractal boundaries). Thus, we shall need
to estimate

• the cost for merging a “small” basin to a “neighbouring” basin ;

• the gain to remove part of a “large” basin.
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The landscape function, its uniform Hölder regularity and its consequences established in Section 4 will
play a crucial role.

Proof of (5.1). We proceed by proving successively the following.

(a) At least one basin is not too large: there is a constant c̃2 (not depending on N) such that

∀N ∈ N∗,∃j ≤ N, diam(Bas(PN , xj)) ≤ c̃2N
− 1
d .

(b) At least one basin is not too small: there is a constant c̃1 (not depending on N) such that

∀N ∈ N∗,∃j ≤ N, diam(Bas(PN , xj)) ≤ c̃1N
− 1
d .

(c) All basins are small: there is a constant c2 (not depending on N) such that

∀N ∈ N∗,∀i ≤ N, diam(Bas(PN , xi)) ≤ c2N
− 1
d .

(d) All atoms are far from each other: there exists a constant c2 such that

∀N ∈ N∗, ∀(1 ≤ j 6= k ≤ N), d(xj , xk) ≥ c1N
− 1
d .

Notice that (5.1) follows from (c), since the basins form a covering of sptµ by Corollary 4.3, while (5.2)
is merely a rephrasing of (d).

Proof of (a) and (b). First note that by Corollary 4.3, the basins form a partition of ν, thus

N∑
j=1

ν(Bas(PN , xj)) = ‖ν‖, (5.3)

thus there exists an index j ∈ {1, . . . , N} for which

ν(Bas(PN , xj)) ≤
‖ν‖
N

,

and by Lemma 4.4, this implies that

diam(Bas(PN , xj) ≤ (‖ν‖(cBasN)−1)
1
d = c̃2N

− 1
d where c̃2 := (‖ν‖c−1

Bas)
− 1
d .

Similarly, there exists an index i ∈ {1, . . . , N} such that

CA diam(Bas(PN , xi) ≥ ν(Bas(PN , xi)) ≥
‖ν‖
N

,

which implies that
diam(Bas(PN , xi) ≥ c̃2N

− 1
d where c̃2 := (‖ν‖C−1

A )−
1
d .

Proof of (c). Applying (a) we find that there exists j ≤ N such that

diam(Bas(PN , xj)) ≤ c̃2N
− 1
d . (5.4)

Suppose that for some t > 1 there exists i ≤ N such that

diam(Bas(PN , xi)) ≥ tc̃2N
− 1
d .

We are going to show a contradiction when t is too large (not depending on N). For this, let us build
a better competitor than µN . We shall add an extra point q of Bas(PN , xi) to irrigate a “costly” ball
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around q, then remove the point xj and irrigate the former basin Bas(PN , xj) from a neighbouring basin
Bas(PN , xk).
Let us find a “costly” ball. Consider

q ∈ arg maxBas(PN ,xi) zPN ,

which exists because zPN is Hölder-continuous thanks to Theorem 4.1 and basins are compact sets
thanks to Corollary 4.3. We consider the ball B

εtc̃2N
− 1
d
(q) for some small ε ∈ (0, 1) to be fixed later.

Now, we want to remove the point xi from the quantizer µN and to irrigate the basin Bas(PN , xi)
from another basin that is not too far, in order to control the extra cost. By (5.4) and Ahlfors-regularity
of ν, for s > 1 we have

ν(B
sc̃2N

− 1
d
(xj) \ Bas(PN , xj)) ≥ cA(sc̃2)dN−1 − CAc̃d2N−1 = (cAsd − CA)c̃d2N−1.

This is strictly positive if we take for example s := (2CA/cA)
1
d , in which case there exists a point p such

that
p ∈ Bas(PN , xk) ∩Bsc̃2N−1/d(xj) \ Bas(PN , xj) for some k 6= j,

because the basins form of covering of spt ν.
We are now ready to build our competitor P∗N , modifying PN according to the following sketch; the

addition of curves (which increase the α-mass) are labeled by (A), while the removal of curves (which
decreases the α-mass) are labeled by (R).

(R1) Remove all curves starting at xj .

(R2) Remove all curves ending in Bεc̃2N−1/d(q).

(A1) Re-irrigate Bas(PN , xj) by
• bringing a mass mj from xk to p following a Pxk

N -good curve γ,
• then concatenate an optimal traffic plan Q1 ∈ TP(mjδp, ν Bas(PN , xj)).

(A2) Add an optimal traffic plan Q2 from mδq to ν (B
εtc̃2N

− 1
d
(q) \Bas(PN , xj)), where m is the mass

of the latter and ε > 0 is a small number to be chosen later (independently from N and t).

