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Gaussian process regression (1/4)

Assume we have observed a function f (.) over a set of points X = (x1, . . . , xn):
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Here in 1D. The vector of observations is y = f (X), i.e. yi = f (xi ) .
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Gaussian process regression (2/4)

Since f (.) in unknown, we make the general assumption that it is close to the sample
path of a Gaussian process Y ∼ N (µ(.), k(., .)):
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(here µ(x) = 0)

Online workshop LIMOS-HUST 2023 Gaussian Processes and optimization 4 / 17



Gaussian Process Interpolation GPs in decision theory: case studies Appendix References

Gaussian process regression (3/4)

If we remove all the samples that do not interpolate the observations we obtain:
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Gaussian process regression (4/4)

It can summarized by a mean function and 95% confidence intervals.
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... it is easy to extend to higher dimensions. Formally the mean predictor at one
location x is the Best Linear Unbiased Prediction (BLUP) using observations
yi = f (xi ).

You can play here: https://durrande.shinyapps.io/gp_playground/
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Kriging equations

The conditional distribution can be obtained analytically:

By definition, (Yx ,Y) is multivariate normal. Formulas on the conditioning of
Gaussian vectors give the distribution of Yx |Y = y. It is N (m(.), c(., .)) with :

m(x) = µ(x) + k(x ,X)k(X,X)−1(y− µ(X))

c(x , x ′) = k(x , x ′)− k(x ,X)k(X,X)−1k(X, x ′)

where k(., .) is the covariance function of the prior Gaussian Process.

Simple Kriging, Gaussian case

For a centered process, when µ(x) = 0 for all x , the simple Kriging predictor mean
and variance are {

E [Yx |Y=y] = m(x)
Var [Yx |Y=y] = c(x , x)
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Problems

Here are few selected problems:
• Model selection:
how to choose prior process, prior covariance function family, prior covariance
function parameters ?
• Computation:
how to compute the predictor when the matrices are huge?
• Adaptation:
how to adapt to specific settings (monotony, uncertainty, high dimension...)

Because kriging (GP regression) predicts a full, spatially varying, distribution, it is of
great use in decision making.

⇒ a stepping stone to address decision-theoretic problems.
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Input uncertainty

Case of Energy Performance Certificate: measurement are done at an unknown
location on a specific area (not averaged on the area)

Figure: Left: Prescribed vignette appearing on the French energy performance certificate up to
2021. Label A refers to energy efficient dwellings, G refers to energy intensive dwellings. Right:
Map of French inventoried EPCs over a neighborhood of Lyon city.

Adaptation of Kriging to mixtures of Gaussian rv. Grossouvre et al., 2023
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High Dimension

Large observation number: with (sub)models combinations Rullière et al., 2018
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Figure: Aggregation of two Gaussian process regression models.

Large dimension: with (sub)models combinations Appriou et al., 2022
is it better and faster to combine few submodels than to find the best model?
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Constrained & robust Bayesian Optimization I

Problem addressed : optimization, with expensive constraints and objectives, in the
presence of uncertainties. Cost is twice an issue!

Example : compressor rotor design

Maximize rotor polytropic efficiency

by changing its (parameterized) shape, x

with geometrical, inflow and rotation speed
uncertainties, u,

under flow constraints (angles, no separa-
tion, Mach number) indexed by p.
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Constrained & robust Bayesian Optimization II

Principle of the method:
• Build GPs of the objective in (x , u) space and of the constraints in the (x , u, p)
space.
• Use the GPs to define a figure of merit : the expected feasible improvement (EFI)
• Sequentially (carefully) choose the next variable, uncertainties and constraints to
be computed

xn+1 = arg maxx EFI(x)
un+1, pn+1 = argminu,pVariance of one-step-ahead EFI(xn+1)

⇒ faster convergence. More explanations in Pelamatti et al., 2023.
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Costly shape optimization I

Example: airfoil minimizing drag. “Infinite” dimensional, and CFD is costly.

Eigendecomposition of the shapes, then work in α-space:
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Costly shape optimization II

Principle of the method:
• Learn active components of α from known (inputs,outputs) by maximizing a
likelihood plus a term that favors sparsity.
• Build a GP on active components (dimension reduction) + a simple GP on less
active components. Perform Bayesian optimization on active space + a random
1D embedding for less active components.
• Project αn+1 on manifold of feasible shapes.

⇒ faster convergence, smoother airfoils
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More explanations in Gaudrie et al., 2020.
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Related recent works by the same team

Quantization of rare events : Sire et al., 2023

More Bayesian optimization :
with mixed discrete-continuous variables : Cuesta Ramirez et al., 2022
with HSIC-based variable selection : Spagnol et al., 2019
with trust regions for higher dimensions : Diouane et al., 2022
with constraints (monotonicity, convexity...) : Maatouk et al., 2023
testing Bayesian optimization : Le Riche and Picheny, 2021
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