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Abstract—The study of human mobility becomes more and
more crucial these days in transportation studies, urban planning,
crowd mobility behaviors, and even more. In this paper, we
propose a novel approach for studying human mobility by
building a light machine learning (ML) model using observation
of wireless networking information from WiFi and Bluetooth
low energy (BLE) that are today naturally present in everyday
devices such as mobile phones. Our goal is to build a mobility
classification system using communicating devices of any kind
with low processing complexity. However, we propose a new
approach for mobility classification using a real dataset of WiFi
and BLE beacons collected over one year for around 90 hours
in different scenarios and conditions. The first model (B-model)
aims to identify the status of a device if stationary or mobile.
Then a complementary model (M-model) is applied to determine
a more precise real-life situation of the device, which could be
a Home, Office, Bus, Train, etc. The results show that decision-
tree-based ensemble ML algorithms like LGBMClassifier and
XGBClassifier gave the best results, in terms of accuracy and
f1 score for both models with an accuracy of 99% and 94%
respectively, confirming the capability of classifying mobility
context from only WiFi and BLE data. We believe that such an
approach could be leveraged for studying human mobility and an
important step towards the large deployment of mobility-based
applications by leveraging everyday mobile phones.

Index Terms—datasets, machine learning, wireless network,
IoT, Mobility Model

I. INTRODUCTION

Understanding and modeling humans and device mobility
have fundamental importance in mobile computing, with im-
plications ranging from network design and location-aware
technologies to urban infrastructure planning [1]. So, inferring
mobility states such as being stationary, walking, or driving is
critical for several applications. The fact that these days users
carry several devices such as smartphones, laptops, and smart-
watches equipped with radio communication technologies with
each device offering a different set of services resulting in
different usage and mobility, provides new approaches for
studying human mobility.

Thus, several researchers have made the effort to study
human mobility to determine people’s fine-grained activities
like using GPS positioning [2], but GPS-based mobility char-
acterization raises many issues such as spotty coverage and
battery consumption [3]. Other attempts and tools have been
developed to predict global mobility [4] in general or only the
next step [5]. Some studies [6] aimed to characterize people’s
mobility based on data traffic but only for a particular subset

of people (students in higher education) and over very limited
areas. Recently, some studies investigated the use of human
mobility but mainly in the COVID-19 context to anticipate
contamination [7]. Such approaches are different in the sense
that they mainly aim to trace contacts between devices and not
necessarily their mobility. Thus in our approach, we provide a
novel technique to determine the real-life situation of a device.
The novelty of such an approach is mainly characterized by its
applicability, since nowadays almost all devices support WiFi
and BLE, so no need for external hardware or module. Thus,
by monitoring the behavior of WiFi and BLE in a device’s
range, we are able to infer a device’s actual status. To the
best of our knowledge, non of the previous approaches have
modeled real-life situations of a device through WiFi and
Bluetooth Low Energy (BLE) beacons only. We believe such
a seamless approach could be an important lever for studying
human mobility and deriving related services. In this paper, we
investigate how wireless networks can be leveraged to infer a
device’s actual status by analyzing the behavior of wireless
links within its range.

We examine various wireless technologies and data collec-
tion methods and discuss how this data can be analyzed to
gain insights into crowd behavior. To this end, to reach the
main goal which is a model that can determine the real-life
situation of a device, we propose a joint ML-based method.
The first model is called B-model, as its goal is to determine
if a device is stationary or mobile, then the output of this
model will be one of the input features for the second model
which is called M-model to guess the real-life situation of
a device. The models are trained using only WiFi and BLE
beacons jointly. Mainly the contact duration of an access point
(AP) with the scanner, the received signal strength indication
(RSSI), and the MAC address are used for feature extraction
for training the models. Training the models goes through two
main steps. The first one is to specify the best period needed
to ascertain the real-life situation of a device with the highest
accuracy. Then justifying the need of having both technologies,
WiFi, and BLE for inferring the output. The results showed
that 1 minute is the minimum time to determine if a device
is stationary or mobile, while two minutes for determining
the real-life situation of a device, while using WiFi and BLE
jointly gives better accuracy. The models are evaluated with
a dataset of 80 hours gathered in different conditions and
scenarios over one year. The methodology for collecting the



dataset is presented with a description of the collected data
so far. Then we introduce the first model (B-model) that will
determine whether a device is in a static or mobile scenario,
then the second model (M-model) will determine the context of
the device which could be in a car or bus or home or restaurant,
etc. The results show that decision-tree-based ensemble ML
algorithms like LGBMClassifier and XGBClassifier gave the
best results, in terms of accuracy and f1 score for both models
with an accuracy of 99% and 94% respectively, confirming the
capability of determining mobility context from only WiFi and
BLE data.

