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Alexandru Costan†, Gabriel Antoniu†, Loı̈c Cudennec‡, Philipp Slusallek∗

∗ Deutsches Forschungszentrum für Künstliche Intelligenz (DFKI), Saarland Informatics Campus, Germany
{melvin.chelli, rene.schubotz, philipp.slusallek}@dfki.de

† University of Rennes, Inria, CNRS, IRISA - Rennes, France
{cedric.prigent, alexandru.costan, gabriel.antoniu}@irisa.fr

‡ DGA Maı̂trise de l’Information, Rennes, France
loic.cudennec@intradef.gouv.fr

Abstract—Minimizing the attack surface of Federated Learn-
ing (FL) systems is a field of active research. FL turns out to
be highly vulnerable to various threats coming from the edge
of the network. Current approaches rely on robust aggregation,
anomaly detection and generative models for defending against
poisoning attacks. Yet, they either have limited defensive capa-
bilities due to their underlying design or are impractical to use
as they rely on constraining building blocks.

We introduce FEDGUARD, a novel FL framework that utilizes
the generative capabilities of Conditional Variational AutoEn-
coders (CVAE) to effectively defend against poisoning attacks
with tuneable overhead in communication and computation.
Whilst the idea of hardening a FL system using generative models
is not entirely new, FEDGUARD’s original contribution is in its
selective parameter aggregation operator with parameter selection
being driven by synthetic validation data sampled from the CVAEs
trained locally by each participating party.

Experimental evaluations in a 100-client setup demonstrates
FEDGUARD to be more effective than previous approaches
against several types of attacks (label and sign flipping, additive
noise, same value attacks). FEDGUARD successfully defends in
scenarios with up to 50% malicious peers where other strategies
fail. In addition, FEDGUARD does not require auxiliary datasets
or centralized (pre-) training. It provides resilience against
poisoning attacks from the very first round of federated training.

Index Terms—federated learning, malicious peer detection,
robust federated learning, adversarial attacks, generative models

I. INTRODUCTION

Federated Learning (FL) is an emerging collaborative
paradigm for performing global learning tasks on datasets dis-
persed amongst a potentially large number of parties without
any explicit data exchange. The global learning task is accom-
plished by training of a local model at each client (i.e., worker
node) and sharing only its model parameters with a central
server (i.e., master node). The central server is responsible for
model initialization, selection of the participating clients per
federated round, aggregation of all received local parameters
into the global model parameters, as well as sharing back the
updated global parameters with the clients. This process is
illustrated in Fig. 2.

The FL paradigm is particularly relevant for learning sce-
narios dependent on large amounts of multi-source data with

adamant privacy and confidentiality regulations, e.g. breast
density or chest X-ray classification [1], [2].

Due to its distributed nature, a FL system exposes a
number of exploitable vulnerabilities for data privacy breach,
disruption or manipulation of the learning process through
malicious internal or external actors. Considering the criticality
of the data involved such as health records, financial data, and
personal information, a successful attack on a FL system can
result in financial losses, reputational damage, legal liabilities
or other severe consequences.

In this work, we focus on adversarial attacks to the federated
model and assume the following threat model
(TM-1) The FL server is benign.
(TM-2) The federated model is visible to all parties.
(TM-3) The adversary intends to deteriorate the FL model quality.
(TM-4) The adversary corrupts multiple clients.
(TM-5) Malicious clients may collude.
(TM-6) Malicious clients perform poisoning attacks.

Poisoning attacks (cf. Fig. 1) are training-time model at-
tacks based on manipulating client’s information in order to
impair the performance of the federated model on its original
learning task. We differentiate between model poisoning and
data poisoning attacks: in the former, the adversary directly
manipulates local model updates [3], [4]; in the latter, the
attacker manipulates the local training data of one or more
clients [5], [6]. We provide an overview and assessment of
existing work on poisoning attack mitigation in Section II.

As one of this paper’s main contributions, we propose FED-
GUARD to effectively defend against poisoning attacks with
tuneable overhead in communication and computation. We
outline FEDGUARD’s architecture, its controllable synthesis of
validation data as well as its selective parameter aggregation
operator in Section III.

FEDGUARD demonstrates to be more effective against poi-
soning attacks than previous works, does not require auxil-
iary datasets or any centralized (pre-) training, and provides
resilience against poisoning attacks starting from the initial
iteration of federated training.

