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Abstract
Ambient sensors of a smart home offer new services
to occupants related to security, comfort and energy
management. This makes it possible to estimate the
practices of the occupants and determine energy con-
sumption, by estimating the number of occupants per
zone, their activities and routines, with a require-
ment for digital sobriety (i.e fewer sensors possible,
but enough to ensure a service). The selection of a
pertinent sensor configuration is an important aspect
in human activity recognition (HAR). This problem
includes the selection of the number and type of the
sensors, as well as the identification of the most in-
formative ones.
In this paper, we propose a novel approach to de-
termine the most informative sensor types (among
motion detection sensors and door contact sensors)
based on the criterion of mutual information. The se-
lected configuration of sensors is applied to recognize
daily activities in real-time in a real-world dataset:
Aruba, from the CASAS project. The simulation re-
sults show good performance of classification and a
save of processing time.

Highlights
• Consider the mutual information criterion to se-

lect the minimum setup of sensors

• Recognize human activities in real-time with the
selected setup of sensors.

• Save of the processing time with a minimum
setup of sensors.

Introduction
In the literature, different simulation tools support
engineers to optimize the building design (Tian et al.
(2018)). It is demonstrated that the behaviors of
residents in buildings are important to explain the
discrepancy between the simulated and the actual
energy consumption (Phan (2022)). Understand-
ing the behaviors of occupants might reduce this
gap. Recently, many researchers have focused on
modeling human activities to improve the simulation
performance (Alhamoud et al. (2015); Akbari and
Haghighat (2021)). They estimate occupant activi-
ties and their related energy impacts.

Existing research works have focused on the data seg-
mentation step to optimize the real-time processing
time (Najeh et al. (2022); Bouchabou et al. (2021)).
In this paper, we propose a complementary work
which consists in recognizing daily activities in real
time with a requirement for digital sobriety (i.e to
add an offline step to select a minimum sensor con-
figuration).
The selection of the most meaningful features is an
important aspect for HAR. In the literature (Bouch-
abou et al. (2021),(Bouchabou et al. (2021)), re-
searchers have used customized sensor configurations.
They compare their activity recognition accuracy
rates with existing techniques. However, the results
of these comparisons are dependent on the features.
Among many constructed features, some of them are
not relevant depending on the considered estimation.
The objective of selecting a minimum sensor config-
uration is not to exclude the other sensors from the
house. The objective is to filter the sensors. So, that
the algorithm goes faster with an acceptable compro-
mise on recognition performance, but with a perfor-
mance gain in terms of real-time processing time.

Information gain (IG) is a criterion for evaluating the
contribution of one sensor to another (Phan (2022);
Amayri (2017)). It evaluates how much information a
feature provides regarding a variable (Lefkovits and
Lefkovits (2017)). This criterion is useful to deter-
mine meaningful features when building an estima-
tion model (Omuya et al. (2021)). To compute the
information gain, it is necessary to discretize features
which contain continuous values. Thus, a discretiza-
tion step needs to be applied to discrete features com-
prising continuous values. In brief, we need two steps
to select meaningful features: discretization of fea-
tures and information gain estimation. These steps
are done offline, by analyzing the setup of the house,
and not in real time during the day. A challenge that
needs to be addressed here is the number of selected
sensors. There is no optimal number for all activi-
ties, and it is context-related. In fact, the number of
sensors could be detected based on the predefined cri-
teria (threshold of IG) or manually selected by using
the knowledge.

The Elbow (Clayman et al. (2020); Shi et al. (2021))



and the Silhouette methods (Rousseeuw (1987); Sub-
balakshmi et al. (2015)) could be used to analyze the
relationship between the number of sensors and the
estimation performance. These analyses are useful to
determine the optimal number of sensors. The ques-
tion that arises is the following: Can two sensors to-
gether be more representative than one? The main
contribution of this paper is to address this question.