The rest of the paper is organised as follows: Section II
introduces the motivation and model overview, then section
III introduces the setup and methodology of data collection.
Section IV presents the models for classifying the network
context. Section V presents the results of the training. Section
VI presents a general review of the state of the art. Finally,
Section VII concludes the paper with future work.

Fig. 1: Transition between real-life context and network model

II. MOTIVATION

In this section, we motivate the concept behind studying
mobility context through radio beacons, and how it is possible
to leverage wireless links to determine a network context. A
wireless connection between two devices can be established
if and only if they are close enough to communicate. The
maximum distance required between them to establish a
contact depends in particular on the environment and the
communication technology. So we believe the number of direct
links a single device can establish at a given time and the rate
at which these links break and appear are strong indicators of
the context in which a device evolves (static vs mobile, urban
vs rural environment, isolated vs social, transport publication
vs individual locomotion, velocity, etc). Figure 2 illustrates
two different perspectives in a single scenario. Connections
are observed either from a device held by a pedestrian (Fig.
2a) or from a device traveling in a bus (Fig. 2b). When
in a bus, several stable short range communications can be
established with other bus passengers. They are completed
by a set of longer range intermittent communications that
can be sporadically established with devices exterior to the
bus, such as pedestrians or cars. On the contrary, when held
by a pedestrian, there are more or less stable short range
communications and few brief longer range communications.
Thus the networking view is defined as (nbi, ri)0<i<n which
assesses the number of connections nbi to be established with
communication technology i and the stability ri of them,

where n is the maximum number of different communication
technologies observed in the network. Thus, from a network
perspective we can translate the mobility and the surrounding
environments of a device into a network model, i.e. when a
user walks in an urban area, on average, what and how many
connections are they supposed to have and at what rate are
they changing. Same question when a user is in a bus, in a
cab, biking, etc and in diverse and various scenarios.

To achieve this, we need first to observe the variations of
different wireless links in different scenarios. This requires
collecting dataset from each real-life context. The idea is to
translate the real-life situation into a network model, as later
from the network model, we will be able to guess the real-life
situation of a device (Fig. 1). To this end, in the next section
the methodology and description of the dataset collected so
far is illustrated.

III. DATA COLLECTION

Data collection is considered as the foundation of the
Machine Learning model building. This section covers the set-
up used to collect the dataset and illustrates the data collection
process with a description of the data. Note that the storage
of data and model training is performed off-line and does not
need to be embedded on the devices themselves that will just
receive the outcome they will run on new observations they
will make.

A. Methodology

The dataset is collected in different scenarios, with different
variations. FiPy miro-controllers from pycom are used to
scan for wireless beacons. In [8], the dataset description is
illustrated in details, but mainly we are concerned with the
following features:

• Node W (NW ): Scans for WiFi APs every two seconds.
• Node B (NB): Scans for Bluetooth devices every second.
The goal is to observe and record the variations of the

wireless technologies in different mobility contexts, which are
mainly categorized into two: Static and Mobile scenarios. For
Static we define the following cases: Home, Office, Restaurant,
Bus station, University and Meetings. For Mobile we have the
following scenarios: Pedestrian, Car, Bus, Metro, and Trains.
The data is collected using diverse scenarios, including both
rural and urban areas, to ensure that it was representative of
a wide range of environments and populations, and was not
biased towards any particular group or location. The data is
collected and saved with a timestamp and a label from where
it was collected as Comma-separated values (CSV) files to be
ready for the pre-processing stage. The configuration of each
wireless technology is as follows:

a) WiFi Node (NW ): The WiFi node is configured to
start active scanning, as the device radio transmits a probe
request and listens for a probe response from an AP or active
devices such as phones or laptops. Upon detecting a probe
request, scanners log several pieces of information related to
that probe. Figure 4 shows a sample of the saved logs of the
received WiFi packets.



