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ABSTRACT
Motivated by two survey data samples (student and teacher) obtained from insti-
tutional records in some school establishments of Mayotte, this paper has two main
objectives. Firstly, a global application of statistical models for the analysis of stu-
dents’ attitude toward mathematics (difficulty, interest or perception, value of the
level in mathematics and others attitudes such as social factors, school environment)
together with the teachers’ attitude toward mathematics (difficult courses, profes-
sional training experience, teaching preparation time, etc). Some didactic analysis
have helped to reach conclusions to ensure the consistency of certain characteriza-
tion. Secondly, we develop a theoretical methodology for parameter estimation of
the density of the students’ level in mathematics and teachers’ attitude in the frame-
work of stable and extreme values distributions which are suitable for studying non
Gaussian and heavy-tailed distributions. More precisely, we described a new estima-
tion method based on the tail regression estimation method for stable distributions.
For the extreme family distributions, we consider a mixture estimation using the
EM algorithm. Finaly, we end with a brief discussion on a current experimentation
of the statistical and didactic analysis results in the form of Lesson study involving
several teachers from the island of Mayotte.

KEYWORDS
Parameter estimation; Stable distribution; Attitude toward mathematics; Statistic
analysis; Didactic analysis.

1. Introduction

Mathematical knowledge in general achieves greater usefulness when using modeling,
Hernandez-Martinez and Vos (2018) and the reflective discussion is established
through the modeling process. In the educational environment, sciences in general,
mathematics and modeling process are necessary for students to learn other sciences,
Brousseau (2006). Unfortunately, the lack of success of students in this area is
regularly observed in various national and local assessments. Some results in 2021
and 2022 of the national assessments are summarized in Table 1, Supplementary
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Material, for elementary students evaluations, Andreu et al. (2021) for further
information and references therein. We also described in Table 2, Supplementary
Material), teachers’ choice of topics training in french and maths. Students’ achieve-
ment may be influenced by various facts such as attitudes toward mathematics.
This raises various questions for those involved in the education system. Among
them, there is a lot of studies concerning the student’s attitude toward mathematics
(Aiken Jr (1970); Borasi (2014); Ma and Kishor (1997)) such as the difficulty,
interest or perception, value of the level in mathematics, social factors, school
environment, gender, etc. In particular, the difficulty in understanding and reading
sentences highlights the link between difficulties in the language and performing
school skills requiring comprehension of instructions. In addition, such difficulties
in comprehension through official national language (french) are compounded by
difficulties of understanding mathematical contents, see for instance Laborde (1991).
This entails that mastering the language of instruction is often necessary to represent
and solve problems especially in mathematics. For many students, such school skils
are challenging; Julo (1995, 2002); Nguala (2005, 2023). For professional practice,
the language and instruction plays a key role in the educational system, De Saussure
(1989); Hache (2019); Houdement (2022). The results of various evaluations, both
national and of continuous evaluations in the classroom, show that results are very
low in french and mathematics (Houdement (2017)), particularly verified in the case
of Mayotte island. It is within this framework that two survey were launched to
collect data related to maths academic performance and relevant co-variables that
can be effected by a number of factors, (Bernier (2020); Mazana, Suero Montero, and
Olifage (2019); Michael (2015); Peteros, Gamboa, Etcuban, Dinauanao, Sitoy, and
Arcadio (2019); Wakhata, Mutarutinya, and Balimuttajjo (2022)), such as attitudes
toward mathematics, teachers instructional practices, etc.

We aim in this paper to highlight the students’ and teachers’ profiles in order to
produce may be an adequacy between them that can be necessary for a better math-
ematics content teaching and learning in various situations. We conduct statistical
analysis and modeling by considering the relevant variables of the attitude toward
mathematics. We point out related facts that may justify the need of training in the
areas where students have the most difficulties namely in problem sloving (Ashkenazi
and Eisner (2022); Houdement (2017)) and to identify some student’s profiles related
to math level. For the teacher’s attitude level toward mathematics, we highlight the
training desired for teachers and the different profile recorded. This may suggest
the different actions that can allow to better improve the attitude to mathematics
not only for students but also between students and teachers. We introduce some
parameter estimation method to highlight non gaussian features, stable distributions
and the generalized extreme value family distribution.

The originality of this work can be divided into two main objectives. On one hand,
the statistical modeling and didactic cross-analysis both for students’ and teachers’
attitude toward mathematics. On the other hand, we develop a statistical methodol-
ogy for parameter estimation of the density of the students’ level in mathematics and
teachers’ attitude level in the theoretical framework of stable distributions which are
suitable for studying non Gaussian and heavy-tailed distributions. We also deal with
parameter estimation for extreme value distributions using stochastic algorithms.
This paper is organized as follows: In section 2, the material and data collected and
the main objective. We have divided the methodology in section 3 into three main
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parts. In the first part, we introduced the didactic analysis through the approaches of
semiotic representation. Secondly, we present the statistical analysis tools (variable
importance and multidimensional exploration analysis) in section 2. The last part
of section 3, deal with the main probability distributions of interest to fit the data
distribution of students’ maths level and teachers’ attitude level towards mathematics
as well as the proposed parameter estimation of the above two family distributions.
More precisely, we have described a new estimation method based on the tail regres-
sion estimation method for stable distributions. For the extreme family distributions,
we consider a mixture estimation using the EM algorithm. Section 4 consists of our
results presentation and a detailed discussion that follows the main methodology.
Finally, we end by a conclusion on how such results allow a current experimentation
in the form of Lesson study involving several teachers from the island of Mayotte.