In our study, different sensors were installed to es-
timate human activities. The sensor configuration
includes motion detection sensors, indoor air temper-
ature and door/window opening. The proposed ap-
proach in this paper starts by determining the most
meaningful sensors. It is based on the criterion of
mutual information. Then, classification algorithm is
proposed which rely on real-time dynamic segmenta-
tion (Najeh et al. (2022)).
This paper is structured as follows: The proposed
methodology is detailed in Section "Followed method-
ology". Section "Case study" investigates the case
study and the experimental results. Finally, conclud-
ing remarks are given in Section "Conclusion".

Followed methodology
This section describes the real-time HAR framework
that integrates three steps: (1) selection of best fea-
tures; (2) real-time dynamic segmentation method
that determines the beginning and the end of each
activity segment and (3) a classification step. These
steps are preceded by a data pre-processing step. Fig-
ure 1 illustrates the proposed framework.
These steps are sequentially presented in the next sec-
tions.

Figure 1: Proposed framework for human activities
estimation

Selection of best features
The proposed methodology is based on the measure-
ment of mutual information between the sensors and
the activity. The computation of MI needs a dis-
cretization of features which contain continuous val-
ues. The following subsections describe the estima-
tion of the Mutual Information (MI). Before detailing
the calculation of MI, a reminder about the informa-
tion theory is firstly presented.

Information theory is a probabilistic theory that
quantifies the average information content of a set
of messages between a source and a destination. In a
more general sense, an information theory is a theory

aiming to qualify the notion of information content
present in a set of data. In connection with HAR, MI
aims to quantify the information content present in
features regarding an activity.
The information is random (i.e uncertain). This un-
certainty is taken as a measure of amount of informa-
tion. In its transformations (encoding, transmission,
decoding, etc.), information undergoes the effect of
degradation. In connection with HAR, the topology
of the houses, their equipment, and the manner an oc-
cupant performs an activity all have a great amount
of variability, that increases the feature extraction dif-
ficulty.
Information theory Measurement of the quan-
tity of information
The quantity of information is defined by Equation 1

H(x) = log2(
1

p(x)
) (1)

The amount of information from the source is the av-
erage of the amounts of information, and it is defined
by Equation 2. It is based on the notion of entropy
(H) in the information theory. Entropy measures the
disorder of the data categorized by a target. The
higher the entropy is, the higher the disorder associ-
ated with this target is.

H(X) = −
n∑
i

pi × log2(pi) (2)

with
pi = p(X = xi) (3)

where:

• n ∈ N : the number of category of the target X.
• X: a discrete target with a value domain defined

as dom(X) = {X0, ..., xn−1}
• H(X): the entropy of the target X

• p(X = xi): the probability for X to be equal to
the value xi

and X is a discrete variable whose domain is defined
by dom(X) = {x0, . . . , xn}.
Mutual information is defined by Equation 4.

IG(x, y) = H(y)−H(y|x) (4)

with H(y|x): the conditional entropy of y given x.
When the IGs of features are determined, they are
used to sort the features. Then the most meaningful
features with the highest IGs are selected.
The following subsections detail the computation of
MI of sensors regarding an activity.

Step 1 – Calculating probabilities

The first step consists in sampling data. In this work,
the data are sampled with a sampling time equal to



Figure 2: Sampled data

1 second. The calculation of probabilities consists in
calculating the frequency of events over a period of
time. The various cases are investigated as follows.

• Case of 1 variable
In this case, we are interested in the measure-
ment of the mutual information of one sensor re-
garding the activity, such as illustrated in Figure
2.
M1 is a binary sensor. So, tow probabilities are
possible: P(M1=0) and P(M1=1) and they are
defined respectively by Equations 5 and 6.