We start by doing the modifications along the existing network, corresponding to (R1), (R2) and the
first part of (A1). Setting Γxj := {γ : γ(0) = xj} and Γq := {γ : γ(+∞) ∈ B

εc̃2N
− 1
d
(q)}, we define

P′N := PN −PN Γq −PN (Γxj \ Γq) +mjδγ .

Secondly, we add the new curves and pieces of curves corresponding to the second part of (A1) and
(A2). We set ν ′ := (e∞)]P′N , and Q̃1 := Q1 + ι](ν ′ −mjδp) where ι : Rd → Γd denotes the canonical
injection which sends a point x to the constant curve γx ≡ x. We define our competitor P∗N by

P∗N := P′′N + Q2 where P′′N ∈ P′N : Q̃1.

We estimate the gain and cost of these operations. First of all, we have

Mα(P∗N ) ≤Mα(P′′N ) + Mα(Q2) ≤Mα(P′N ) + Mα(Q2) + Mα(Q1)
≤Mα(P′N ) + CBOTC

α
A(εtc̃2N

−1/d)1+dα + CBOTC
α
A(c̃2N

−1/d)1+dα

= Mα(P′N ) + C1N
−(α+ 1

d)(1 + (εt)1+dα),

(5.5)
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for some constant C1 which does dot depend on N . The α-mass of P′N may then be estimated through
the first variation formula Proposition 4.2 (C):

Mα(P′N ) ≤Mα(PN )−
ˆ
B
εtc̃2N−1/d (q)

zPN dν −
ˆ
Rd
zPN d(e∞)](PN (Γxj \ Γq)) +mjzPN (p)

≤Mα(PN )−
ˆ
B
εtc̃2N−1/d (q)

zPN dν +mjzPN (p).
(5.6)

Let us estimate zPN (p) from above and zPN from below on Bεtc̃2N−1/d(q). By Lemma 4.4, we know that

zPN (q) ≥ cH diam(Bas(PN , xi))β ≥ cH(tc̃2)βN−β/d,

thus for every y ∈ Bεtc̃2N−1/d(q)

zPN (y) ≥ cH(tc̃2)βN−β/d − CH |y − q|β

≥ (cH − εβCH)(tc̃2)βN−β/d ≥ (cH/2)(tc̃2)βN−β/d,
(5.7)

provided we have chosen εβ ≤ (cH/2CH). Besides, by Lemma 4.4 again

zPN (p) ≤ sup
y∈Bas(PN ,xj)

|zPN (y)− zPN (p)|+ sup
y∈Bas(PN ,xj)

zPN (y)

≤ CH((s+ 1)c̃2N
−1/d)β + C ′H(c̃2N

−1/d)β

= CN−β/d

(5.8)

for some C which does not depend on N . Reporting (5.7) and (5.8) in (5.6) yields

Mα(P′N ) ≤Mα(PN )− (cH/2)tβN−β/dcA(εtc̃2N
−1/d)d + CN−β/dCA(sc̃2N

−1/d)d

≤Mα(PN )−N−(α+ 1
d)(C2ε

dt1+dα − C3),

for some constant C2, C3 > 0 which do not depend on N .
Injecting this into (5.5), we get

Mα(P∗N ) ≤Mα(PN ) +N−(α+ 1
d)(C1 + C3 + C1(εt)1+dα − C2ε

dt1+dα).

Notice that because 1 + dα− d = β > 0, it is possible to choose ε small enough, independently from N
and t (e.g.5 εβ = (C2/2C1) ∧ (cH/2CH)) so that

Mα(P∗N ) ≤Mα(PN ) +N−(α+ 1
d)(C1 + C3 − (C2/2)εdt1+dα).

Now, if t is too large, depending on the constants C1, C2, C3, ε which we stress do not depend on N ,
it leads to Mα(P∗N ) < Mα(PN ), which contradicts the optimality of µN , because by construction the
target measure of P∗N is ν, and its source measure is an N -point quantizer. As a conclusion, (c) holds
true.

Proof of (d). Take t > 0 and suppose that there are two atoms xj , xk of µN , with j 6= k, of µN such
that d(xj , xk) ≤ tN−1/d. We are going to show a lower bound on t > 0 (not depending on N). Choose
a i ≤ N such that

L d(Bas(PN , xi)) ≥
‖ν‖
N

and diam(Bas(PN , xi)) ≥ c̃1N
−1/d

which is possible thanks to (b). Up to interchanging j with k, we may assume that i 6= j (k may be
equal to i, but it will not matter). The strategy is very similar as what we did above: we shall add an

5Recall that we had the condition εβ ≤ (cH/2CH) for (5.7).
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extra point q ∈ Bas(PN , xi) to irrigate a “costly” ball around q, while removing the point xj from the
quantizer and irrigating the basin Bas(PN , xj) from the close point xk.
Consider

q ∈ arg maxBas(PN ,xi) zPN ,

which is possibly because zPN is Hölder-continuous thanks to Theorem 4.1 and basins are compact sets
thanks to Corollary 4.3. Take some small ε ∈ (0, 1) that we shall fix later. We build a better competitor
thanks to the following construction.

