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A Two-Step Model of Human Entrainment: A Quantitative Study of Circadian Period and Phase of Entrainment
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One of the essential characteristics of an authentic circadian clock is that the free-running period sustains an approximately 24-hour cycle. When organisms are exposed to an external stimulus, the endogenous oscillators synchronize to the cycling environment signal in a process known as entrainment. These environmental cues perform an important role in resetting the phase and period of the circadian clock. A "generalized assumption" states that when an organism has a short period, it will experience a phase advance, while an organism with a long period experiences a phase delay. Despite widespread use,

Introduction

Many organisms have biological clocks that cycle daily, and allow for predictions of the timing of future stresses or resources [START_REF] Roenneberg | The circadian clock and human health[END_REF]. When biological clocks have endogenous (or self-sustained) periods of approximately 24 hours they are recognized as circadian clocks. In nature, biological clocks will often respond to an external environment signal called a zeitgeber, the most important being the sun. The free-running period (denoted by τ ) of a biological clock, or often denoted simply as the period of a clock, is the time that the clock takes to complete a cycle in a setting with no zeitgeber (under constant conditions) (see [START_REF] Dunlap | Making time: conservation of biological clocks from fungi to animals[END_REF]). The process in which the circadian clock synchronizes to a zeitgeber is called entrainment.

Precisely, it means τ will synchronize to the period of the zeitgeber (denoted by T ) [START_REF] Aschoff | Phase relations between a circadian rhythm and its zeitgeber within the range of entrainment[END_REF]. The time difference between the zeitgeber clock and the circadian clock is defined as the phase difference of the clocks.

The evolution of the phase difference indicates the adaption of the organism to the environment. When the organism has synchronized to the zeitgeber the phase difference stabilizes, this phase value is called the phase of entrainment (briefly POE, denoted by Ψ ) [START_REF] Bordyugov | Tuning the phase of circadian entrainment[END_REF].

In natural populations, there exist many variations of both τ and Ψ . thus either could be targets of natural selection [START_REF] Michael | Enhanced fitness conferred by naturally occurring variation in the circadian clock[END_REF]; [START_REF] Darrah | Analysis of phase of luciferase expression reveals novel circadian quantitative trait loci in arabidopsis[END_REF]. The adaptive potential of Ψ may be important to the evolution of the circadian clock, this motivates us to study how Ψ is regulated [START_REF] Roenneberg | The art of entrainment[END_REF]. Several of the known factors affecting Ψ are the amplitudes of the clocks, the periods of the clocks (τ and T), and the zeitgeber strength (see [START_REF] Abraham | Coupling governs entrainment range of circadian clocks[END_REF]).

A "generalized assumption" for circadian rhythm behaviors is that Ψ can be determined by the period mismatch, i.e. the difference between τ and T (usually 24 hours). When the organism that has a shorter τ (less than T) is entrained to the zeitgeber (T-hour period), the phase of its circadian clock is advanced compared to the phase of the zeitgeber. We have a positive Ψ value because Ψ is calculated by subtracting the phase of the circadian clock from the phase of the zeitgeber. In the other case, when the organism has a longer τ (greater than T), its phase of circadian clock is delayed compared to the phase of the zeitgeber, thus we have a negative Ψ value [START_REF] Lowrey | Positional syntenic cloning and functional characterization of the mammalian circadian mutation tau[END_REF].

An abundance of molecular experiments as well as mathematical models have been designed to characterize and simulate the entrainment process.

Previous studies [START_REF] Abraham | Coupling governs entrainment range of circadian clocks[END_REF]; [START_REF] Granada | Human chronotypes from a theoretical perspective[END_REF] attempted to describe the relationship between τ and Ψ , however, the proposed model have not been used to fit data that does not follow the "generalized assumption".

Circadian clocks are present within the suprachiasmatic nucleus (SCN) and the lung and the range of entrainment is determined by factors including period, coupling strengths, oscillator relaxation rate, and the ratio between the zeitgeber strength and the oscillator amplitude. We present more literature studies in Section 2.

To better explain data, we developed a Two-Step Entrainment (TSE) model, see [START_REF] Lee | Experimental and mathematical analyses relating circadian period and phase of entrainment in neurospora crassa[END_REF] and Section 3. The dynamics of three oscillators, which are the zeitgeber clock, the SCN clock, and the peripheral clock, are governed by a set of ordinary differential equations (ODEs). One of the main result is that TSE model simulations could generate in-silico data which does not follow the "generalized assumption", and whole trajectories can be fitted to the phase data from human entrainment experiment [START_REF] Gronfier | Entrainment of the human circadian pacemaker to longer-than-24-h days[END_REF]. This allows us to analyze Ψ and the rate of entrainment (ROE) as well (see details in Section 6.2). We want to emphasize that a TSE model is necessary because the phase delay between the first step and second step of the entrainment allows us to overcome the period difference and observe the diverse τ -Ψ relationship. Systematic variation of parameters from single-step models (such as [START_REF] Abraham | Coupling governs entrainment range of circadian clocks[END_REF]) lead the authors to conclude that a single-step model is not able to generate this type of data.

For a fixed τ , the range of entrainment is the set of T values for which the organisms can overcome the periods mismatch to entrain [START_REF] Aschoff | Phase relations between a circadian rhythm and its zeitgeber within the range of entrainment[END_REF]. In [START_REF] Abraham | Coupling governs entrainment range of circadian clocks[END_REF], a two-dimensional Arnold Tongue is introduced to study the range of entrainment. Here we characterize the range of entrainment as a entrainment space that contains all "entrainable organisms".

In order to do that, we first study some analytical properties of our model. In Section 4, we prove the existence and uniqueness of periodic solutions to system (1) with winding number one (i.e. rotating once), by providing explicitly necessary and sufficient conditions. In turn, this allows to visualize the range of entrainment via ta 3-dimensional "Arnold Tongue", and locate entrainable organisms on it. Then we study stability of these periodic solutions and show that the found periodic solutions are indeed stable and globally asymptotically attractive. Notice that these results are of great importance to pave the way for control strategies to achieve entrainment and address sleeping diseases. In clinical setting, controls correspond to drugs and light therapy to drive patients to "healthy states", which are entrainable in our language.

Biological and Modeling Background

A vast literature is devoted to circadian rhythms. Genetic studies as [START_REF] Loros | Genetic and molecular analysis of circadian rhythms in n eurospora[END_REF]; [START_REF] Zehring | P-element transformation with period locus dna restores rhythmicity to mutant, arrhythmic drosophila melanogaster[END_REF] mostly focused on the internal period τ , which can be found by keeping the subject under constant conditions [START_REF] Aschoff | Freerunning and entrained circadian rhythms[END_REF]. In humans τ is approximately but not exactly 24 hours, due to lack of evolutionary pressure or advantages of variability [START_REF] Pittendrigh | The amplitude of circadian oscillations: temperature dependence, latitudinal clines, and the photoperiodic time measurement[END_REF].

Mathematical models were proposed to mimic the in vivo entrainment process To et al. (2007); [START_REF] Kronauer | Mathematical model of the human circadian system with two interacting oscillators[END_REF]; [START_REF] Stelling | Robustness properties of circadian clock architectures[END_REF]. In [START_REF] Pittendrigh | The amplitude of circadian oscillations: temperature dependence, latitudinal clines, and the photoperiodic time measurement[END_REF], the authors studied the phase shift of the circadian clock during the light-dark transitions, while In [START_REF] Aschoff | Phase relations between a circadian rhythm and its zeitgeber within the range of entrainment[END_REF] focused on how changes in the velocity of the circadian and zeitgeber clock affect their phase relationship (Ψ ). In [START_REF] Roenneberg | Entrainment concepts revisited[END_REF], a Circadian Integrated Response Characteristic (CIRC) approach was proposed to improve the traditional methods such as the Phase Response Curve (PRC).