Our claims are substantiated by experimental evaluation
in various poisoning attack scenarios. All details regarding
our GRID'5000 experimental testbed, training configuration,



Fig. 1: Federated Learning Attack Surfaces and Defense Mechanisms

Fig. 2: Federated Learning Process

specific attack scenarios as well as baseline algorithms are pro-
vided in Section IV; we present and discussed our evaluation
results (cf. Section V) and assess FEDGUARD’s main benefits,
its current limitations along with possible future directions (cf.
Section VI). We conclude with summary in Section VII.

II. RELATED WORK

The related work on poisoning attack mitigation (cf. Fig. 1)
can be categorised into three working principles. We briefly
outline the key underlying ideas and refer the interested reader
to representative works in each category.

Robust aggregation is focused on designing novel aggre-
gation algorithms that are statistically more resilient against
outlier and extreme value model updates than the promi-
nent FEDAVG [7] aggregation operator, e.g., by replacing
FEDAVG’s arithmetic mean with the median or truncated
mean [8], the geometric median [9], norm tresholding [10],
a centroidality measure [11] or hierarchical averaging [12].

Anomaly detection methods aim at identifying malicious
clients as abnormalities in the distribution of local model
updates and to exclude their submissions from model ag-
gregation. Popular approaches apply 2-means clustering [13],
cosine similarity clustering [14], [15], dynamic clustering [16],
(kernel) PCA with subsequent k-means clustering [5], [17]

or prediction of expected model updates [18] to tell apart
malicious from benign clients. Taking a different approach
to anomaly detection, SPECTRAL [19] and FEDCVAE [20]
assume the availability of a public dataset that is used for
a centralised training of an auxiliary model on the global
learning task. While training this auxiliary model, a (con-
ditional) variational autoencoder is trained on the auxiliary
model updates to embed to and reconstruct from a low-
dimensional latent space. During federated rounds, the pre-
trained autoencoder assigns a reconstruction error to all par-
ticipating clients through encoding and decoding of their local
model updates. Clients with high reconstruction errors are
deemed malicious and excluded from aggregation.

Generative model based approaches rely on synthesized
datasets to audit each client’s model performance directly
on the global learning task; low-performing submissions are
excluded from aggregation. During its initialisation phase,
PDGAN [21], [22] indiscriminately aggregates all local model
updates into its federated model. Assuming the availability of
an auxiliary training dataset and using the federated model as
a discriminator, a generative adversarial network (GAN) [23]
is trained. Only after this initialisation, each participant’s local
model performance is audited based on randomly synthesized
data. Besides its long initialization1 and high computational
overhead incurred on the FL server, one of the major short-
comings of PDGAN is its inability to condition data synthesis
on a target variable. ARMOR [24] addresses this deficiency
by server-side training of an individual GAN per target class
of the global learning task, however, incurring even higher
computational overhead on the FL server.

III. FEDGUARD

FEDGUARD is a novel poisoning attack mitigation frame-
work for FL systems. It does not require auxiliary datasets
or any centralized (pre-) training and provides resilience
against poisoning attacks from the very first round of federated
training.

FEDGUARD relies on the generative capabilities of the
Conditional Variational AutoEncoder (CVAE) framework for

1The experimental evaluation [21] reports of 400 and 600 federated rounds
of initialization



Fig. 3: FEDGUARD execution

a controllable validation data synthesis at the FL server. Its
selective parameter aggregation operator uses the synthesized
validation datasets to audit each client’s performance on
the original federated learning task. Under-performing clients
are deemed malicious and excluded from aggregation. The
schematic overview of FEDGUARD is shown in Fig. 3.

A. Controllable Synthesis of Validation Data

As outlined above, the core idea behind FEDGUARD is to
verify client performance at the server and retain only the clas-
sifier updates that exhibit the best performance. Nevertheless,
the inherent nature of FL renders it unfeasible for the server
to access the data utilized by the clients during local training.
Consequently, this data cannot be employed for central eval-
uation. Some prior works [21], [22] assume the existence of
auxiliary datasets at the server. This assumption cannot always
be satisfied. An interesting direction to overcome this problem
is to employ a generative model to synthesize realistic data at
the server. One of the prominent architectures belonging to the
generative category is Variational AutoEncoders (VAEs) [25].