P1 = P (M1 = 0) =
counter(M1=0)

number of samples per day
(5)

P2 = P (M1 = 1) =
counter(M1=1)

number of samples per day
(6)

• Case of 2 variables
In this case, we are interested in the measure-
ment of the mutual information of the two sen-
sors together regarding the activity, such as il-
lustrated in Figure 2.
M1 and M2 are two binary sensors. So, four
probabilities are possible: P(M1=0 & M2=0),
P(M1=0 & M2=1), P(M1=1 & M2=0) and
P(M1=1 & M2=1) and they are defined respec-
tively by Equations 7, 8, 9 and 10.

P1 =
counter(M1=0 & M2=0)
number of samples per day

(7)

P2 =
counter(M1=0 & M2=1)
number of samples per day

(8)

P3 =
counter(M1=1 & M2=0)
number of samples per day

(9)

P4 =
counter(M1=1 & M2=1)
number of samples per day

(10)

• Case 3: Case of more than two sensors
In this case, we iterate the method (Case 2) by
taking the variables two to two.

Step 2 – Entropy Calculation

Two cases are investigated.

• Case of 1 variable
The entropy of sensor M1 is defined by Equation
11

H(M1) = P (M1 = 0)× log2(P (M1 = 0))+

P (M1 = 1)× log2(P (M1 = 1)) (11)

• Case of 2 variables
The entropy of both sensors M1 and M2 is de-
fined by Equation 12

H(M1&M2) =

P (M1 = 0&M2 = 0)×log2(P (M1 = 0&M2 = 0))+

P (M1 = 1&M2 = 0)×log2(P (M1 = 1&M2 = 0))+

P (M1 = 0&M2 = 1)×log2(P (M1 = 0&M2 = 1))+

P (M1 = 1&M2 = 1)×log2(P (M1 = 1&M2 = 1))
(12)

Step 3 – Information Gain Calculation

The measurement of the MI of variable regarding an
activity is calculated as following. Since sensor data
and activity data are binary, several cases are consid-
ered and are summarized in Table 1.

Table 1: Possible cases
Activity=0 Activity=1

M1=0 c1=count (M1=0 c2=count (M1=0
& Activity=0) & Activity=1)

M1=1 c3=count (M1=1 c4=count (M1=1
& Activity=0) & Activity=1)

Equation 13 illustrates the measurement of
MI(sensor, activity).

MI(M1, activity) = H(activity) -
(len(c1) / len(Activity)) * entropy0 -
(len(c2) / len(Activity)) * entropy1 -
(len(c3) / len(Activity)) * entropy0 -
(len(c4) / len(Activity)) * entropy1

(13)

Selection of the most meaningful sensors
Once the MI between two sensors together regarding
an activity as well as the mutual information of each
sensor alone regarding an activity are determined;
two cases are considered:



1. Case 1: MI((Sensor 1, Sensor 2), activity) ≥
MI(Sensor 1, activity)+MI(Sensor 2, activity)
In this case, Sensor 1 and Sensor 2 are used to
recognize the activity

2. Case 2: MI((Sensor 1, Sensor 2), activity) <
MI(Sensor 1, activity)+MI(Sensor 2, activity)
In this case, the sensor that has the max of
MI(sensor, activity) is the most significant sen-
sor to recognize the activity. So, this one is kept
while the other is discarded.

Segmentation
Once, the minimum set up of senors is determined
using the criterion of mutual information, the second
step of the proposed framework (Figure 1) consists of
carrying out the recognition. In this paper, we used
a real-time dynamic segmentation on streaming data
which also provides the recognition step. It integrates
the spacial correlation between events and decides if
two sequential sensor events belong or not to the same
segment of activity. This avoids events from very dif-
ferent zones to be in the same window. This method
is published in Najeh et al. (2022) and it allows de-
termining the beginning and the end of each segment
when new events are inscribed and provides the label
of the recognized activity.

Let E = {e1, e2, ..., en} a sequence of events, where
ei represents the ith event. Each ei ∈ E con-
tains a vector of information < Ti, si, Vi > where
Ti, si and Vi represent respectively time stamp
of the ith event (Date; Year:Month:Day), Time
(Hour:Minute:Second)), sensor name of the ith event
and sensor value of the ith event.