Most of the existing data could be explained by the "generalized assumption" (see in Introduction), including several key studies in human, Drosophila, and Neurospora crassa, see [START_REF] Jones | Familial advanced sleep-phase syndrome: A short-period circadian rhythm variant in humans[END_REF]; [START_REF] Duffy | Sex difference in the near-24hour intrinsic period of the human circadian timing system[END_REF][START_REF] Heintzen | The neurospora crassa circadian clock[END_REF]; [START_REF] Saunders | Light-pulse phase response curves for the locomotor activity rhythm in period mutants of drosophila melanogaster[END_REF]. [START_REF] Hida | Evaluation of circadian phenotypes utilizing fibroblasts from patients with circadian rhythm sleep disorders[END_REF] states that different circadian phenotypes, such a morningness/eveningness, could be characterized by the organism's free-running period, while [START_REF] Wright | Intrinsic near-24-h pacemaker period determines limits of circadian entrainment to a weak synchronizer in humans[END_REF] shows that the change in the phase angle of entrainment (Ψ ) is negatively related to the circadian period. Additionally, an insightful work on Familial advanced sleep syndrome (FASPS) [START_REF] Xu | Functional consequences of a ckiδ mutation causing familial advanced sleep phase syndrome[END_REF] reports that a human phenotype of advanced phase is associated with a shorter circadian period. Despite this, there exists experimental data showing that this "generalized assumption" does not always hold. [START_REF] Xu | Functional consequences of a ckiδ mutation causing familial advanced sleep phase syndrome[END_REF] suggests that the similar gene mutation in different species may have separate mechanisms for regulating the τ and Ψ . [START_REF] Kurien | Timeless mutation alters phase responsiveness and causes advanced sleep phase[END_REF] reports a mutation showing FASPS but with a normal τ . In healthy old people, the advanced phase is not associated with an age-related shortening of the circadian period, see [START_REF] Duffy | Later endogenous circadian temperature nadir relative to an earlier wake time in older people[END_REF]; [START_REF] Duffy | Age-related change in the relationship between circadian period, circadian phase, and diurnal preference in humans[END_REF]. In [START_REF] Gronfier | Entrainment of the human circadian pacemaker to longer-than-24-h days[END_REF], the values of τ -T of patients under different light conditions are not the predictor of their Ψ . There is a need to develop a new mathematical model to explain these data.

To test our model's accuracy and relevance, we performed a literature search to gather raw human data of τ and Ψ . One published study concerned the entrainment for 12 subjects who underwent extended day cycles, i. e. longer than 24 hours, whose T were one hour longer than their τ (see, [START_REF] Gronfier | Entrainment of the human circadian pacemaker to longer-than-24-h days[END_REF]). This study was of particular interest because it reported the phase difference throughout the entrainment process and not just Ψ . To entrain the subjects, they were exposed to modulated light coupled with bright light pulses in the evening [START_REF] Gronfier | Entrainment of the human circadian pacemaker to longer-than-24-h days[END_REF]. Within the experiment, individuals' τ and phase differences were measured by core body temperature and plasma melatonin rhythms.

Two-Step Mathematical Model

A B

Mathematical Model

To simulate the human circadian rhythms and entrainment process, we developed a two-step Kuramotobased model which contains three coupled oscillators: the phase angle of zeitgeber (✓Z), representing the environmental cue, the phase angle of the SCN (✓S), representing the organism's master clock, and the phase angle of the peripheral clock (✓E). The zeitgeber indicates an ideal day-night cycle with day defined when sin(✓Z) > 0 and night defined when sin(✓Z) < 0. The SCN is a region of the brain which controls circadian rhythm in the body. The entrainment process is composed of two steps displayed by Figure . 1 A. As first described by [START_REF] Kuramoto | Cooperative dynamics of oscillator communitya study based on lattice of rings[END_REF], each step of the entrainment process uses a synchronization term. In the first step, the SCN clock will be entrained to the zeitgeber only at a short period during the day. As suggested in [START_REF] Kandalepas | Melatonin signal transduction pathways require e-box-mediated transcription of per1 and per2 to reset the scn clock at dusk[END_REF], this model activates entrainment when the zeitgeber is near dusk, e.g. a one-hour window beginning 30 minutes before dusk and ending 30 minutes after dusk. The the second step, the peripheral clock is aligned to the SCN clock constantly with a time offset. To simulate human circadian rhythms and the entrainment process, we developed a two-step Kuramoto-based model which contains three coupled oscillators: the phase angle of zeitgeber (θ Z ), representing the environmental cue, the phase angle of the SCN (θ S ), representing the organism's master clock, and the phase angle of the peripheral clock (θ E ). The zeitgeber indicates an ideal day-night cycle with day defined when sin(θ Z ) > 0 and night defined when sin(θ Z ) < 0. The SCN is a region of the brain which controls circadian rhythm in the body. The entrainment process is composed of two steps displayed by Figure 1A. As first described by [START_REF] Kuramoto | Cooperative dynamics of oscillator communitya study based on lattice of rings[END_REF], each step of the entrainment process uses a synchronization term. Our model is not restricted to human circadian rhythms, it can be applied to Neurospora crassa, Drosophila, and other species. The entrainment window varies across different species. In [START_REF] Kandalepas | Melatonin signal transduction pathways require e-box-mediated transcription of per1 and per2 to reset the scn clock at dusk[END_REF], the authors state the melatonin has effects on SCN phase shifting at CT 10 which is the subjective dusk. In a recent study by [START_REF] Phillips | High sensitivity and interindividual variability in the response of the human circadian system to evening light[END_REF], their data demonstrates that the dim evening light has a significant effect on the human circadian system. Thus, it is reasonable to assume that the SCN clock will be entrained to the zeitgeber during a short period of the day in the first step, e.g., a one-hour window beginning 30 minutes before dusk and ending 30 minutes after dusk. We want to emphasize that we could change the center and the radius of the entrainment window when we study different species. In the second step, the peripheral clock is aligned to the SCN clock constantly with a time offset.

A system of ODEs which govern the dynamics of the phase angles of three oscillators is given as follows:

     dθ Z dt = 2π T dθ S dt = 2π τ + Ψ (θ Z )(θ Z (t) -θ S (t)) dθ E dt = 2π τ + c s (θ S (t -t 0 ) -θ E (t)) (1) 
with:

Ψ (θ Z ) = c z |θ Z -π| < ε 0 otherwise. ( 2 
)
The variable T represents the period of the zeitgeber, and τ represents the freerunning period of both the SCN and the peripheral clock since they share the same genetic information. Two separate approaches were used to measure the daily progression of the phase difference between the zeitgeber and the peripheral clock. For both methods, we plot the sine of the phase angles of the zeitgeber clock and the peripheral clock. In the first method, we computed the time difference between the peak (maximum phase, π 2 ) of the zeitgeber clock and the peak of the peripheral clock in the same day. This method is consistent with how phase difference is measured experimentally. In the second method, we compute the area between the trajectory of the zeitgeber and the peripheral clock over the course of one day. The area between trajectories is then converted to give the average phase difference over that zeitgeber cycle. The advantage of this second method is that it considers the phase difference throughout the day instead of at a single point, but is only practical in silico. In either method, when the phase difference stabilized this value was used as Ψ .