The VAEs provides a computationally efficient way for
estimating the density p(x) of observed data x ∈ X by
assuming a latent variable model p(x) = Ez∼pϕ(z |x)[pθ(x | z)]
with a latent variable z ∈ Z , a likelihood distribution pθ(x|z)
and a true but intractable posterior distribution pϕ(z |x).

log p(x)−KL[

approx.
posterior︷ ︸︸ ︷
qϕ(z|x) ||

true
posterior︷ ︸︸ ︷
pϕ(z|x)] = (1)

Ez∼qϕ(z|x)[log

likelihood︷ ︸︸ ︷
pθ (x|z)]︸ ︷︷ ︸

reconstruction

−KL[qϕ(z |x)|

prior︷︸︸︷
p(z)]︸ ︷︷ ︸

regularisation︸ ︷︷ ︸
ELBO

(2)

VAEs are trained by maximizing the ELBO objective (cf. Eqn.
2) which effectively allows to approximate the intractable
posterior pϕ(z |x) using an approximate posterior distribu-
tion qϕ(z |x). In turn, the approximate posterior qϕ(z |x) is
regularized by a known and chosen prior p(z) of the latent
variable. A VAE employs a decoder function Dθ : Z → X
to model and parameterize its likelihood distribution pθ(x|z);
the approximate posterior distribution qϕ(z |x) is modeled
and parameterised using an encoder function Eϕ : X → Z .
Put simply, the encoder compresses the input data to a low-
dimensional latent representation, which can be sampled by
the decoder to generate input-like data.

Since its inception, the VAE framework has been extended
in many directions. A Conditional Variational Autoencoder
(CVAE) [26] allows to condition its

Conditional Decoder: Dθ : Z × Y → X (3)
Conditional Encoder: Eϕ : X × Y → Z (4)

on an additional variable y over a discrete categorical distri-
bution Cat(L,α) expressing the target labels of the observed
dataset D ⊂ X ×Y . The uniqueness of a CVAE as compared
to a VAE, is its ability to generate images at the decoder by
conditioning it on an additional categorical variable (Eqn.3).
In other words, providing a class label (e.g., MNIST ‘3’) and
a prior sample into the CVAE decoder, synthesizes a novel
MNIST ’3’ image. This ability to generate data controllably
allows FEDGUARD to audit client accuracy on specific inputs.

As with VAEs, a CVAE is trained by optimizing

argmin
ϕ,θ

LCVAE(ϕ, θ) (5)

= argmin
ϕ,θ

[KL[Eϕ||p(z)]︸ ︷︷ ︸
regularization

−ED[logDθ(Eϕ(x, y), y)]︸ ︷︷ ︸
reconstruction

] (6)



where the reconstruction term is the expected log-likelihood
with respect to the decoder’s distribution; the regularization
term is the Kullback-Leibler divergence between the encoder’s
distribution and the prior distribution.

After convergent training, a CVAE’s conditional decoder (cf.
Eqn. 3) allows for controllable data synthesis using a latent
space sample from its prior distribution and a conditioning
sample from its discrete categorical distribution. Data synthe-
sized using a CVAE is representative for observed data in that
it maximizes its expected log-likelihood (cf. Eqn. 2).

Controllable data synthesis is unique to conditional gen-
erative models, i.e. CVAEs or Conditional GANs (CGAN).
CGANs are more heavy-weight and demanding to train with
common problems like vanishing gradients, mode collapses
and convergence failures. For this reason, we choose to employ
a CVAE in our approach.

B. Selective Parameter Aggregation

As in any centralized federated learning setting, FED-
GUARD aims at performing a global learning task on a dataset
D dispersed amongst N participating clients (cf. Alg. 1:
lines 10-12) without explicitly exchanging any data samples
between parties. The global learning task is accomplished by
training of a local model on each client’s partition P1≤j≤N

(cf. Alg. 1: line 26) and sharing only its parameters ψj with
a central server (cf. Alg. 1: line 18).

The central server is responsible for model initialization (cf.
Alg. 1: line 15), selection of a subset J of participating clients
per federated round (cf. Alg. 1: line 17), aggregation of all
received local parameters into the global model parameters
ψ0 (cf. Alg. 1: line 19), as well as sharing back the updated
global parameters ψ0 with the clients (cf. Alg. 1: line 18).

1 In addition to performing the federated learning task,
FEDGUARD requires all clients to train a CVAE on their
private local datasets P1≤j≤N (cf. Alg. 1: line 25) and share
their CVAE decoder parameters θj with the central server (cf.
Alg. 1: line 18). The decoders enable the controllable synthesis
of validation data at the server.

2 Per federated round, the central server obtains a syn-
thetic validation dataset Dsyn from the active clients’ decoders
Dθj∈J

using t latent space samples [zt] from the prior dis-
tribution z ∼ N (0, 1) as well as t conditioning samples [yt]
from a discrete categorical distribution y ∼ Cat(L,α) (cf. Alg.
1: lines 2-4). Sampling from the categorical with known or
estimated parameters makes validation data statistically similar
to the global dataset.