(R1) Remove all curves ending in Bεc̃1N−1/d(q), of total mass m.

(A1) Add an optimal traffic plan Q1 ∈ TP(mδq, ν Bεc̃1N−1/d(q)) to irrigate ν Bεc̃1N−1/d(q) again.

(A2) Irrigate Bas(PN , xj) from the point xk instead of xj by concatenating a (unit-speed parameteri-
zation of) the segment [xk, xj ] to all curves starting at xj .

The removal (R1) produces the new traffic plan

P′N := PN −PN Γq where Γq := {γ : γ(∞) ∈ Bεc̃1N−1/d(q)}.

We show as above by Lemma 4.4 that for every y ∈ Bεc̃1N−1/d(q)

zPN (y) ≥ (cH/2)(tc̃1)βN−β/d, (5.9)

provided we have chosen εβ ≤ (cH/2CH). Thus the cost gain can be estimated by using the first
variation formula Proposition 4.2 (C):

Mα(P′N ) ≤Mα(PN )− α
ˆ
B
εc̃1N−1/d (q)

zPN dν

≤Mα(PN )− CA(εc̃1N
−1/d)d(cH/2)N−β/d

≤Mα(PN )− C1ε
dN−(α+ 1

d).

(5.10)

For the addition of the (pieces of) curves (A1) and (A2), we denote by γk,j the unit-speed parameterized
segment from xk to xj , P′N,j := P′N {γ : γ(0) = xj}, m′j := ‖P′N,j‖ and we set Q2 := m′jδγk,j + (ι ◦
e0)](P′N −P′N,j). We define our competitor P∗N by

P∗N := P′′N + Q1 where P′′N ∈ Q2 : P′N .

From (c), we know that

m′j ≤ mj ≤ CA(diam(Bas(PN , xj)))d ≤ CAcd2N−1

and we compute, using (5.10):

Mα(P∗N ) ≤Mα(P′′N ) + Mα(Q1) ≤Mα(P′N ) + Mα(Q1) + Mα(Q2)
≤Mα(P′N ) + CBOTC

α
A(εc̃1N

−1/d)1+dα + (m′j)α(tN−1/d)

= Mα(PN ) +N−(α+ 1
d)(−C1ε

d + C2ε
1+dα + t).

(5.11)

Taking ε > 0 such that εβ ≤ cH/2CH and εβ ≤ C1/2C2 (e.g. take εβ to be the minimum of the twi),
we get C2ε

1+dα ≤ (C1)/2εd and thus

Mα(P∗N ) ≤Mα(PN ) +N−(α+ 1
d)(t− (C1/2)εd),

which leads to a contradiction if t is too small (independently from N). Hence t is lower bounded by
some constant c1 > 0 and (d) holds true.
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5.2 Inner and outer ball property of the basins
Proposition 5.2. Let ν ∈ M +(K) be a d-Ahlfors regular measure with constants 0 < cA ≤ CA. Let
µN =

∑N
i=1miδxi be a N -point optimal quantizer of ν and PN an optimal traffic plan in TP(µN , ν).

There are constants c, C > 0 depending only on α, d, cA, CA such that for all i ∈ {1, . . . , N},

Bas(PN , xi) ⊆ B(xi, CN−1/d), (5.12)

and
B(xi, cN−1/d) ⊆ Rd \

⋃
j 6=i

Bas(PN , xj). (5.13)

Remark 5.3. In particular, if ν = L d Ω for some open bounded set Ω with Lipschitz boundary, then
for every source xi such that d(xi, ∂Ω) > cN−1/d, (5.12) and (5.13) rewrite as

B(xi, cN−1/d) ⊆ Bas(PN , xi) ⊆ B(xi, CN−1/d).

Besides, this translates as uniform inner and outer ball properties of optimal partitions (solutions to
(2.24)). Indeed, by the equivalence between the optimal quantization and optimal partition problems
stated in Theorem 2.7, solutions (Ωi)1≤i≤N to (2.24) are actually L d-equivalent to basins (Bas(PN , xi))1≤i≤N
for some traffic plan PN with sources (xi)1≤i≤N .
Finally, we remark that the number of points such that d(xi, ∂Ω) > cN−1/d is N + O(N1−1/d)

because the other points convey a mass ≈ N−1 by Proposition 5.4, and their basins are included in
{d(·, ∂Ω) < C ′N−1/d} for some C ′, a set of volume ≈ N−1/d. However, without extra assumptions on
Ω, some points xi may very well belong to Rd \ Ω̄. Thus is ruled out for example when Ω is convex, but
then it is not guaranteed that xi ∈ Ω for all xi’s for general Ω.