The solutions of system (1) have the following piece-wise analytical form (3),( 4) and ( 5)

θ Z = 2π T t + k 1 , (3) 
θ S = 1 cz ( 2π τ -2π T ) + θ z + k 2 e -czt |θ Z (mod 2π) -π| < ε 2π τ t + k 3 otherwise, ( 4 
)

θ E = θ s (t) + 1 cs ( 2π τ -2π T ) + czk2e -cz t cs-cz + k 4 e -cst |θ Z (mod 2π) -π| < ε θ s (t) + k 5 e -cst otherwise, (5) 
where k 1 , k 2 , k 3 , k 4 , k 5 are constants. In each period, the values of k 1 , k 3 , k 5

have biological meaning with k 1 equals to the initial phase angle of the zeitgeber (denoted by θ Z0 ), k 3 the initial phase angle of the SCN clock (denoted by θ S0 ), and (k 3 + k 5 ) the initial phase angle of the peripheral clock (denoted by θ E0 ). k 2 and k 4 are calculated in each period to make sure the solutions are continuous.

Existence and Stability of Periodic Orbit

The principles of entrainment is essential to chronology. The study of existence and stability of the periodic orbit allows us to use TSE model to theoretically analyze the entrainment mechanisms as well as the range of entrainment for the organisms, see details in Section 6.4.

Existence of Periodic Solution

We indicate by S 1 the unit circle on the plane, and given f : S 1 → S 1 we denote by f its lift to R, with f (0) ∈ (-π, π). Recall that the winding number is an integer representing the number of times the curve of f travels counterclockwise around the origin. For simplicity, we move the entrainment window to the end of each period, and all phase angles are measured with module 2π.

Recall the system (1). For the sake of simplicity, we assume θ Z (0) = 0, then we have θ Z = 2π T t. We are looking for periodic solution of system (1) on S 1 with a winding number of 1. i.e., a periodic solution of f such as a lift f of this solution satisfies f (0) = f (2π) -2π. Here we add another biological constraint in order to avoid θ x S to be attracted by θ Z of the next day

sup t∈[0,T ] |θ x S (t) -θ Z (t)| ≤ π. (6) 
Existence of a periodic solution with a winding number of 1 to the second equation of (1) holds provided the following conditions are satisfied for ∆ =

1 τ -1 T : (1 -e -2εcz )(1 -2∆ cz ) ≥ (T -2ε)2∆ if τ ≤ T (e -2εcz -1)(1 + 2∆ cz ) ≤ (T -2ε)2∆ if τ > T . ( 7 
)
Theorem 1 Under Assumption (7), there exists one and only one periodic solution for the second equation of (1) with winding number of 1 and satisfying (6). Conversely, if Assumption (7) is not satisfied, there exists no periodic solution with a winding number of 1. Proof Given τ ≤ T , let θ x S be the solution of the second equation of(1) with

A - 0 x s x m -2 -1 0 1 2 3 4 F(x) B 0 T-2 T 0 x m 2 3 Z S x m F(x)+2
θ x S (0) = x, where x ∈ [-π, π].
We consider the solution in R, meaning that it is not taken modulo 2π. The solution is periodic with winding number 1 if

and only if θ x S (T ) = x + 2π. Since θ Z (0) = 0, (6) holds if and only if sup t∈[0,T ] θ x S (t) - 2πt T ≤ π. (8) Now, define F : S 1 → S 1 by F (x) = θ x S (T ) -2π -x.
Then we need to prove the existence of a unique x ∈ [-π, π] such that F (x) = 0. We state two claims:

1. First, we show that under Assumption (7), the constraint ( 8) is equivalent to |x| ≤ |x m |, where

x m := π -2π∆(T -2ε) if ∆ ≥ 0 -π -2π∆(T -2ε) if ∆ < 0. (9) 
A graphical illustration can be seen in Figure 2B, with given initial value

θ x S (0) = x, θ x S (t) increases linearly when t ∈ [0, T -2ε].
2. Second, we show that F is continuous and strictly decreasing with x on

[-π, x m ], F (0) ≥ 0 and F (x m ) ≤ 0.
If the claims hold true, then the continuity and strict monotonicity of F imply the conclusion.

Let us start proving the first claim. From (4) and θ

Z (0) = 0, for t ≤ T -2ε it holds θ x S (t) = x + 2π τ t = x + 2π∆t + θ x Z (t) (10) and for T -2ε ≤ t ≤ T θ x S (t) = 2π∆ c z + θ x Z (t) + k 2 e -czt . (11) 
To compute k 2 , notice that at t = T -2ε -2ε) . So that, on [T -2ε, T ], 

x + 2π τ (T -2ε) = 2π∆ c z + 2π T (T -2ε) + k 2 e -cz(T -2ε) (12) thus k 2 = (x + 2π∆(T -2ε) -2π∆/c z )e cz(T
θ x S (t) -θ Z (t) = 2π∆ c z + (x + 2π∆(T -2ε) - 2π∆ c z ) • e -(t-(T -2ε))cz . ( 13 
θ x S (t) -2πt T = max |x|, |x + 2π∆(T -2ε)|, 2π∆ c z + (x + 2π∆(T -2ε) - 2π∆ c z )e -2εcz . (14) Since |x| ≤ π, (8) is equivalent to max |x + 2π∆(T -2ε)|, 2π∆ c z + (x + 2π∆(T -2ε) - 2π∆ c z )e -2εcz ≤ π.
(15) If ∆ > 0, from Assumption (7) we get x m = π -2π∆(T -2ε) > 0, and the condition is violated for x > x m . To prove that the condition holds for

x ∈ [0, x m ], we show that max |x + 2π∆(T -2ε)|, 2π∆ c z (1 -e -2εcz ) + |x + 2π∆(T -2ε)| e -2εcz ≤ π, (16) 
which implies (15). The left hand side of ( 16) is nondecreasing, thus it suffices to prove that (16) holds for x = x m . For x = x m , we have

|x+2π∆(T -2ε)| = π and 2π∆ c z + (x + 2π∆(T -2ε) - 2π∆ c z )e -2εcz = 2π∆ c z (1 -e -2εcz ) + πe -2εcz . ( 17 
)
From Assumption (7), we have

2π∆ c z (1 -e -2εcz ) ≤ π(1 -e -2εcz ) + 2(T -2ε)π∆ ≤ π(1 -e -2εcz ), ( 18 
) hence 2π∆ c z (1 -e -2εcz ) + πe -2εcz ≤ π, (19) 
and the condition holds.

If ∆ < 0, then from Assumption (7), x m < 0 and the conditions ( 15) is violated for x < x m . As before, it suffices to prove that ( 16) holds for x = x m . For

x = x m , |x + 2π∆(T -2ε)| = π and (17) reads 2π∆ c z + (x + 2π∆(T -2ε) - 2π∆ c z )e -2εcz = 2π∆ c z (1 -e -2εcz ) -πe -2εcz = 2π∆ c z (e -2εcz -1) + πe -2εcz . (20) 
From Assumption (7),

2π∆ c z (e -2εcz -1) + πe -2εcz ≤ π + 2(T -2ε)π∆ ≤ π, (21) 
thus we conclude.