Fig. 2: Illustration of different network observations

b) Bluetooth Node (NB): The BLE node is configured
for passive scanning to receive the advertising packets (PDUs)
that are retrieved every second. Figure 3 shows a sample of
the saved logs for BLE beacons.

B. Dataset Deep Insights

Table I represents a sample of the collected dataset in
different scenarios, as we can see, the environment of the
collected data is different for the same label, as example for
data collected from a bus context, we have the data collected
in rural and urban areas, and same for the other scenarios as
illustrated in the table.

IV. MODEL ARCHITECTURE

In this section, the model architecture is illustrated. As
explained in Section II, the aim is to extract knowledge from
natural crowd mobility through radio beacons, by translating
each “real-life” situation into a network model. As ‘real-
life’ situation refers to the context of a network, which is
the mobility of the environment of a device. Thus first we
simplified the use-case by classifying the context into two
main categories: Static and Mobile.

Static scenario is referenced to any fixed scenario like home,
office, restaurant, library, etc. For further explanation, device
A that is considered as static, could be a fixed sensor located
somewhere, or a device held by a person in an office, though
the person could be moving in their office sometimes, but still
will be considered as stationary since their status is still in the
office, (as no frequent movement over time is happening). On
the other hand, mobile scenarios are assigned to devices that
are in a moving context, like bus, car, train, pedestrian, etc. As
well if a device is in a bus it will be considered as mobile, since
our reference is the global context of the scenario which is the
bus, and not the individual reference with other devices in the
bus. To this end, to achieve the main goal which is building a
ML model that can determine the real-life situation of a device
(eg. being in a bus, or train, or pedestrian, or at home, etc.),
two models are defined. First, since the input data is labeled,
then our models will undergo supervised learning approaches.
We started with the binary model called B-model that can
determine the general situation of the device which could be

static or mobile. The output of this model helped to improve
the performance of the second main model which is called M-
model, that stands for multi-class classification model, which
aims to determine Ten different status of a device that are:
Train, Home, Office, Conference, Bus, Car, Metro, Pedestrian,
Restaurant, and University. The output of B-model will be one
of the input features for M-model.

A. Data Pre-processing and Feature Engineering

As illustrated in Section III, the datasets are saved as csv
files. Since each scenario (label) has two separately scanned
files (WiFi and BLE) that share same time-stamp, the two files
are combined together to facilitate the analysis and observation
of both datasets at the same time. Now, for each scenario we
have one file that includes the date from WiFi and BLE at a
certain time-slot. Each dataset is in the form of an n x 6 matrix,
where n > 0 is a variable number that equals the number of
received beacons/probe-responses from all detected APs over
the scanning time t. But feeding data into a model must be
a column matrix and not an n x m matrix. So, we need to
transform the n x 3 matrix into a 1 x (f + 1) where f is the
number of selected features from both WiFi and BLE (to be
defined in the next section) plus at the end the label. Thus, in
this case each dataset will be represented by a single row. To
transform the shape of the dataset from 2D to 1D, the dataset
undergo through two main phases:

• ϕ1: Get the main statistics for each AP, thus as a result
we will get an n x f1 matrix, where n is the number of
unique AP that appeared during scanning, and f1 is the
number of extracted features (defined in section IV-C).
So, the dataset still has the 2D form at this phase.

• ϕ2: Transform each 2D dataset from ϕ2 to a 1D vector
(explained in section IV-D).

B. WiFi and BLE Selected Features

During scanning, the device frequently receives beacons
from the APs that are in its communication range. If the scan-
ner moves away from the AP, after some time the connection
between the two devices is lost and the scanner stops receiving
beacons from that AP, and vice versa if the AP is mobile and



TABLE I: Records from Mobile and Static Scenarios

Scenarios Label From To Duration Description
B1 12:20:00 12:55:00 35min Autocar between city and village - crowded

Bus B3 17:07:04 17:56:00 49min Bus in a city
B5 20:06:00 20:38:00 32min Bus in a city - very crowded
C1 17:26:00 18:03:00 37min Auto-Route - rural area