The concept of dynamic segmentation is the follow-
ing. For each incoming event, the question that arises
is if the incoming event belongs to the current seg-
ment, or it is the beginning of a new segment? It
is based on the measurement of the Pearson Prod-
uct Moment Correlation (PMC) coefficient Xu et al.
(2022) which measure the linear correlation between
two sensor events.

Figure 3 illustrates an example of identification of the
beginning and the end of activities’ segments, i.e how
to process the real-time dynamic segmentation.

Figure 3: Real-time Human Activity Recognition
Framework

Once the correlation between events is determined,
for each incoming event, as long as the correlation is
always equal to 1, it means that this event belongs
to the current segment. As soon as the correlation
is different to 1, the last sample corresponds to the
end of the segment and as soon as it goes back to 1,
this moment corresponds to the beginning of a new
segment.

Case study
In this section, the objective is to verify that (1) the
HAR is faster, and that (2) the accuracy is not too
degraded. We compare using a dataset available in
the community, with and without calculation of the
minimum setup.
Testbed
The case study is performed on Aruba dataset, which
contains human activities collected in a smart apart-
ment by the Center for Advanced Studies in Adaptive
Systems (CASAS) Cook et al. (2012). The apartment
accommodates a woman adult. It has frequent visits
of the woman’s children and grandchildren through
the year. The set-up for the sensor network includes
5 temperature sensors, 3 door contact sensors and
31 detection motion sensors. The sensors’ identifiers
begin respectively with "T", "D" and "M. The con-
figuration of sensors in the apartment is shown in
Figure 4.

Figure 4: Simulation Results

The following activities are considered within the
dataset. The number in parentheses is the number
of times the activity appears in the data: Sleeping
(401), Bed to Toilet (157), Meal Preparation (1606),
Eating (257), Enter Home (431), Work (171), Re-
lax (2910), Wash Dishes (65) and Housekeeping (33).
The home inhabitant noted their activities, provid-
ing ground truth annotations. Table 2 summarizes
the floor map of the dataset.



Table 2: Floor map of Aruba
Residents 1
Rooms 7

Number of sensors 39
Type of sensors M, T, D

Number of activities 12
Number of days 219

Selection of the best configuration of sensors
This section deals with the determination of the most
relevant sensors for each activity in Aruba’s dataset.
In this paper, only the selection of meaningful fea-
tures for two activities is detailed. Results for other
activities are omitted for reason of space.

Case of the Work Activity

Figure 5 shows the sampled data of sensors M025,
M026, M027 and M028 installed in the office setting
where the activity “Work” occurs as well as the sam-
pled data of activity Work.

Figure 5: Real-time Human Activity Recognition
Framework

Table 3 summarizes the Mutual Information for each
sensor alone regarding the activity “Work”.

Table 3: Mutual information 1 Sensor/ Work
Sensors IG
M025 0
M026 0.4815
M027 0.0944
M028 0.0117

The values of MI of both 2 sensors regarding an ac-
tivity are represented in Table 4.

Table 4: Mutual information 2 Sensors/ Work
(Sensors, Work) MI

MI((M025, M026), Work) 0.0075
MI((M025, M027), Work) 0.0025
MI((M025, M028), Work) 0.0003
MI((M026, M027), Work) 0.008
MI((M026, M028), Work) 0.0074
MI((M027, M028), Work) 0.0025

Mutual information between M026 and M027 is the
higher. However, the constraint MI((M026, M027),

Work) ≥ IG(M026, Work)+IG(M027, Work) is not
satisfied. In this case, Only the sensor M026 is mean-
ingful to recognize the activity “Work”.

Case of the Sleeping Activity

The sensors installed in the bedroom in which the ac-
tivity “Sleeping” in occurred are: M001, M002, M003,
M005, M006 and M007. The values of MI of each 2
sensors regarding an activity are represented in Table
5.