Let us now show the second claim. From (13), we have

θ x S (T ) = 2π∆ c z + 2π + (x + 2π∆(T -2ε) - 2π∆ c z ) • e -2εcz . (22) 
Using the definition of F , we get

F (x) = e -2εcz 2π∆(T -2ε) + 2π∆ c z (1 -e -2εcz ) -x(1 -e -2εcz ), x ∈ [-π, x m ].
(23) Figure 2A represents the evolution of θ xm S for τ = 21 and ε = 1. Figure 2B shows F (x) in one period (x ∈ [0, T ]). The function F is clearly decreasing with x (and even linearly). The physical interpretation is that the strength of θ S attract to θ Z is increasing with x. If ∆ > 0, one can check that F (0) ≥ 0, thus we only need F (x m ) ≤ 0. We have, from ( 9) and ( 23)

F (x m ) = π 2∆ c z (1 -e -2εcz ) + 2∆(T -2ε) -(1 -e -2εcz ) , (24) 
and Assumption (7) implies F (x m ) ≤ 0. If ∆ < 0, then from (23) we get F (0) < 0. Thus, as x m < 0, we only need F (x m ) ≥ 0. We have, still from ( 9) and ( 23)

F (x m ) = π 2∆ c z (1 -e -2εcz ) + 2∆(T -2ε) + (1 -e -2εcz ) , (25) 
and Assumption (7) gives directly F (x m ) ≥ 0, which ends the proof of the two claims. Therefore, under Assumption (7), there exists a unique periodic solution with winding number 1 such that the constaint (6) holds.

To prove the converse, suppose that Assumption (7) does not hold. If ∆ ≥ 0, then F is still strictly decreasing with x and F (x m ) > 0. Besides, if x > x m the constraint ( 8) is still violated, thus there does not exists any periodic solution with winding number 1 satisfying the biological constraint (8). The same analysis can be done when ∆ < 0. This ends the proof of Theorem 1.

In the following we provide the conditions which guarantee the existance of one winding periodic solution to the third equation of (1),

if c z = c s , 1 cs (e -2εcs -1) + cz cs-cz T -2ε 1-e -2εcz (e -2εcs -e -2εcz ) ≥ 1 2∆ 1-e csT e csT if ∆ ≥ 0 1 cs (e -2εcs -1) + cz cs-cz T -2ε 1-e -2εcz (e -2εcs -e -2εcz ) ≤ 1 2∆ e csT -1 e csT if ∆ < 0, ( 26 
) if c z = c s ,          (T -2ε)(1 -c s T ) e -2εcz 1-e -2εcz -e -2εcs { T -2ε 1-e -2εcz [1 -(T -2ε)c s ] -1 cs } -1 cs ≥ 1 2∆ 1-e csT e csT if ∆ ≥ 0 (T -2ε)(1 -c s T ) e -2εcz 1-e -2εcz -e -2εcs { T -2ε 1-e -2εcz [1 -(T -2ε)c s ] -1 cs } -1 cs ≤ 1 2∆ e csT -1 e csT if ∆ < 0 (27) where ∆ = 1 τ -1 T .
Similarly, we add a biological constraint in order to avoid θ x E to be entrained by θ x S of the next day

sup t∈[0,T ] |θ x E (t) -θ x S (t)| ≤ π. ( 28 
)
Theorem 2 Under Assumption (26), and (27), there exists one and only one periodic solution for the third equation of (1) with winding number of 1 and satisfying (28). Conversely, if Assumption (26), or (27) is not satisfied, there exists no periodic solution with a winding number of 1.

Proof Given τ ≤ T , let θ x E0 E be the solution of the third equation of (1) in R with θ x E (0) = x E0 , where x E0 ∈ [-π, π].
We use the same strategy as the proof of Theorem 1 and set

F (x E0 ) = θ x E0 E (T ) -2π -x E0 .
Existence and uniqueness of a periodic solution with winding number 1 is equivalent to the existence of

a unique x E0 ∈ [-π, π] such that F E (x E0 ) = 0, or, equivalently, θ x E0 E (T ) = x E0 + 2π. ( 29 
)
Assumption ( 26), and ( 27) are equivalent to the constraint (28). A graphical illustration can be seen in Figure 3B, with given initial value θ 

x E (0) = x E0 , θ x E0 E (t)
(0) = 0, for t ≤ T -2ε 0 T-2 T 0 x x E0 2 3 Z S x E x E0 < < = Fig. 3 A extreme case of θ x E0 (t) E entrains to θ x S (t) is shown (τ < T ). The entrainment occurs in [T -2ε, T ].
When there exist a periodic solution with winding number 1, the following condition should be satisfied:

θ x E0 E (T ) ≥ θ x S (T ) -π.
it holds

θ x E0 E (t) = 2π τ t + 2π∆ c z + (T -2ε)2π∆ e -2εcz 1 -e -2εcz + k 5 e -cst ,
and for T -2ε ≤ t ≤ T , when c s = c z , we get

θ x E0 E (t) = 2π T t + 2π∆( 1 c z + 1 c s ) + (T -2ε)2π∆ c s c s -c z e cz(T -2ε-t) 1 -e -2εcz + k 4 e -cst ,
while, when c s = c z , it holds

θ x E0 E (t) = 2π T t + 2π∆( 1 c z + 1 c s ) + (T -2ε)2π∆c s e cz(T -2ε)-cst) 1 -e -2εcz + k 6 e -cst , (30) 
where k 4 , k 5 , k 6 can be computed using the continuity of θ x E0 E (t) at time T -2ε, and equation ( 29). We first consider the case when

c s = c z . At t = T -2ε, we have 2π τ (T -2ε) + 2π∆ c z + (T -2ε)2π∆ e -2εcz 1 -e -2εcz + k 5 e -cs(T -2ε) = 2π T (T -2ε) + 2π∆( 1 c z + 1 c s ) + T -2ε 1 -e -2εcz 2π∆ c s c s -c z + k 4 e -cs(T -2ε) , (31) 
thus

k 5 = k 4 + 2π∆e cs(T -2ε) [(T -2ε) 1 1 -e -2εcz c z c s -c z + 1 c s ]. (32) 
By using equation ( 29), we have

2π + 2π∆ c z + (T -2ε)2π∆ e -2εcz 1 -e -2εcz + k 5 = 2π T T + 2π∆( 1 c z + 1 c s ) + (T -2ε)2π∆ c s c s -c z e -2εcz
1 -e -2εcz + k 4 e -csT . (33) Using ( 32) and ( 33), we can solve for k 4 and k 5 , getting:

k 4 = 1 1 -e -csT 2π∆{(T -2ε) 1 1 -e -2εcz c z c s -c z [e -2εcz + e cs(T -2ε) ] (34) + 1 c s [1 + e cs(T -2ε) ]}. ( 35 
)
Assumption ( 26) is equivalent to constraint (28), indeed for τ < T it holds

θ x E0 E (T ) ≤ θ x S (T ) + π, (36) 
which is equivalent to

2π T • T + 2π∆( 1 c z + 1 c s ) + (T -2ε)2π∆ c s c s -c z e -2εcz) 1 -e -2εcz + k 4 e -csT (37) ≤ 2π∆ c z + (T -2ε)2π∆ e -2εcz) 1 -e -2εcz + 2π + π. (38) 
When τ > T , it holds

θ x E0 E (T ) ≥ θ x S (T ) -π, (39) 
which is equivalent to

2π T • T + 2π∆( 1 c z + 1 c s ) + (T -2ε)2π∆ c s c s -c z e -2εcz)
1 -e -2εcz + k 4 e -csT (40)

≥ 2π∆ c z + (T -2ε)2π∆ e -2εcz) 1 -e -2εcz + 2π -π. (41) 
Then we get Assumption (26) by plugging in k 4 and simplifying the equations.

By using the same method, we can solve for k 4 when c s = c z , finding

k 4 = 1 1 -e -csT 2π∆{ 1 c s + (T -2ε) e -2εcz 1 -e -2εcz (c s T -1) (42) + e cs(T -2ε) {(T -2ε) - 1 c s + T -2ε 1 -e -2εcz [e -2εcz -c s (T -2ε)]}}, (43)
and from constraints (36), and (39), we obtain Assumption ( 27). This concludes the proof.