3 The synthetic validation data is then used to evaluate
and score each active client’s average local model performance
with respect to the federated learning task using an appropriate
metric LACC (cf. Alg. 1: line 5).

4 FEDGUARD will selectively aggregate only those local
parameter updates into the global model ψo (cf. Alg. 1: line
7) that perform above the overall average performance ACC
(cf. Alg. 1: line 6).

Algorithm 1: FedGuard
1 Function FedGuard([θj∈J ], [ψj∈J ], L, α, t):
2 z ∼ N (0, 1)
3 y ∼ Cat(L,α)
4 Dsyn ← map( Dθj ([zt], [yt]), [θj∈J ])
5 ACCj ← map( LACC(fψj (Dsyn, [yt])), [ψj∈J ])
6 ACC← 1

m

∑
j∈J ACCj

7 return FedAvg(filter([ψj∈J ], ACCj∈J ≥ ACC))
8
9 Procedure Federation(D, N , m, R, L, α, t):

10 [P1≤i≤N ]← split(N , D)
11 [C1≤i≤N ]← map(partial(Client), [P1≤i≤N ])
12 Server([C1≤i≤N ], N,m,R, L, α, t)
13
14 Function Server([C1≤i≤N ], N,m,R, L, α, t):
15 ψ0 ← init()
16 foreach r ∈ range (1, R) do
17 J ← sample((range(1, N), m)
18 [θj∈J ], [ψj∈J ]← unzip([Cj∈J(ψ0)])
19 ψ0 ← FedGuard([θj∈J ],[ψj∈J ], L, α, t)
20 end foreach
21
22 Function Client(P , ψ∗):
23 X ,Y ← P
24 ψ ← ψ∗

25 ϕ∗, θ∗ ← argminϕ,θ LCVAE(ϕ, θ)
26 ψ∗ ← argminψ EX

[
EY |X [LMNIST(x,y, ψ)]

]
)

27 return θ∗, ψ∗

TABLE I: Definitions of notations in Algorithm 1

Notation Definition
Indices:
N Number of clients (i ∈ {1, ..., N})
R Number of rounds (r ∈ {1, ..., R})
m Number of clients sampled per round

Parameters:
D Dataset
ψ Classifier parameters
ϕ Encoder parameters
θ Decoder parameters
α Assumed probability per class
J Subset of clients
L Number of classes within the dataset
t Number of synthetic samples per decoder

IV. EXPERIMENTAL DETAILS

We now detail on the Federated Learning objective and
setup, the considered poisoning attack scenarios, our evalu-
ation baselines and specific training configurations as well as
our experimental testbed for evaluating the effectiveness of
FEDGUARD against the state of the art. All relevant source
code can be found online2.

A. FL objective and setup

MNIST digits classification [27] is the global learning task
for our evaluation experiments. Throughout all experiments,
the very same MNIST classifier architecture (cf. Table II) is
used. It is composed of two ReLU-activated 5x5 convolution
layers with 32 and 64 channels (each followed with 2x2 max

2https://github.com/Melvin-chelli/FedGuard



TABLE II: Classifier architecture

Layer Type Kernel Input Shape Output Shape Activation Parameters
1 Conv2d (5, 5) (28, 28) (32, 26, 26) ReLu 800
2 MaxPool2d (2, 2) (32, 26, 26) (32, 14, 14) - -
3 Conv2d (5, 5) (32, 14, 14) (64, 12, 12) ReLu 51,200
4 MaxPool2d (2, 2) (64, 12, 12) (64, 7, 7) - -
5 Flatten - (64, 7, 7) (3136) - -
6 Linear - (3136) (512) ReLu 1,605,632
7 Linear - (512) (10) Softmax 5,120

Total Parameters: 1,662,752 Total Size (MB): 6.65

TABLE III: CVAE architecture

Layer Type Kernel Input Shape Output Shape Activation Parameters
Encoder Network

1 Linear - (794) (400) ReLu 318,000
2a Linear - (400) (20) ReLu 8,020
2b Linear - (400) (20) ReLu 8,020

Decoder Network
3 Linear - (30) (400) ReLu 12,400
4 Linear - (400) (794) Sigmoid 318,394

Size of the Encoder (MB): 1.34 Size of the Decoder (MB): 1.32
Total Parameters: 664,834 Total Size (MB): 2.66

pooling), a ReLu-activated fully connected layer (FCL) with
512 units, and a softmax-activated 10-units output FCL.