Car C2 13:21:00 14:04:00 43min Auto-Route then between houses in villages
C3 09:06:00 09:24:00 18min Auto-Route then between houses in villages
T3 20:17:00 21:02:00 45min TER between two cities

Train T6 10:15:00 13:12:00 2hr, 57min TGV
T15 19:14:00 19:56:00 42min TER between two cities
P1 09:23:00 09:34:00 11min University Campus

Pedestrian P2 18:58:00 19:07:00 9min Crowded city
P4 12:55:00 13:08:00 13min Rural area - Countryside
H1 01:14:00 02:36:00 1hr, 22min Student residence
H2 12:31:00 13:33:00 1hr, 2min Studio in a crowded city

Home H3 08:08:00 08:43:00 35min Apartment in a building - village
H8 10:50:00 12:13:00 1hr, 23min Hotel in a village - rural area

Fig. 3: BLE log file

Fig. 4: WiFi log file

the scanner is fixed. This behaviour is therefore considered an
important metric for identifying the mobility of a device.

To verify the assumptions, Figures 5a and 5b represent the
received beacons from each access point over time, with the
corresponding RSSI. In Figure 5a which displays the WiFi data
collected from an office (static scenario), beacons are detected
over the whole scanning time. Knowing that the scanner is
fixed, would indicate that the access points detected by the
scanner are also fixed. While in Figure 5b which is related to
the data collected from a bus (mobile scenario) in an urban
area, the beacons are appearing only for a very short duration.
This is because the scanning device is losing connection with
the access point because of the mobility of the bus. From these
observations, we can see how each scenario has its unique
pattern of received beacons and the importance of the contact
duration between the scanning device and surrounding APs in
differentiating between different scenarios. Thus as a result,
the time-stamp, the RSSI and MAC address will be selected
for feature engineering, since they are the main attributes to
give insights for the collected datasets.

C. Feature Extraction: Phase 1

In this section, data processing and feature extraction is
illustrated in details. As mentioned in IV-B, contact duration
will be calculated for each AP, with the mean and standard
deviation of the RSSI. As a result, we will end up with two
dataframes that represent the statistics of the collected data for
each wireless technology.

1. Contact Duration: Let M be the set of all unique MAC
addresses appeared during Time t of scanning. The contact
duration is calculated as follows:

duration(m) = T (m), ∀m ∈ M (1)

Where T(m) is:

T (m) = ti − t0, ∀m ∈ M (2)

Where i is the last beacon appeared during the scanning.

2. Signal Strength Mean and Standard Deviation: The
value of the RSSI tends to fluctuate even if the device is fixed
due to external factors influencing radio waves (interference,
diffraction, etc. ), or when a Wi-Fi receiver is moving, the
signal strengths it observes are noisier than when it is not
moving. For this reason, for each AP, the average mean of the
values recorded over time is calculated as follows:

χ̄x(m) =
1

n

n∑
i=1

xi(m), ∀m ∈ M (3)

where x(m) represents the RSSI of the MAC address m, xi

is the i− th RSSI value in the sample, n is the total number
of appearance of the beacon from the AP of the same mac



(a) WiFi beacons - Office monitoring (b) WiFi beacons - Bus monitoring

Fig. 5: WiFi beacons in different scenarios

address during the scanning time, and xi is the i − th RSSI
value in the sample. Then the standard deviation is calculated
(eq. 4) to see how dispersed the data is in relation to the mean
as this could indicate if the device is moving.

δx(m) =

√∑n
i=1(xi − χ̄x(m))2

n− 1
(4)

D. Feature Extraction: Phase 2

Now as a result we have two data-frames that summarises
the main information for each AP. Still we need to transform
both 2D files to a 1D vector. Here is the second phase (ϕ2)
to get the important information from the dataframe for our
model. Table II, shows the number of AP that appeared in
different scenarios. We can see how the number of APs
differs from one context to another as well as the average
contact duration (∆t). Knowing that the contact duration is
an important metric for differentiating between scenarios as
mentioned in IV-B, then the dataframes will be transformed
to a 1D vector by displaying the statistics of APs based on their
contact duration (∆t). The features are mainly categorized into
three main conditions: Long ∆t, medium ∆t, and short ∆t

based on the following criteria: First, get the percentage of
contact duration as follows:

%∆t(m) =
∆t(m)

t
× 100 ∀m ∈ M (5)

1) L: Set of AP that has ∆t > 70% of the total time t.
2) M : Set of AP where 30% < ∆t < 70%.
3) S: Set of AP that has a ∆t < 30% of the total time t.
Then for each Set (L, M, S), the mean and standard

deviation of the RSSI of the access points that belongs to
each set is calculated.