Stability of the Periodic Orbit

Theorem 3 Under Assumption 7, any solution (θ S , θ E ) to (1) converges asymptotically to the unique periodic solution (with winding number 1) given by Theorem 1. Denoting by (θ s S , θ s E ) such solution, for γ < m = min(2εc z , c s T ) we have

|(θ S (t), θ E (t)) -(θ s S (t), θ s E (t))| (44) =Ce -m T t |(θ S (0), θ E (0)) -(θ s S (0), θ s E (0))|, ( 45 
)
where C is a constant only depending on γ, c s , c z , ε, and T .

Proof The function X = (θ S , θ E ) -(θ s S , θ s E ) is the solution of the following linear differential equation:

ẋ ẏ = -Ψ (θ z ) 0 c s -c s x y , (46) 
thus, by direct integration, we obtain x(t) = exp -

t 0 Ψ (θ Z (s))ds x(0). From (2), for every n ∈ N and t ∈ [nT, (n + 1)T ] it holds |x(t)| ≤ e -2εczn |x(0)|. Let m = min(2εc z , c s T ), then |x(t)| ≤ e -mn |x(0)| ≤ e -( t T -1)m |x(0)| = e m e -m T t |x(0)|. (47) 
For second equation of ( 46), Duhamel's formula gives y(t) = y(0)e -cst + t 0 e -(t-s)cs c s x(s)ds, and, using (47), we have

|y(t)| ≤|y(0)|e -cst + |x(0)|e m t 0 e -(t-s)cs c s e -m T s ds. (48) 
Therefore, it holds

|y(t)| ≤ |y(0)|e -cst + |x(0)|e -cst e m c s e (cs -m T )t -1 (cs-m T ) if c s T > 2εc z , |y(t)| ≤ |y(0)|e -cst + |x(0)|e -cst e m c s t if c s T ≤ 2εc z . (49) 
If γ < m, the quantity

C 1 = sup t∈[0,+∞)
c s te -m-γ T t is finite and only depends on γ, c s , ε, c z and T . Similarly, the quantity

C 2 = sup t∈[0,+∞) c s e -(cs-γ T )t e (cs -m T )t -1 (cs-m T )
is also finite and only depends on γ, c s , ε, c z and T . From (49), and ( 47 (B) Phase differences between the zeitgeber and the peripheral clock. (C) Simulating time (in seconds): analytical method increases with slope 7.7 * 10 -4 ; Runge-Kutta method increases with slope 8.9 * 10 -5 . Used parameters: T = 24, τ = 23, cz = 0.6, cs = 0.1, ε = π 24 , t 0 = 0, θ Z0 = 0, θ S0 = π 12 , θ E0 = -π 4 .

Numerical Simulations and Role of Model Parameters

Simulations were done in Matlab (R2019a) by two approaches: explicit fourth order Runge-Kutta method and combination of the analytical solution

(3),( 4) and ( 5) with a numerical approach. In this section, we compare the two methods showing the computational advantage of the second, see Figure 4.

To build the piece-wise analytical solution, whenever |θ Z (mod 2π) -π| = ε,which corresponds to the entering or exiting of the entrainment window, the constants k 2 , k 3 , k 4 , and k 5 must be re-solved to ensure the continuity. This approach is possible because of the model relative simplicity, but more complex ones may not allow such approach. Performing simulations for the system (1) with the analytic solution (Fig- ure 4A) is much faster than using a Runge-Kutta scheme (Figure 4B). As we run longer simulations, the running speed difference is increasing (see Figure 4E). We compare the accuracy of the two methods by checking the POE values (see Table 1). In simulations with 6 different sets of parameters, the largest POE value differences |Ψ N um -Ψ Ana | with the same parameters is 0.02.

Concluding, the analytical solution has a great advantage on saving running time. However, for models with higher complexity, the numerical solution is easier to implement and may yield similar accuracy.

Choosing Parameters

Our model contains four main parameters c z , c s , ε and t 0 that may be varied. The values of τ and T used in the simulations were given by experimental measures. To evaluate the effects of each parameter and characterize the parameters space, we ran simulations within the range of τ values from existing data. We focused on three main indicators: whether or not entrainment occurred, the ROE, and Ψ . We also varied c z , c s , ε, and t 0 values individually in the range which generates the reasonable Ψ . The results of varying each parameter individually are shown in Figure 5. A positive Ψ corresponds to an advanced phase, while a negative Ψ corresponds to a delayed phase.

In Figure 5, c z , c s , ε, and t 0 are varied individually to quantify whether entrainment occurs, how quickly entrainment occurs, and how Ψ is affected as the parameters vary. In Figure 5A, the parameter c z is varied from 0.46 is chosen according to parameters: c z = 0.76, c s = 0.26, ε = π T , t 0 = 0h, θ Z0 = 0, θ S0 = 0, θ E0 = 0, and τ = 24.23h. With regard to the "average human", we choose t 0 , θ Z0 , θ S0 , and θ E0 values to be 0 for simplicity, then the value τ = 24.23h was based on the experimental data from [START_REF] Gronfier | Entrainment of the human circadian pacemaker to longer-than-24-h days[END_REF]. The other parameters were chosen based on varying them individually and choosing values would replicate a reasonable range of the experimental.

We have two findings from Figure 5. First, the variations are monotonic, meaning that as a parameter is changed the direction of phase change can be predicted. Second, each parameter has different overall effects. The time offset only affects the Ψ , whereas the other parameters affect both Ψ as well as ROE.

Because c z and ε have similar effects and c s appears to have minimal effect, we choose to vary c z and t 0 and keep c s and ε constant in simulations.

Parameter Space

We simulate subjects with τ varying from 22.5h to 25.5h by step size of 3mins. For each of the 61 periods 43 simulations were run with c z varied from 0.15 to 1 by step size 0.02. The other parameters are fixed at baseline value (c s = 0.26, T = 24hours, ε = π 24 , θ Z0 = 0, θ S0 = 0, and θ E0 = 0). The results of all simulations are shown in Figure 6A. All subjects entrained to the zeitgeber T = 24h within 1050h. A wide range of Ψ (from -9.50h to 10.60h) is achievable, and 85.4% of Ψ are located in the range of [-3h, 4h] Figure 6H.

As stated in [START_REF] Granada | Human chronotypes from a theoretical perspective[END_REF], the entrainment strength which is able to compensate the periods mismatch τ -T determines the Ψ and range of entrainment. Figure 6B shows the change in Ψ (-4.5h, 0.5h) when only τ is varied (c z fixes at 0.76). The Ψ increases as |τ -T | increases. Figure 6C shows when τ is fixed at 23.5h (short period), Ψ decreases monotonically from 1.46h (advanced phase) to -1.34h (delayed phase) as c z increases. In this case, our model explains the data whether it agrees or disagrees with the "generalized assumption". Figure 6D shows when τ is fixed at 24.5h (long period), Ψ increases monotonically from -5.47h (delayed phase) to -2.68h (delayed phase) when c z increases. And only data which follows the "generalized assumption" is generated. Combining all the simulations a 3D map was created showing the ROE and Ψ space with respect to both τ and c z . Figure 6E shows the 3D parameter space of Ψ vs. c z , τ . The Ψ is monotonic with respect to both τ and c z . When we have strong entrainment strength (c z ≥ 0.6), the surface tends to the plane Ψ = 0. When the entrainment strength is relatively weak (c z ≤ 0.3), Ψ has a larger range. Figure 6F shows the 3D parameter space of ROE vs.

c z , τ . ROE decreases while c z increases. When τ tends to T = 24h, entrainment is achieved very fast (less than 48h). Figure 6H, and G are heatmaps of POE, and ROE values corresponding to all combinations of c z , τ . In Figure 6E, and F, each data point represents a subject with an 497 entrained phase. The surface shows the distribution of entrained subjects in the parameter space.