Each client will train the MNIST classifier for 5 epochs on
its private local dataset. For that purpose, the entire MNIST
dataset is partitioned between N = 100 clients as per the
Dirichlet distribution [28, α = 10] to simulate real-world data
distribution. In each federated round, the FL server uniformly
samples m = 50 participating clients.

B. Attack scenarios

We investigate the following scenarios based on four
different types of poisoning attack.

A same-value attack [3] sets all the weights of the local
model update to the same value such as wk = c ∗ 1⃗ where wk

is the local model update, c is a constant and 1⃗ is an all-one
vector. For our experiments, c = 1, which corresponds to
setting all the weights of the local model updates to 1. In this
scenario, we set the number of malicious peers to 50%.

A sign-flipping attack [3] reverses the sign of all the weights
of the local model update such as wk = −1 ∗ wk where wk

is the local model update. The magnitude of model update
weights stays the same and therefore can be a point of failure
for defenses based on norm thresholding [10]. In this scenario,
we set the number of malicious peers to 50%.

A label-flipping attack [29] is a data poisoning attack that
flips the labels of the input data before training the local model
on it. In related scenarios, malicious clients flip the labels
from data representing the MNIST digits 5 and 7, as well as
digits 4 and 2. This attack is a targeted attack which aims at
making the model misclassify a subset of classes. The overall
performance of the resulting model is less affected than in
untargeted attack scenarios which makes it more challenging
to detect. As a result, we evaluate the performance of the

different strategies in two distinct scenarios in which we set
the number of malicious peers to 30% and 40%.

An additive noise attack [30] adds a Gaussian noise to the
local model update such as wk = wk+ϵ where wk is the local
model update and ϵ is the Gaussian noise. In this scenario,
malicious clients performing this attack all agree on the same
Gaussian noise to add to the local model updates. We set the
number of malicious peers to 50%.

C. Evaluation baselines3

FEDAVG [7] is the standard approach for FL. It uses
weighted averaging of the client updates to build the global
model update. It does not come with any defense mechanism.

GEOMED [12] updates the global model by using the
geometric median of local model updates. With this approach,
outlier updates which are likely to be far from benign updates
should not be used to build the global model update.

KRUM [11] computes a score for each local update given its
proximity to the others and selects the one with the best score.
Benign updates target a same objective, therefore should be
close to each other and get selected instead of outlier updates.

SPECTRAL4 [19] uses a pre-trained variational auto-encoder
to reconstruct local model updates and discard updates with
a reconstruction error above a dynamic threshold set to the
mean of all reconstruction errors.

D. FEDGUARD’s configuration

We implement FEDGUARD’s conditional encoder (cf.
Eqn. 4) using three ReLu-activated FCLs (400, 20 and 20
units); its decoder (cf. Eqn. 3) is composed of a ReLu-activated

3Unfortunately, we could not find any open implementation of FedC-
VAE [20] or PDGAN [21].

4We use the implementation found at https://github.com/Suyi32/Learning-
to-Detect-Malicious-Clients-for-Robust-FL



400-units FCL followed by a sigmoid-activated 794-units FCL
(cf. Table III). Each FEDGUARD client will train the CVAE
for 30 epochs on its private local dataset5. In each federated
round, we generate t = 2 ∗m = 100 samples from the latent
variable z ∼ N (0, 1) as well as from the conditioning variable
y ∼ Cat(L = 10, [α1≤i≤L = 1

L ]) resulting in a class-balanced
validation dataset of 100 synthetic MNIST digits.

E. Experimental Platform

We rely on E2CLAB [31] to automatically deploy our
experiments to the GRID'5000 experimental testbed. We use
a total of 5 nodes equiped with 2 Nvidia Tesla P100 (16GB)
and 2 Intel Xeon Gold 6126 (12 cores/CPU) each. The server
runs on a single node, while 100 clients are deployed on the
4 remaining nodes (25 clients per node). Each node is given
access to a ethernet configuration with a 10GBps rate.

V. RESULTS AND COMPARISONS

The results of the experiments conducted as described in
the previous section are presented in Fig. 4. The average
accuracy achieved by each strategy over the last 40 rounds
of training is reported in table IV (we do not average the 10
first rounds of training because the model has not converge yet
which would lead to a inaccurate comparison). Table V reports
communication and computation overhead of the strategies. In
the remainder of this section, we provide discussions on the
robustness and performance of each strategy with regard to
the several evaluation scenarios.