Proof of Proposition 5.2. The outer ball property (5.12) holds with C := c2, the constant in (c) in the
proof of (5.1). For the inner ball property (5.13), assume that d(xi,Bas(PN , xj)) ≤ εN−1/d for some
i 6= j. We shall find a lower bound on ε that depends only on (α, d, cA, CA,diam(ν)). If ε ≤ c1/2 where
c1 is the separation constant in (5.2), then taking a point x ∈ B(xi, εN−1/d) ∩ Bas(PN , xj), we have

d(x, xj) ≥ d(xi, xj)− d(xi, x) ≥ (c1/2)N−1/d,

thus taking γj a PN -good curve from xj to x, its length is greater than (c1/2)N−1/d hence

zPN (x) =
ˆ
γj

Θα−1
P
xj
N

≥ (c1/2)N−1/dν(Bas(PN , xj))α−1 ≥ 1
2c1(CAc2)α−1N−β/d.

As a consequence, setting c′ := 1
2c1(CAc2)α−1 and c′′ := (c′/2CH)1/β, for every y ∈ B(x, c′′N−1/d)∩spt ν,

by Theorem 4.1
zPN (y) ≥ zPN (x)− CH |y − x|β ≥ c′/2N−β/d.

If ε ≤ c′′ we build a competitor P′N by removing from PN all curves going to B(x, εN−1/d), and adding
an optimal traffic plan Q ∈ TP(mεδxi , ν B(x, εN−1/d) where mε := ν(B(x, εN−1/d)). Using the first
variation formula Proposition 4.2 (C) and the subadditivity of the α-mass, we get by optimality of µN

Mα(PN ) ≤Mα(P′N ) ≤Mα(PN )− α
ˆ
B(x,εN−1/d)

zPN dν + CBOT(2εN−1/d)(CAεdN−1)α

≤Mα(PN )− (αcAc′/2)εdN−(α+ 1
d) + 2CBOTC

α
Aε

1+dαN−(α+ 1
d).

We get a contradiction when ε is smaller than some constant c′′′ > 0 (depending only on (α, ca, c′, CBOT, CA))
because d < 1 + dα. During the reasoning we made, recall that we assumed ε ≤ c1/2 then ε ≤ c′′, thus
we must have:

ε ≥ c := min{c1/2, c′′, c′′′},

and (5.13) holds with this constant c > 0.
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5.3 Uniformity bounds for masses and energies
Proposition 5.4. Let ν ∈ M +(K) be a d-Ahlfors regular measure with constants cA, CA. Let µN =∑N
i=1miδxi be an N -point optimal quantizer (i.e. a solution to (2.17)) and PN ∈ OTPα(µN , ν). There

are constants c, C > 0 depending only on (α, d, cA, CA) such that for all i ∈ {1, . . . , N},

cN−1 ≤ mi ≤ CN−1

and
cN−(α+1/d) ≤ dα(miδxi , ν Bas(PN , xi)) ≤ CN−(α+1/d).

Proof. The upper bounds come from the fact that, by Theorem 5.1, for every i ∈ {1, . . . , N}, Bas(PN , xi)
has diameter less than c2N

−1/d, thus

mi = ν(Bas(PN , xi)) ≤ CAcd2N−1,

and thus from the usual estimate of branched transport cost we get

dα(miδxi , ν Bas(PN , xi)) ≤ CBOT(c2N
−1/d)(CAcd2N−1)α.

The lower bounds results from Proposition 5.2, which implies that (c, C being the inner and outer
ball constants):

µ Bas(PN , xi) ≥ µ B(xi, cN−1/d),

and thus
µ(Bas(PN , xi)) ≥ cAcdN−1.

Since µ is d-Ahlfors regular, it may be written µ = fL d X with cA/ωd ≤ f ≤ CA/ωd on some Borel
set X ⊆ spt ν. Therefore, C−1

A ν Bas(PN , xi) is a measure which is absolutely continuous with respect
to Lebesgue, with density in [0, 1], and total mass greater than m := cA/CAc

dN−1, thus

dα(miδxi, µ Bas(PN , xi)) ≥ CαAeα,dmα+ 1
d ,

where eα,d > 0 is the constant from the optimal shape problem studied in [PSX19], whose definition is
given in (2.30).
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