We could use the TSE model to estimate the parameter of a given subject, then plot the point representing the subject in the space. Then we will see if the subjects under similar conditions would form a cluster in the space (shown in Figure 7B, andC). If the subject is not on the surface, this will give us a direction to adjust the parameter values so that the subject could move onto the surface which possibly represents a healthy state.

A. B. These surfaces are different from the classic Arnold Tongues, we consider not only whether the subject is entrained but also the values of Ψ . The subject which is represented by each data point on the surface in Figure 6E is also 2. (E) A 3D representation of the optimal cz and t 0 values to fit the phase data. The green, red, and bule points represent the data of patients under 25 lux light condition, 100 lux light condition, and the MLE condition, respectively. (F) A 3D representation of the relationship of cz, t 0 -Ψ . Three subjects which were failed to be entrained were not ploted.

represented by a data point inside the corresponding Arnold Tongues (the set of all entrained subjects, see Figure 9).

6 Simulations to Fit the Human Data

Fit the Trajectory of Phase Differences

The TSE model simulates the trajectories of three oscillating phase angles as well as the Ψ of humans, while other models have focused on fitting only the Ψ . This allows our model to fit the evolution of the phase difference, which could be especially valuable, allowing for predictions of the Ψ for a subject that has yet to be entrained. The trajectory fitting process is based on the experimental time course phase measurements. We calculated the phase differences between the experimental data and model predictions from the same recording day. We defined the weighted cost as the square root of the weighted sum of the squares of the differences. From previous study and the simulation results of the TSE model, we know the initial angles of the circadian oscillators do not affect Ψ . Thus the phase difference close to the end of the entrainment process is more important when we fit the data. We assigned a smaller weight w < 1 for the phase differences over the first several days to focus on the long term behavior. Then we optimized the parameter values to minimize the weighted cost.

An attempt to fit the phase trajectories was made using data from Gronfier To simplify the parameter space only c z and t 0 are fitted to human data.

Varying these two parameters allows us to modify the ROE (shape of the trajectory) as well as Ψ . The initial phase angles of three oscillators were chosen to match the initial phase difference of each subject, while c s was fixed at 0.26 and ε was set at π T for each subject. We chose the parameter ε so that it corresponds to a one-hour window for all subjects.

For each of the 12 individuals, a golden-section line search method was used to optimize c z , t 0 , and θ E0 (see Table 2). We presented the results of fitting subject 2123 in Figure 7A (results of fitting all 12 subjects is shown in the supplementary materials). A 3D representation of the optimal c z , t 0 -τ is shown in Figure 7B, where ε = 2π When this fitting was performed, 48% of all the human data was reachable by our simulations. We consider this to be a minimum bound of the amount of human data which can be explained by the TSE model. We consider this a Table 2 For all 12 subjects, we implement a Golden Section Line search method to find the optimized parameter values of cz, t 0 , θ E0 , θ S0 which fit the given Ψ and phase difference trajectories best. We also calculated the weighted cost (see Section 6), and the distance from each subject to the Arnold Tongue surface (see Section 4). We define the Confidence interval = cost number of fitting data points for the data fitting.

minimum bound for two reasons. First, there were large clusters of human data points with their closest Ψ values at the extreme values of c z . This implies that if more simulations were performed with a larger range of c z , some of these points would be accounted for. Second, parameters of c s and t 0 have not been explored in these initial fits of data. As the fitting is refined using c z and t 0 it is likely that nearly all points will be reached.

When the trajectory of phase differencs achieves a plateau this indicates that the peripheral clock has entrained. But the ROE can be more difficult to determine because different combinations of parameters generate curves with varying shapes. To quantify this, when the absolute value between the current phase difference and Ψ is less than 5% of the maximum difference, we consider the trajectory to be stable. The time before the trajectory stabilizes is measured as the ROE. The ROE can be interpreted as the decay/recovery time after a phase shift such as jet lag. In fact, the ROE values also depend on the initial conditions of the three oscillators (θ Z0 , θ S0 , and θ Z0 ). The relationship will be studied in the future work.

Period Detuning

Inspired by previous work [START_REF] Bordyugov | Tuning the phase of circadian entrainment[END_REF], we used the TSE model to explore the relationship between Ψ and period detuning τ -T . We fixed T = 24, c s = 0.3, ε = π 24 , t 0 = 0 and varied τ from 21 to 27, thus τ -T varied from -3 to 3. Simulation results with strong entrainment strength c z = 1 and weak entrainment strength c z = 0.5 are shown in Figure 8. With the increase of entrainment strength, Ψ changed slower within a narrower range (|Ψ | is close to 0). The relationship can be approximately described by a linear function with respect to τ -T and the slope is greater than 1. For more studies, see [START_REF] Aschoff | Phase relations between a circadian rhythm and its zeitgeber within the range of entrainment[END_REF][START_REF] Hoffmann | Zur beziehung zwischen phasenlage und spontanfrequenz bei der endogenen tagesperiodik[END_REF]. Fig. 8 Simulations showed the relationship between the Ψ and the period mismatch τ -T with different zeitbeger strengths.

Range of Entrainment and Human Data Fitting

The range of entrainment refers to the region of parameter values in which individuals will overcome the periods mismatch to entrain to the zeitgeber. In previous study (see [START_REF] Abraham | Coupling governs entrainment range of circadian clocks[END_REF]), a two dimensional Arnold Tongue is introduced to characterize the range of entrainment. In (Bordyugov et al. ( As our Arnold Tongue shows the variations of three parameters, our figure also displays the entrainment range for a wide range human data including individuals who follow and who do not follow the "generalized assumption". Consequently, we develope a high precision approach with our trajectory-fitting optimization algorithm and Arnold Tongue to determine the health status of subjects. For instance, we use the data from Table 2 to locate the 12 subjects from study [START_REF] Gronfier | Entrainment of the human circadian pacemaker to longer-than-24-h days[END_REF]. Subjects 1 under 25 lux light condition is located in the Arnold Tongue, and relatively away from the surface. We conclude that subjects 1 retains a stong ability to be entrained even it was exposed to dim light. Subjects 2 under 25 lux light condition is located in the Arnold Tongue, but very close to the surface. This reflects the fact that subjects 2 shows a trend to be entrained but the trajectory is not yet stable during the 30 days experiment (see Figure 7B). Subjects 3, and 4 under 25 lux light condition are not located in the Arnold Tongue, they are out of the range of entrainment. This is consistent with the fact that these two subjects are not entrained. Under dim light condition, the response of subjects may show a large variance. Some subjects has inherently large c z to ensure it is entrained (subject 2195,2209), some subjects do not have a strong enough c z results in a failure of entrainment. Subjects 5, 6, 7, 8 under 100 lux light condition are located in the Arnold Tongue. This is consistent with the fact that they are all entrained. The distance from these dots to the surface is farther than the distance from the dots of 25 lux light to the surface. Subjects 9, 10, 11, 12 under MLE light condition are located deeper inside the Arnold Tongue. We also estimate the 2 dimensional Euclidean distance from each dot to the surface (shows in Table 2). The Pearson correlation coefficient between the corresponding distance and absolute value of POE through all entrained subjects is ρ = -0.82 (highly negatively correlated as we expected). The smaller absolute value of POE often corresponds to a large c z (bright light), and subjects under this light condition mostly locate deeper in the Arnold Tongue (larger distance away from the surface).