Table 5: Mutual information 2 Sensors/ Sleeping
(Sensors, Sleeping) MI

MI((M001, M002), Sleeping) 0.001
MI((M001, M003), Sleeping) 0.0011
MI((M001, M005), Sleeping) 0.0009
MI((M001, M006), Sleeping) 0.0019
MI((M001, M007), Sleeping) 0.0035
MI((M002, M003), Sleeping) 0.0004
MI((M002, M005), Sleeping) 0.0002
MI((M002, M006), Sleeping) 0.0012
MI((M002, M007), Sleeping) 0.0034
MI((M003, M005), Sleeping) 0.0002
MI((M003, M006), Sleeping) 0.0013
MI((M003, M007), Sleeping) 0.0037
MI((M005, M006), Sleeping) 0.0011
MI((M005, M007), Sleeping) 0.0053
MI((M006, M007), Sleeping) 0.0041

Table 6 summarizes the information gain for each sen-
sor alone regarding the activity "Sleeping".

Table 6: Mutual information 1 Sensor/ Sleeping
(Sensor, Sleeping) MI

IG(M005, Sleeping) 0
IG(M007, Sleeping) 0.0032

Mutual information between M005 and M007 is the
higher. The constraint MI((M005, M007), Sleeping)
≥ IG(M005, Sleeping)+IG(M007, Sleeping) is satis-
fied. In this case, both of sensors M005 and M007 are
meaningful to recognize the activity “Sleeping”.

Aggregation of results

In conclusion, the minimum configuration of sensors
contains the following sensors (see Table 7):
To test the efficiency of the minimum sensor configu-
ration selection framework, the selected configuration
is used for real-time HAR recognition. A compari-
son between the performance of recognition with a
minimum configuration and a complete configuration
in terms of processing time and classification perfor-
mance is discussed further bellow.



Table 7: Minimum configuration of sensors
Activity Most representative sensors
Sleeping M005 and M007
Work M026

Bed to Toilet M004 and M005
Eating M014 and M020
Relax M009 and M020

Housekeeping M031
Meal Preparation M015 and M017

Wash Dishes M015
Enter/Leave Home M030 and D004

Segments of activities with the minimum con-
figuration of sensors
Once the beginning and the end of each segment is
determined, a classification step consists of recogniz-
ing the activity based on the concept of trigger sensor
and the time delta between the beginning and the end
of the segment Najeh et al. (2022).

The trigger sensors for each activity are determined
by a statistical study carried out beforehand offline.
For such an activity, the sensor triggered at the start
of the segment must correspond to the list of trigger-
ing sensors for this activity and the time delta must
correspond to the usual duration of this activity. The
usual duration of each activity is also determined of-
fline by a statistical study on the duration of the ac-
tivities. Table 8 summarizes the segments of activities
classified with a minimum configuration of sensors.
Segments of activities with the total configu-
ration of sensors
Table 9 summarizes the segments of activities classi-
fied with the complete configuration of sensors.
Discussion
This section analyses the performance of the classi-
fication with the two configurations. This discussion
focuses on the analysis of the processing time of the
segmentation and classification algorithm using a full
configuration and a minimum configuration of sen-
sors, as well as the classification results.

Processing Time

Activity recognition with a complete configuration
and a minimum configuration of sensors is done on
the same computer, with the same algorithms, but
we have fewer sensors (35%), and less calculation
(59.75%). In fact, the processing time related to the
application of the algorithm using a global configu-
ration of sensors is equal to 121.13 seconds (121.12
sec for the segmentation and 0.01 sec for the classi-
fication). It is equal to 72.38 sec with a minimum
configuration of sensors (72.83 sec for segmentation
and 0.0062 sec for classification).
Figure 6 shows the evolution of processing time re-
garding the number of sensors.