A. Robustness in malicious scenarios

Additive Noise - 50% Malicious peers. As illustrated in
Fig. 4, both FEDGUARD and SPECTRAL successfuly defend
against the additive noise attack and achieve similar conver-
gence as in a scenario with no attack. Results from table IV
show that SPECTRAL achieves the same accuracy as in a
scenario with no attack by reaching an average accuracy of
98.97%, and FEDGUARD achieves almost similar accuracy
with an average of 98.72%. FEDAVG, GEOMED and KRUM,
on the other hand, are unable to defend in this scenario by
achieving a very low average accuracy of less than 8%.

Label Flipping - 30% Malicious peers. In this scenario,
as explained in section IV, malicious peers are performing a
targeted attack which is more challenging to detect, therefore
we investigate the performance of each strategy in a coordi-
nated attack involving 30% malicious peers. In this scenario,
FEDGUARD is the strategy achieving the best performance
and stability with an average accuracy of 98.96% and standard
deviation of 0.17%. GEOMED, in contrast which achieves the
second best performance with an average accuracy of 98.13%
has a standard deviation of 1.63%. FEDAVG and SPECTRAL
are very unstable with standard deviations of more than 6%.
KRUM achieves the worst accuracy with an average of 96.51%.

Sign Flipping - 50% Malicious peers. Regarding the
sign flipping attack, FEDGUARD is again defending very

5In our experiments, the MNIST partitioning is static. Therefore, a FED-
GUARD client trains its CVAE only once.

well achieving very stable training and high average accuracy
(98.97%). All other approaches are very unstable with at least
14% standard deviations and cannot converge to an optimum.

Same value - 50% Malicious peers. In the same value
scenario, FEDGUARD and SPECTRAL both defend very well
and achieve same accuracy as in a scenario with no attack.
FEDAVG, GEOMED and KRUM , on the other hand, all fail in
defending this attack and achieves average accuracy of 10%.

GEOMED and KRUM, which use distance-based defenses
are unable to defend in situations involving a majority of ma-
licious peers. In fact, if a majority of malicious clients are able
to run a coordinated attack, they will have a great probability
of not being detected, and therefore poison the global model.
Previously, SPECTRAL has been shown to defend very well in
various scenarios including sign-flipping attack [19]. However,
it seems that with regard to the model used in our experiments,
the corresponding surrogate vectors are not accurate enough.
Using higher dimensional surrogate vectors would not be a
suitable solution as it would highly increase the computational
cost. Moreover, the bigger the classifier to train, the bigger the
surrogate vector would have to be. FEDGUARD, on the other
hand, could defend in all scenarios by providing a solution
that evaluates the quality of each local update and selects them
according to the description in section III-B. Our approach can
defend very well against untargeted attacks which introduce
no logic into the model updates and therefore achieve low
evaluation accuracy on the synthetic data. Targeted attacks, on
the other hand that introduce biased logic is more challenging
to defend against. Still, our strategy given its architecture
should be able to defend up to an upper limit of 50% malicious
peers selected for a given round. With our experiments, we
show that it defends particularly well in a scenario with a
total of 30% malicious peers performing label flipping.

Testing FEDGUARD limits: We go further and test the lim-
its of FEDGUARD by running experiments with 40% malicious
peers performing label flipping.

Label Flipping - 40% Malicious peers. In this scenario,
FEDGUARD starts to suffer from some instabilities that can
arise occasionally when a great number of malicious clients
is sampled as represented in Fig. 5 (FedGuard-lr-1). As
the instabilities seems to happen only occasionally, a rather
straightforward solution is to introduce a learning rate at the
server while updating the global model with incoming local
updates. While slowing down the convergence rate of the
model, adopting a learning rate at the server should mitigate
the impact of occasional failures from the strategy. We set the
server learning rate to 0.3 (instead of 1 in the standard case)
and run the same experiment. As shown in Fig. 5 (FedGuard-
lr-0.3), by adopting a server learning rate, we can achieve a
better stability. The model takes more time to converge while
benefiting from a better robustness against occasional failures
of the defensive mechanism.