This study is meaningful because the region within the Arnold Tongue is a set of all "entrainable states". To apply our modeling work to the sleeping diseases therapy, the set of all "healthy states" which corresponding to the healthy population is a subset of the Arnold Tongue. Moreover, we can apply tools from control theory to contribute to the sleeping diseases therapy. We can use clinical approaches such as drugs and light therapy as controls to drive the patients to the "healthy states" [START_REF] Serkh | Optimal schedules of light exposure for rapidly correcting circadian misalignment[END_REF]; [START_REF] Kim | Systems approach reveals photosensitivity and per 2 level as determinants of clock-modulator efficacy[END_REF].

Discussion & Conclusion

We re-examined one of the fundamental issues in chronobiology -the relationship between τ and Ψ . The differences in τ can best be seen in short timescales (hours), while Ψ can be better understood if we extend to a long timescale (days and months). The circadian oscillator is self-sustained with τ under the constant condition, and Ψ is mostly determined by external stimuli. We consider the problem from another point of view and propose a Two-step model for Entrainment (briefly TSE).

Our model does not focus on specific mechanisms or molecules but instead represents a general multilayer synchronization process characterized by three coupled ODEs. We differentiate the master clock and peripheral clock, and assign c z and c s as the synchronizing strengths, respectively. We showed that c z has much greater effects than c s on both the ROE and Ψ . This leads us to fix c s in the rest of simulations and also implies the SCN plays a more significant role. As shown in Figure 6C, due to the existence of a time delay between the synchronization of the master clock (SCN) and peripheral clock, our model shows a zeitgeber with a strong entrainment strength is able to overcome the period mismatch and stabilized at a delayed Ψ .

A previous study by [START_REF] Abraham | Coupling governs entrainment range of circadian clocks[END_REF] concentrates on two coupled Poincaré oscillators to demonstrate how τ interacts with Ψ . The zeitgeber strength plays a similar role to our c z indicating how strongly the entrainment occurs. The results primarily show how we possibly relate the τ and Ψ with a designed mechanism and the relationship follows the "generalized assumption" (see Introduction). In [START_REF] Lee | Experimental and mathematical analyses relating circadian period and phase of entrainment in neurospora crassa[END_REF], the authors pointed out that there exists empirical data representing a complex relationship between τ and Ψ .

Compared to the Kuramoto phase equation and periodically driven damped oscillator presented in [START_REF] Granada | Human chronotypes from a theoretical perspective[END_REF], the TSE model have several ma- for explaining the data. We did not include the amplitude as a parameter for three main reasons: 1. It is decoupled from the phase angles. 2. It is difficult to reliably measure this aspect of a circadian rhythm, and 3. There is an unclear biological meaning given to this measurement.

In paper [START_REF] Granada | Human chronotypes from a theoretical perspective[END_REF], the authors introduced a "180 • rule" stated that Ψ can vary in a range of about 180 • when the clocks are within the range of entrainment. In Figure 8 and Figure 9, the clocks entrain to a weak zeitgeber have a large range of entrainment (larger |Ψ | values). This indicates that weak zeitgeber strengths results in a high sensitivity of Ψ to the period detuning between zeitgeber and endogenous clocks. As we increase c z , Ψ increases when T > τ , and Ψ decreases when T < τ . The conclusions are consists with [START_REF] Granada | Human chronotypes from a theoretical perspective[END_REF].

In the current work, we utilized the clinical data of 12 subjects with various τ . Under weak light intensity, subjects take a long time to align with the zeitgeber and 3 out of 4 are not entrained. To explain this phenomenon, our model suggests that entrainment mainly depends on the light conditions and the sensitivity of the subject to the light. Even when the ability to control the SCN on the peripheral clock is relatively weak, the organism is still able to be entrained. We study the parameter space by plotting a 3D map which represents a sample-population space, and we locate all 12 subjects on the map to group people primarily with different behaviors. A golden-section search method is used to fit the trajectories, both the ROE and Ψ are optimized. In Figure 7B we differentiate subjects by c z . This implies our model is practically sensitive to diagnose how people react to different cycling conditions. Our findings has the potential to be applied to diagnostics and treatments for patients with sleep disorders caused by shift work or jet lag.

Figure 1 .

 1 Figure 1. (A) Schematic illustrating a two-step entrainment process between the zeitgeber and peripheral clock. In step 1, the SCN clock is entrained to the zeitgeber during the entrainment window with strength cz. In step 2, the peripheral clock is aligned to the SCN clock constantly with strength cs. (B) Evolution of phase angles in one period through the plots of sine curves. The dotted line represents the zeitgeber clock, and the solid line represents the peripheral clock. The time when phase angles of the zeitgeber and peripheral clock are equals to ⇡ Fig. 1 (A) Schematic illustrating a two-step entrainment process between the zeitgeber and peripheral clock. In step 1, the SCN clock is entrained to the zeitgeber during the entrainment window with strength cz. In step 2, the peripheral clock is aligned to the SCN clock constantly with strength cs. (B) Evolution of phase angles in one period through the plots of sine curves. The dotted line represents the zeitgeber clock, and the solid line represents the peripheral clock. The time when phase angles of the zeitgeber and peripheral clock are equals to π 2 are label as t Z and t E , respectively. The phase difference is measured as ψ = t Z -t E . Positive ψ indicates advanced phase, and negative ψ indicates delayed phase.

  2π T represents the angular frequency of the unperturbed free-running rhythm with period T , 2π τ represents the angular frequency of the unperturbed free-running rhythm with period τ . In equation (2), c z signifies the entrainment strength of the SCN to the zeitgeber and depends on the multiple factors including light intensity, light wavelength and the ability of the SCN to response to the light. ε represents the radius of the entrainment window. Ψ (θ Z ) represents a pulse-like correction of the phase around half a period characterized by c z and duration 2ε. c s represents the alignment strength of the peripheral clock to the SCN and is related to how the master clock SCN coordinates to the body peripheral clock. t 0 is the time delay in the peripheral clock with respect to the SCN. Term c s (θ S (tt 0 ) -θ E (t)) describes a phase correction proportional to the difference of phases including an offset t 0 . This leads to an exponential relation to the phase difference t 0 .

Fig. 2

 2 Fig. 2 Panel A shows the change of F (x) in [-π, π] in the case of τ < T . F (x) crosses the zero line when x = xs. F (x) reaches the minimum when x = xm. θ S attracts to θ Z of current period in [-π, xm], θ S attracts to θ Z of next period in [xm, π]. Recall the biological constraint (6), we only consider the case when x ∈ [-π, xm]. Panel B shows a extreme case of θ xm S entrains to θ Z . The entrainment occurs in [T -2ε, T ]. When there exist a periodic solution with winding number 1, the following condition should be satisfied: θ Z (T -2ε) -θ xm S (T -2ε) <= π.