As a result we end up with a vector (Vi) that includes 24
features (12 features extracted from WiFi and 12 extracted
from BLE), plus the label of the scanned scenario i. The
same process is done for all the datasets that are collected

in different scenarios, thus we end up with a dataframe of Vn

input vectors, where n is the total number of datasets (see
Figure 6).

TABLE II: Primary records from dataset analysis

Wifi mac Wifi ∆t BLE mac BLE ∆t

Office 19 9min, 16sec 27 4min, 27sec
Bus 185 17sec 43 2min, 32sec
Car 6 4min 6 3min, 56sec

Train 3 6min, 9sec 68 3min, 13sec

Fig. 6: Diagram that illustrates the ML process

V. MODELS EVALUATION

As described in section III, the dataset is a labeled and
collected over one year in different scenarios. The size of
the dataset is 44,4 MB. The distribution of the datasets is
unbalanced, to this end, with the available dataset for the
moment, classical machine leaning algorithms will be suitable
for our case since the dataset is small, and since it is a labeled
dataset, supervised learning techniques will be applied to meet
the final goal for constructing a classification model to guess
the categorical label. In this section, several simulations are
done to evaluate our model to select the one with the best
performance. Knowing that each dataset is scanned with a



different time duration, first we want to divide all datasets
to equal time spans. To achieve so, we will define a period,
and all datasets will be divided by this period to finally
have datasets with equal time duration. But to determine the
best value of the period that will best perform on training
the models, we will first define several period values and
test the models on each of them to select the best period
for each model. To this end, four periods are defined, P1:
5 min, P2: 3 min, P3: 2 min, P4: 1 min. Then we have
selected 7 main classification algorithms that are: Boosting
Decision Tree, KNN, Voting Classification, Gradient Boosting,
Decision Tree, Neural Network, SVM, Naive Bayes, Random
Forest Classifier, and Logistic Regression to be trained on the
different selected periods, then compared the performance of
each one.

A. Evaluation Metrics

In this section we will give a brief analysis of the models’
performance to select the best one for the mentioned use case.
Typically various metrics will be reported that assess how well
the model is able to make predictions on new, unseen data. The
choice of the metrics depends on the type of the problem, so
for both models B-model and M-model the following metrics
will be evaluated: Accuracy, Balanced accuracy and F1 score.
Finally (AUC-ROC), an additional metric will be added for
evaluating B-model, that stands for area under the receiver
operating characteristic curve, it is a commonly used metric
to evaluate the performance of binary classification models.

In general, F1 score, precision, and recall are metrics used in
binary classification to evaluate the performance of a machine
learning model. Where the Precision metric measures how
often the model is correct when it predicts a positive sample.
The formula for precision is:

Precision =
TruePositives

(TruePositives+ FalsePositives)
(6)

While the Recall metric measures how often the model
correctly identifies a positive sample out of all the positive
samples in the data. The formula for recall is:

Recall =
TruePositives

(TruePositives+ FalseNegatives)
(7)

But, the F1 score is the harmonic mean of precision and
recall. It combines both metrics to provide a single score that
represents the model’s overall performance. The formula for
F1 score is:

F1Score =
2 ∗ (Precision ∗Recall)

(Precision+Recall)
(8)

Since Precision and Recall do not always provide a complete
picture of a model’s performance, and the F1 score balance
the trade-off between precision and recall, as it provides a
single score that summarizes both, then it will be used for the
evaluation. The balanced accuracy in binary and multiclass
classification problems is a metric to deal with imbalanced
datasets. It is defined as the average of recall obtained on
each class.