B. System overhead

Since our defensive approach relies on the transmission of
an additional element between the clients and the server (i.e,



Fig. 4: Accuracies of various strategies in different attack scenarios

TABLE IV: Average accuracy and standard deviation over the last 40 rounds of training

Strategy Additive Noise Attack
50% malicious peers

Label Flipping Attack
30% malicious peers

Sign Flipping Attack
50% malicious peers

Same Value Attack
50% malicious peers

FEDAVG [7] 6.87%± 0.12% 95.80%± 6.66% 24.21%± 18.74% 10.16%± 0.09%
GEOMED [12] 7.26%± 0.31% 98.13%± 1.63% 23.66%± 21.56% 9.78%± 0.0%

KRUM [11] 6.52%± 0.46% 96.51%± 0.59% 62.48%± 41.96% 9.93%± 0.45%
SPECTRAL [19] 98.97%± 0.18% 96.91%± 6.12% 18.95%± 14.81% 98.97%± 0.17%

FEDGUARD (Ours) 98.72%± 0.60% 98.96%± 0.17% 98.97%± 0.22% 98.99%± 0.19%
No attack 98.97%± 0.17% 98.97%± 0.17% 98.97%± 0.17% 98.97%± 0.17%

the decoder of the CVAE), it results in some communication
overhead. Similarly, the local training of the CVAE for the
clients and the data generation at the server result in compu-
tational and training time overheads. In table V, we provide
communication and time metrics of the several strategies ob-
tained during our experiments. We compare against FEDAVG,
which involves no additional mechanism for defense.

Regarding bandwidth usage, GEOMED, KRUM and SPEC-
TRAL do not involve additional transmissions compared to FE-
DAVG. FEDGUARD, on the other hand, involves an additional
communication of the decoders from the client to the server.
During our experiments, we measure an overhead of 20% for
server downloads, which results in a total bandwidth overhead
of 10% (considering uploads and downloads).

Regarding training time, GEOMED provides the most time
efficient approach by achieving a 24% overhead in comparison
to FEDAVG. FEDGUARD and SPECTRAL provides similar
training time overhead with 82% and 84% respectively, which
is the consequence of using an additional auto-encoder for
generating evaluation data or reconstructing model updates.
Finally, KRUM is the most time consuming strategy with
95% overhead, resulting from the need to compute distances
between all local updates which can become computationally
expensive with the growing number of clients sampled in each
round.

The overhead of our defensive mechanism is highly related
to the size of the CVAE which impacts the training and com-
munication overhead. As a consequence, the final overhead



TABLE V: System overhead of the defensive strategies

Strategy Server uploads / round Server downloads / round Server total
communication / round Training time / round

FEDAVG [7] 348.3 MB 348.3 MB 696.6 MB 3.76 s
GEOMED [12] 348.3 MB 348.3 MB 696.6 MB 4.66 s (+24%)

KRUM [11] 348.3 MB 348.3 MB 696.6 MB 7.32 s (+95%)
SPECTRAL [19] 348.3 MB 348.3 MB 696.6 MB 6.94 s (+84%)

FEDGUARD (Ours) 349.3 MB 417.4 MB (+20%) 766.7 MB (+10%) 6.86 s (+82%)

Fig. 5: Impact of learning rate on FEDGUARD stability
(40% malicious peers, label flipping attack)

of our strategy can be seen as a ratio between the size of the
classifier to train and the size of the autoencoder. If the size of
the autoencoder is relatively small compared to the targeted
model, then the overhead of our strategy will be relatively
small. On the other hand, if the size of the autoencoder
is close to, or higher than the size of the targeted model,
the resulting overhead will be high. In critical applications
requiring a highly accurate model, it might be worth paying
such an overhead to ensure the security of the system. In less
critical applications, finding a trade-off between the size of
the targeted model and the size of the autoencoder can be a
solution to combine system performance and security of the
resulting model.

VI. DISCUSSIONS

In this section we outline the main benefits of FEDGUARD,
its limitations as well as its generality. We also outline few
directions for future works.

A. Main benefits of FEDGUARD

Works out of the box. SPECTRAL [19] and FEDCVAE [20]
both require the training of an auto-encoder prior to the actual
FL training. FEDGUARD in comparison can directly be used
without the need to pre-train specific models which makes it
handy to use.

No need for preparation phase. The defensive mechanism
proposed in PDGAN [21] requires a preparation phase during
which the GAN is trained. This phase can last for many rounds

(e.g., 400 rounds), which can make the system vulnerable for
a long period. FEDGUARD, in contrast, does not need any
preparation phase to work and is effective from the first round
of training.

Ability to generate specific evaluation data. PDGAN uses
a GAN for data generation at the server to evaluate local client
updates. While providing evaluation data, it cannot condition
it on specific labels which leads to unpredictable generation.
The class of generated data is unknown, and some classes
might even not be generated. This can be a point of failure
in specific attack scenarios. FEDGUARD, by using CVAEs,
has the ability to generate evaluation data conditioned on
specific labels, therefore provides better evaluation capability.
Moreover, with FEDGUARD the true labels of evaluation data
is known.