Table 8: Results of classification with a minimum
configuration of sensors

Activity
Name

Real Activities Simulated Activities

Sleeping 00:03:50 to 05:40:43 00:03:50 to 05:40:27
05:43:45 to 08:01:12 05:43:45 to 08:00:21

Bed to
toilet

5:40:51 to 05:43:30 05:40:51 to 05:43:24

08:57:48 to 09:02:48
13:32:00 to 13:33:24
15:21:21 to 15:22:49
23:38:36 to 23:42:36

Work 15:47:48 to 16:10:33 15:47:48 to 16:10:23
17:55:24 to 17:57:47 17:55:24 to 17:57:46

18:06:57 to 18:09:03
Relax 09:29:23 to 09:34:05 08:08:38 to 08:10:40

14:46:25 to 15:13:24 09:30:10 to 09:34:01
16:15:57 to 16:21:58 14:46:25 to 15:13:25
17:06:21 to 17:27:12 16:15:57 to 16:18:30
17:28:26 to 17:33:54 16:18:33 to 16:21:53

17:06:17 to 17:19:50
Eating 09:56:41 to 09:59:04 09:36:08 to 09:44:04

09:59:47 to 10:02:48 09:56:41 to 10:03:17
15:25:35 to 15:28:42 10:46:25 to 10:48:37
17:35:16 to 17:37:11 11:35:35 to 11:38:11

15:25:35 to 15:28:39
17:35:16 to 17:37:08
17:44:13 to 17:45:19

Meal
Prepara-
tion

08:11:09 to 08:27:02 08:16:28 to 08:24:27

08:33:52 to 08:35:45 09:03:00 to 09:26:41
09:48:52 to 09:53:02 09:48:54 to 09:50:46
09:54:58 to 09:56:27 13:54:44 to 14:13:19
15:23:00 to 15:25:33 16:25:02 to 16:27:24
16:21:59 to 16:31:26 16:47:37 to 16:48:54
16:32:53 to 16:34:13 17:50:38 to 17:51:42
16:36:10 to 17:06:00 18:20:05 to 19:45:14
17:27:13 to 17:27:55 21:36:36 to 23:25:59

Figure 6: Sampled data

So, if we consider an implementation of this algorithm
on an embedded system, the use of a minimum con-



Table 9: Results of classification with a complete con-
figuration of sensors

Activity
Name

Real Activities Simulated Activities

Sleeping 00:03:50 to 05:40:43 00:03:50 to 04:14:32
05:43:45 to 08:01:12 05:43:53 to 07:53:22

Bed to
toilet

5:40:51 to 05:43:30 05:40:51 to 05:43:24

08:57:48 to 09:02:48
13:32:00 to 13:33:24
15:21:21 to 15:22:49
23:38:36 to 23:42:36

Work 15:47:48 to 16:10:33 15:48:10 to 15:51:26
17:55:24 to 17:57:47 15:56:02 to 16:08:31

18:06:57 to 18:09:03
Relax 09:29:23 to 09:34:05 08:08:38 to 08:10:40

14:46:25 to 15:13:24 09:30:10 to 09:34:01
16:15:57 to 16:21:58 14:46:57 to 15:10:24
17:06:21 to 17:27:12 15:10:31 to 15:13:23
17:28:26 to 17:33:54 16:15:57 to 16:18:30

16:18:33 to 16:21:53
Eating 09:56:41 to 09:59:04 09:36:08 to 10:03:17

09:59:47 to 10:02:48 10:46:25 to 10:48:37
15:25:35 to 15:28:42 11:35:35 to 11:37:00

15:25:35 to 15:28:39
17:35:16 to 17:37:08
17:44:13 to 17:45:19
23:28:27 to 23:31:29