B. B-Model: Binary Classification

The aim of this model is to determine whether the device is
in a static or mobile context as defined in Section IV. First we
will train the seven selected models on the different defined
periods. For each model the accuracy after cross validation
is calculated. Here’s a description of the distribution of the
datasets for each specified period:

• (P1: 5 min): 921 input vectors
• (P2: 3 min): 1576 input vectors
• (P3: 2 min): 2375 input vectors
• (P4: 1 min): 4764 input vectors

The distribution of datasets is as follows: 33.9% train, 17%
Home, 10% office, 9% conference, 7.5% bus, 7.3% pedestrian,
7.3% university, 3.5% restaurant, 1.6% metro, and 2% car. The
percentage may slightly change from one period to another. So,
each model is trained on the different defined periods. Figure
7 represents a clear comparison between different models’
accuracy. We can see that a period of one minute gave a higher
accuracy in almost all selected models, while five minutes
has the lowest accuracy. Thus a period of one minute will be
selected to divide the datasets into equal fragments for training
B-model.

After determining the best period for training the models,
now 27 classification models are selected for training. From
the 27 models we have selected the most known models to
compare, as table IV displays eleven models, each with its
calculated evaluation metrics. We can see that LGBMClassifier
and XGBClassifier gave an accuracy of 99%, and knowing that
the trained dataset is not balanced, the Balanced Accuracy
is calculated as it also gives a 99% accuracy, and same
for F1 score. As a result, in our case, boosting Ensemble
method (LGBMClassifier and XGBClassifier) improved model
performance since we have unbalanced datasets, as they assign
higher weights to misclassified examples in the minority class.

To justify the importance of using both information from
WiFi and BLE jointly for such model, we repeated the training
using only WiFi data, then only BLE, and compared the
results with the models trained on both technologies jointly.
Figure 8 displays the accuracy value (from cross validation)
for each trained model for the three scenarios. The green curve
represents the values from models that are trained with only
BLE input data, and the red curve for WiFi input data only,
thus we can see that WiFi information gives better accuracy
than BLE input data in almost all trained models. The violet
curve represents WiFi and BLE trained data jointly, the results
shows a higher accuracy from such data, thus we can conclude
that both WiFi and BLE jointly gives better accuracy for
estimating the output.

C. M-model: Multi-class Classification

Now, the aim of this model is to determine a specified
context of the network as mentioned in section IV. We have
tested 26 different machine learning classifiers to train the
multi-class model. Knowing that M-model has a different
objective from B-model model, then we need to repeat the



same process for selecting the best period for classifying as in
B-model. Table VI, shows the accuracy of 11 trained models
on different period values. These models are the selected from
the 26 trained models as the most known models and with
the highest accuracy among the others. We can see that a
period of two minutes and five minutes give a better accuracy
in almost all tested algorithms. Thus (P3 = 2 min) will be
selected as the period to train the models. We can see that
the highest accuracy is equal to 93% from the LGBMclassifier
and XGBclassifier and RandomForestClassifier as an example.
To improve even more the accuracy, we added the results of
B-model as an input feature to M-model to see how could
the static/mobile information enhance the performance of the
models. Table V shows the results of the same 11 models but
with B-model input. We can see that the accuracy increased
by 1% in almost all models, thus this indicates the importance
of the information from B-model to give a better accuracy
in determining the real-life situation of the device from M-
model. After determining the best period for the classification
which is two minutes, and improving the accuracy by the
input values from B-model, the first three models that have
higher accuracy that are: LGBMClassifier, XGBClassifier and
RandomForestClassifier, are selected. We will test our chosen
models again by getting the accuracy after cross validation and
calculating the Time consumed for training and prediction.

TABLE III: Comparison between best three models

Model Accuracy Training Time Pediction Time
XGBClassifier 93.62% 0.868 0.00436

LGBMClassifier 92.95% 0.907 0.00706
RandomForestClassifier 93.38% 0.433 0.01808

As shown in Table III, XGBClassifier has higher accuracy
among the other selected models after cross validation, with
the shortest prediction time, then it will be selected for hyper
parameters tuning. After hyper parameters tuning, the accuracy
remained the same, thus XGBoost classifier has the best
accuracy with approximation to 94%.