No need for an auxiliary dataset. PDGAN, SPECTRAL
and FEDCVAE, all three require the existence of an auxiliary
dataset on the server to work. PDGAN needs it to train its
GAN during the FL process, while SPECTRAL and FEDCVAE
use it to pre-train their auto-encoder. The existence of such
dataset cannot be satisfied in all scenarios. The server may
have very limited access or no given access to auxiliary
samples. FEDGUARD, on the other hand, does not require such
dataset to work.

Tuneable system. By selecting the number of decoders
to use for generating evaluation data or by changing the
total number of evaluation data to generate, one can balance
between evaluation data diversity (ensuring a higher security)
and resource usage at the server level. The quantity of data to
generate can be selected for each class, and therefore could
be increased for specific class of data which is considered
more critical. The system can be configured with respect to
the computing resources available at the server level and the
criticality of the application.

B. Constraints and Generality

Limiting factors. FEDGUARD was evaluated in a setup
where the entire dataset is partitioned between 100 clients
which lets clients sufficient data to train local CVAEs for
generation of synthetic data. A highly heterogeneous setting
where clients only have very limited data representing very
few classes to train locally could be a limiting factor for our
strategy. While having few clients in this state should not hurt
the effectiveness of the strategy, having a majority of clients
with very few data could be a real problem for data synthesis.
One solution could be to share, in addition to the client
decoders, the classes each decoder was trained on for data



generation. Using this information, the server could generate
specific data with regard to what each decoder was trained on.
FEDGUARD can reach another limit regarding the number of
malicious decoders. If the decoders sent from malicious peers
are trained with regard to a malicious objective (e.g., label
flipping) and are in a majority position, the evaluation process
at the server will be highly impacted and risks to fail in its
defense.

Learning rate as a defensive mechanism. In FL, a subset
of clients is sampled from a possibly large number of devices.
While the probability of sampling a majority of malicious
clients is low, a single failure from the defensive mechanism
that lets an attack succeed can be very harmful and have
dramatic consequences. The use of a learning rate at the server
appears to be an interesting additional defensive mechanism
to mitigate the impact of a failure from the main defensive
mechanism.

C. Future Works

Internal aggregation operator. Currently FEDGUARD uses
the FEDAVG internal aggregation operator to update the global
model. However, FEDGUARD’s design makes it easy to switch
from one internal aggregation operator to another. In future
works, we could investigate the use of other operators such
as GEOMED or FEDPROX [32] aggregation operators which
could further improve the robustness of FEDGUARD.

Imbalanced datasets. In this paper, we validated the ef-
fectiveness of FEDGUARD in a 100-client setup where data is
partitioned according to a Dirichlet distribution with α = 10
which simulates a real-world data partitioning. Investigating
the robustness of FEDGUARD under different levels of dataset
imbalance, including highly imbalanced dataset with very few
samples per client, is one direction for future works.

Dynamic datasets. FEDGUARD was evaluated in a scenario
where FL clients have access to static datasets. Evaluating it
in a setup where clients get access to a stream of incoming
data is more realistic. Therefore, we would like to investigate
how FEDGUARD and other strategies perform in such setup.
We would like to further investigate how the number of local
epochs and how often performing the local training of the
CVAE impacts FEDGUARD’s performance in such scenario.

VII. CONCLUSION

Federated Learning has now reached a state that enables
it to be applied in various domains. Unfortunately, with its
increased adoption in safety-critical applications, also comes
several threats linked to its decentralized nature. In this
paper, we are interested in finding an efficient mechanism
for detection of malicious peers injecting corrupted updates
into the distributed system. We propose FEDGUARD, a novel
FL strategy which takes advantage of Conditional Variational
AutoEncoders trained locally by the clients to synthesis val-
idation data at the server. FEDGUARD relies on a selective
aggregation operator which flags updates as malicious given
their performance on the synthesised validation dataset. We
evaluate and compare our approach with several baseline

algorithms in multiple challenging scenarios involving up to
50% malicious peers performing model and data poisoning
attacks. FEDGUARD is shown to be very robust by achieving
the best defense in almost all scenarios, while resulting in
negligible system overhead compared to other approaches. In
short, FEDGUARD provides an effective and tuneable frame-
work for robust FL in poisoning scenarios, yet its underlying
mechanism could further be used in many other applications
including detection of defective sensors in volatile environ-
ments or for enabling a better sampling of quality candidates
in FL systems.
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