  ) Thus, |θ x S (t) -θ Z (t)| can have only one change of monotonicity on [0, T -2ε] and the same on [T, T -2ε]. Therefore sup t∈[0,T ]

Fig. 4

 4 Fig.4Simulations results by the two approaches. (A) Phase angle of the endogenous clocks. (B) Phase differences between the zeitgeber and the peripheral clock. (C) Simulating time (in seconds): analytical method increases with slope 7.7 * 10 -4 ; Runge-Kutta method increases with slope 8.9 * 10 -5 . Used parameters: T = 24, τ = 23, cz = 0.6, cs = 0.1, ε = π 24 , t 0 = 0, θ Z0 = 0, θ S0 = π 12 , θ E0 = -π 4 .
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 1 06 by 0.1, in panel C the size of the entrainment window ε varies from 6 minutes to 54 minutes in 8-minute increments. These two parameters had similar effects on Ψ , this similarity could be explained by the product c z • ε corresponding to the mixed effect of total light quantity and the physiological light-sensitive response of the SCN clock. A stronger entraining effect occurs when c z •ε increases. Thus the absolute value of the phase differences decreases. It does not depend on the location of the center of time window. Panel B shows that as c s varies from 0.11 to 0.41 by 0.05, both the ROE and Ψ changed slightly. To fairly compare the effects of c z and c s , we also run another set of simulation with c z •ε = c s •T . In this case, the effect of c s is amplified, the POE values change as significantly as varying c z . In panel D, as t 0 varies from 0.50 hour to 3.50 hours by 0.5 hour, the trajectories keep the same shape but shift downward. Ψ and t 0 satisfy a linear relationship, but the ROE is unaffected. Finally, panel E shows that as τ varies from 23.93 hours to 24.53 hours by 0.1 hour, both the ROE and Ψ are significantly changed. Additionally, a baseline value shown as a dotted line in each panel representing the "average human"

Fig. 5

 5 Fig.5Single parameter variations for the "average human" based on the 12 subjects. In each plot only one parameter varies while the others remain constant. The legend represents the varying parameter values. The dashed line in each plot represents the baseline parameter value which is held constant in all other plots except for when it is the varied parameter. (A), (B), (C), (D), and (E) show how trajectories change when only vary cz, cs, ε, t 0 , and τ , respectively.

Fig. 6

 6 Fig. 6 Simulations present the parameter space when varying τ and cz in a wide range. (A) The trajectories of phase differences of all subjects (2623 pairs of τ, cz). (B) Fix cz = 0.76, the trajectories of phase differences change with varying τ from 22.5 to 25.5. (C) Fix τ = 23.5, the trajectories of phase differences change with varying cz from 0.15 to 1. (D) Fix τ = 24.5, the trajectories of phase differences change with varying cz from 0.15 to 1. (E) 3D surface represents the simulated Ψ vs. cz, τ parameter space. (F) 3D surface represents the simulated ROE vs. cz, τ parameter space. In (E)/(F), blue(yellow) color corresponds to small(large) values of POE (ROE). (G) A heatmap shows the POE values of all subjects. The absolute value of POE is decreasing when |τ -T | gets smaller (black area in the middle). (H) A heatmap shows the ROE values of all subjects. The value of ROE is decreasing when |τ -T | gets smaller. The color coded POE and ROE figures has been pioneered by Schmal. in Schmal et al. (2015); Tokuda et al. (2020).

  Fig. 7 (A) Fit the trajectory of phase differences for subject 2195 (T = 24.47h,τ = 23.47h) from Gronfier et al. (2007) by implementing Golden Section Line search method. The optimized parameters are: cz = 0.74, t 0 = 1.11, cs = 0.26, θ E0 = 0.30, θ S0 = -0.50, Ψ = 0.55, and cost = 1.48. (B), (C), and (D) show the trajectory fitting results for subjects 2313, 2123, and 2111 from three light conditions. The optimized parameters are shown in Table2. (E) A 3D representation of the optimal cz and t 0 values to fit the phase data. The green, red, and bule points represent the data of patients under 25 lux light condition, 100 lux light condition, and the MLE condition, respectively. (F) A 3D representation of the relationship of cz, t 0 -Ψ . Three subjects which were failed to be entrained were not ploted.

  et al. (2007), which studied entrainment to T = τ + 1h in three different light conditions for 12 subjects. For each individual in the entrainment trials, circadian periods were measured by core body temperature rhythms and plasma melatonin rhythms. Phase angle data was recorded for 30 days. Instead of classifying entrainment based on phase change, the subjects were considered entrained when the final phase reached 95% confidence interval. Subjects in weak light conditions (25 lux) did not achieve entrainment (see Figure 7B) while subjects in relatively strong light condition (100 lux) and modulated light exposure (MLE) with bright light pulses were entrained at different Ψ (Gronfier et al. (2007)). The absolute values of Ψ for the MLE group is closer to 0, see Figure 7C.

  T and c s = 0.26. In the TSE model, c z values correspond to the light intensities. The results showed that subjects entrained to the higher light intensity have larger c z values. The TSE model is able to differentiate the subjects in different groups by their c z values. 6.2 Phase of Entrainment Fitting and ROE When fitting the phase trajectory of human data, there is much less information. The only information given for each subject from the human data from Wright et al. (2001); Lewy et al. (2001); Duffy et al. (2011) is τ and Ψ . To match the human data with a known τ , a simulation was performed varying only c z . All the other parameters were set to the baseline values. Each value of human data was mapped to the simulation that had the same period and the closest Ψ . If the difference in Ψ was smaller than 0.1 hour the points were considered matched.

  Fig. 9 A. A 3D Arnold Tongue represents the range of entrainment for the SCN clock. The SCN clock is entrained to the zeitgeber when the data point locates above the surface (inside). The SCN clock is always entrained when T= τ . The colored dots represent all 12 subjects showed in Table 2. B. Zoom in the top-down view of Panel A, so we can clearly see the location of each subject. All subjects except 3 and 4 are located inside the Arnold Tongue. See details in Section 4. Blue color corresponds to small values of ε, yellow color corresponds to large values of ε.

Fig. 10

 10 Fig. 10 Panel A show the range of entrainment of cz -T -ε for θ E . We fix cs as 0.26. The points below the surface is entrained. Panel B show the range of entrainment of cs -T -ε for θ E . We fix cz as 0.8. The points below the surface is entrained. See details in Section 6.4. Blue color corresponds to small values of POE (ROE), yellow color corresponds to lage values of POE (ROE)

  jor differences and advantages. The TSE model captures the phase for each circadian oscillator during the entire entrainment process. Thus the results can be easily related to experimental measurements. The TSE model fits a wide range of data indicate a complex relationship between τ and Ψ . The TSE model allows piece-wise analytical solutions which increase the speed of simulations. In the TSE model, we include not only the zeitgeber strength c z but also the size of entrainment window ε and the alignment strength c s to capture the dynamics of phase changes. These three parameters together allow us to fit the transient dynamics. Additionally, c z is not necessary to be very weak then we have more flexibility. Our model is a τ -phase model which serves well

  increases when t ∈ [0, T ]. By using the same strategy as the proof of Theorem 1, we can show that F E is continuous and strictly decreasing (increase) with x on [-π, x * E0 ], and F E (0) • F E (x * E0 ) ≤ 0. We are left to prove

	Assumption (26) and (27) hold true. From (5) and θ Z

Table 1

 1 Table shows the simulated numerical Ψ (Ψ N um ) and analytical Ψ (Ψ Ana ) with different sets of parameters. The last column shows the absolute values of the differences between Ψ N um and Ψ Ana .

		T	τ	cz	cs	ε	t 0	Ψ N um	Ψ Ana	|Ψ N um -Ψ Ana |
	Set I	24.0	23.0 0.6 0.1	π 24	0.0	2.18	2.18	0.00
	Set II	24.0	26.0 0.2 0.5	π 24	0.0	-0.89	-0.91	0.02
	Set III	21.0	23.0 0.6 0.2	π 21	1.0	-4.98	-4.96	0.02
	Set VI	21.0	19.0 0.8 0.6	π 8	1.5	0.23	0.23	0.00
	Set V	26.0	24.0 0.5 0.8	π 12	2.0	0.50	0.50	0.00
	Set VI	26.0	28.0 0.1 0.5	π 6	1.0	-6.11	-6.12	0.01

are label as tZ and tE, respectively. The phase difference is measured as = tZ tE. A positive value of indicates an advanced phase, a negative value of indicates a delayed phase.Prepared using sagej.cls
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