TABLE IV: B-model models evaluation and comparison

Model Accuracy Balanced F1 Score
LGBMClassifier 0.99 0.99 0.99
XGBClassifier 0.99 0.99 0.99

RandomForestClassifier 0.98 0.98 0.98
BaggingClassifier 0.98 0.98 0.98

SVC 0.97 0.97 0.97
AdaBoostClassifier 0.97 0.97 0.97

DecisionTreeClassifier 0.95 0.95 0.95
KNeighborsClassifier 0.94 0.94 0.94
LogisticRegression 0.93 0.93 0.93
RidgeClassifierCV 0.92 0.92 0.92

LinearDiscriminantAnalysis 0.92 0.92 0.92

VI. STATE OF THE ART

Analyzing human mobility is not new and is exploited
since long to optimize infrastructure deployment especially

TABLE V: M-model with B-model input feature

Model Accuracy Balanced F1 Score
XGBClassifier 0.94 0.86 0.93

LGBMClassifier 0.93 0.86 0.93
RandomForestClassifier 0.94 0.85 0.93

BaggingClassifier 0.92 0.86 0.92
LogisticRegression 0.88 0.74 0.86

SVC 0.90 0.75 0.88
DecisionTreeClassifier 0.88 0.80 0.87
KNeighborsClassifier 0.85 0.69 0.84

RidgeClassifierCV 0.77 0.51 0.72
AdaBoostClassifier 0.51 0.20 0.36

Fig. 7: Period comparison for B-model

for mobile telephony, mainly 5G [9] or edge computing. The
literature has widely studied human mobility and investigated
mobility models which is a step to measure their impact
on network performances [10]. To this end, recognition of
physical mobility states and activities has been studied because
they provide useful information for investigating in human
mobility [3]. Several studies in the literature used GPS po-
sitioning to infer physical activities. In [11] and [12], the
authors uses GPS data with external knowledge about bus
routes and bus stops to infer and predict a user’s transportation
mode such as walking, driving, or taking a bus by applying
Bayes filters and Rao-Blackwellised particle. Although such
algorithms perform well, they use computationally expensive
models, thus it would be preferable to have simpler models that
infer mobility states. Moreover, GPS data sampling is power-
consuming. In [13], Krieg et al. proposed a transportation
mode detection that helps in real-time parking, as through
only 2 of sensor readings Accelerometer and Gyroscope,
their system can decide whether a user is using one of the
following transportation modes: walking, bicycle, bus, car,
subway, motorbike, train, tram, airplane. Though this approach
is applicable but it couldn’t classify the real status of a device
when it is static. Other approaches leveraged the information



Fig. 8: Accuracy comparison for three different input datasets

from LoRa, BLE and WiFi wireless links but rather for indoor
and outdoor localization systems like in [14], [15] and [16].
Thus our work is different in the sense that we adopt and
exploit WiFi and BLE jointly to determine the status of the
device in its real-life situation. To the best of our knowledge
this is considered as a new approach for analyzing network
context.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a novel approach for
inferring human mobility by determining a device’s status
within its network context through wireless communication
technologies, namely WiFi and BLE, working in conjunction.
Firstly, we trained a model to ascertain whether a device
is in a mobile or static network context. Subsequently, a
complementary model was trained, providing a more precise
classification of the device’s real-life situation. These models
were trained using real datasets collected over one year, for
90 hours, across diverse scenarios and conditions. In our
initial approach, we achieved a 94% accuracy in classifying
among 10 scenarios using a lightweight classical machine
learning algorithm (XGBClassifier). As part of our future
work, with a sufficiently large dataset, we plan to apply deep
learning techniques to compare an online time series model
with our offline classical ML model. Furthermore, we intend
to incorporate additional scenarios to investigate how wireless
links can be employed to determine a device’s state in various
contexts more comprehensively.
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TABLE VI: M-model binary classification period comparison

Model 1 min 2 min 3 min 5 min
LGBMClassifier 0.92 0.93 0.91 0.92
XGBClassifier 0.91 0.93 0.90 0.92

RandomForestClassifier 0.91 0.93 0.90 0.93
BaggingClassifier 0.89 0.91 0.88 0.90

SVC 0.89 0.90 0.88 0.86
AdaBoostClassifier 0.50 0.51 0.51 0.51

DecisionTreeClassifier 0.85 0.87 0.85 0.83
KNeighborsClassifier 0.84 0.83 0.83 0.80
LogisticRegression 0.85 0.87 0.87 0.84

RidgeClassifier 0.74 0.75 0.74 0.75
LinearDiscriminantAnalysis 0.19 0.12 0.17 0.25
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