Leave
Home

11:41:34 to 11:41:43 11:41:37 to 11:43:30

11:43:53 to 11:43:58
Enter
Home

11:43:30 to 11:43:34 11:43:55 to 11:47:48

11:47:48 to 11:47:52
Meal
Prepa-
ration

08:11:09 to 08:27:02 08:11:15 to 08:23:23

08:33:52 to 08:35:45
09:48:52 to 09:53:02
09:54:58 to 09:56:27
15:23:00 to 15:25:33 15:14:38 to 15:19:03
16:21:59 to 16:31:26
16:32:53 to 16:34:13
16:36:10 to 17:06:00 16:38:00 to 17:04:14
17:27:13 to 17:27:55 17:37:40 to 17:44:07

17:46:54 to 17:55:10
17:58:05 to 18:04:12
19:45:15 to 19:47:36
23/2439 to 23/27/40

figuration of sensors is more advantageous in terms of
computation time.

Performance of the Classification

Sleeping Activity The recognition rate of Sleep-
ing activity with both a minimum and a complete
configuration of sensors is equal. The start and end
times of simulated and ground truth activities are al-
most identical, and the rate of false positives and false
negatives is almost negligible.

Bed to Toilet Activity For 24 hours, the “Bed
to toilet” activity is labeled only once. However, the
number of simulated activities detected is 5 in the
case of recognition with a complete and minimal con-
figuration of sensors. The start and end time of the
first simulated activity corresponds to the GT activ-
ity, with a negligible rate of false negatives (6 sec-
onds). This is explained by the fact that the occupant
forgets to label the activity.

Enter/Leave Home Activity Activities Enter
Home and Leave Home are very short activities. The
number of real activities labeled is equal to two with
a lag of 10 seconds between the first and the second
“Leave Home” activity and 4 min between the two
“Enter Home” activities Recognition with a complete
configuration of sensors makes it possible to detect
these activities, but since the duration between ac-
tivities is short, each simulated activity corresponds
to the union of two real activities separated by a few
seconds. The recognition with a minimum configura-
tion of sensors does not detect short activities.

Work Activity The recognition algorithm with a
minimum configuration of sensors allows detecting
three “Work” activities. The first two practically cor-
respond to the actual labeled activity, with a neg-
ligible false positive rate (10 seconds and 1 second
respectively for the first two activities). The third
simulated activity is explained by the fact that the
occupant may have forgotten to label the activity.
The recognition algorithm with a complete configu-
ration of sensors makes it possible to estimate the first
activity but in two sub-segments separated by an in-
terval of approximately 5 minutes (from 15:48:10 to
15:51:26 and from 15:56: 02 at 16:08:31 instead of
15:47:48 at 16:10:23). The second real work activity
is not detected. The recognition rate for the work
activity is lower with a full configuration.

Conclusion
This work proposes a framework to select a minimum
configuration of sensors which are the most represen-
tative to estimate occupants’ activities. The objective
of selecting a minimum sensor configuration is not to
exclude the sensors from the house but to filter the
sensors as input to the real-time HAR algorithm so
that it goes faster with a compromise on recognition’s
performance, but with a gain of performance in terms
of processing time in real time. Mutual Information
Criterion is applied to select the most meaningful sen-
sors.

Once the minimum configuration is selected, a real-
time human activity recognition framework in a
building context is adopted to test the efficiency of
the most representative selected sensors. It is a two-
step methodology: (1) real-time dynamic segmenta-



tion and (2) classification.

The dynamic sensor-event segmentation approach
is performed by calculating the Pearson Product-
Moment Correlation (PMC) coefficient between
events. The classification is based on the triggering
sensor and segment duration check. The triggering
sensor of the event is the very first sensor of an activ-
ity. In this work, it is not required to be discriminat-
ing (just the fact that it is the first), but it happens
that we find that it is generally quite good at discrim-
inating.

The simulation results show that the results show
that for a 35% reduction in the number of sensors
(i.e. from 34 sensors in full configuration to 12 sen-
sors in minimum configuration), 59.75% of processing
time is saved. Future works will be around testing the
efficiency of this method on different hardware archi-
tectures, considering the cost of each solution.
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