2. Material and Data

The present work concerns two survey sample databases related to students’ and teach-
ers’ attitudes toward mathematics recorded from 167 students and 102 teachers from
Mayotte’s schools establishments. We refer to the Supplementary Material for a
full list and description of variables recorded in Table 3 and 4. This preliminary pro-
cessing of the data is shown partially in Figure 1 and 2 as well as the students’ mean
maths level and teachers’ attitude level toward mathematics distributions. The main
objective is the statistical modeling (statistical analysis and parameter estimation) of
students’ attitudes toward mathematics (perception, usefulness, interest, social fac-
tors, school environment) and teachers’ attitude towards mathematics (experience,
perception, preparation time for lesson design, ability) together with a didactic point
of view. All the presented results are implemented using R software.

3. Methodology

This study was designed to better understand students’ attitudes toward mathematics
and teachers’ attitude towards mathematics. To achieve this, we opted for a qualita-
tive didactic and statistical research, that consists of several steps. Firstly, we describe
the way we’ll conduct the statistical analysis (variable selection and clustering) and
didactic approaches (semiotic representation and contextualisation). The theoretical
statistical modeling framework we have chosen concerns the parameter estimation of
some probability densities family (stable distibutions and Extremum value distribu-
tions) in order to model the students’ math level and teachers’ math level attitude
distributions. Thus, we present three main estimation methods, namely mixture esti-
mation using EM- algorithms for the family of generalized extremum distributions, a
new tail regression estimation and log-moment estimation for stable distributions.

3.1. Semiotic and didactic analysis

We conduct the didactic thought analysis upstream of the statistical formulations
as follows. Language issues in the learning of mathematics is the first focus as also
highlighted in Hache (2019); Laborde (1982). The second aspect takes account of the
specific difficulties encountered by students in the language of instruction, which in
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(a) A short view of the students’ database.

(b) An histogram of students’ maths level distribution.

Figure 1. Partial view of the students’ survey dataset and mean maths level distribution.

(a) A short view of the teachers’ database.

(b) An histogram of teachers’ attitude level distribution toward math-

ematics.

Figure 2. Partial view of the teachers’ survey dataset and attitude level distribution toward mathematics

4



reality, they use only occasionally and only in class, Dias (2020); Faure (2020). An-
other aspect refers to the elements of contextualisation that may help the students
to build an environment success of the tasks to be performe, Delcroix, Forissier, and
Anciaux (2013); Julo (1995); Nguala (2005); Salone (2022). To take account of stu-
dents difficulties in the language of instruction, we refer to what is done with those
working in didactics on common topic, Faure (2020). Moreover, the complexity of
mathematical language and mathematical levels among students can be mainly due
to the interweaving of the two codes of natural language and symbolic language as
well as their attitudes toward mathematics. These two codes are registers of semiotic
representation Duval (1993); that we are going to explore along the discussion.

3.2. Statistical and Data Analysis

The regression analysis model for variable selection

Here we use the Generalized Linear Model (GLM), Bingham and Fry (2010); Huet,
Bouvier, Poursat, Jolivet, and Bouvier (2004) to explain students’ level in mathematics
as a function of the others co-variables of the attitudes toward mathematics. The GLM
then specifies a relationship between the mean response Y (r) and the covariates Xi(r)
through a specified monotonic link function g :

g((Y (r)) = β0 + β1X1(r) + ...+ βpXp(r)

where β0 is the intercept and βl, l > 0, is a regression coefficient associated with the
covariates Xl(r), the l-th covariate of the respondent r. The above regression model
can be fitted via ordinary least squares (OLS) in which case we find estimates of the
parameters.

Multidimensional exploration Analysis

We conduct principal component analysis (PCA) (see Jolliffe (2005); Patlolla (2020))
on significant variables after the above variable selection method. This analysis is a
pre-processing step before moving on to clustering. The unsupervised classification
designates a corpus of methods whose objective is to draw up or find an existing
typology characterizing a set of n observations, from p characteristics measured on
each of the observations. We use the complementarity between clustering and principal
component methods to better highlight the main feature of our data set. The objective
is to obtain a hierarchical tree, in other words a sequence of nested partitions going
from a partition in which each individual is considered as a group to one in which all
the individuals belong to the same group. The first dimensions of PCA will extract
most of the information while the last ones are limited to noise and the number of
dimensions retained for the grouping can be chosen with several methods. The hcpc
function of R software allows us to visualize the tree, the partition and the main
components in a convenient way. An unsupervised clustering (Praene, Malet-Damour,
Radanielina, Fontaine, and Riviere (2019)) is done afterwards based on the principal
components in this paper. The results are plotted to correlate the obtained clustered
students’ and teachers’ profiles.
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3.3. Parameter estimation methods

We start this section, with the main probability distributions of interest for our study:
stable and the family of extreme value distributions. It will be the target distributions
chosen for some quantitative variables such as students’ level in mathematics and
teachers’ attitudes level towards mathematics.

3.3.1. Stable distributions

Despite the lack of non-analytical expression for their probability density function, the
class of α-stable distributions are popular in many fields as economics, finance, and
insurance. For convenience, we provide the definitions of α-stable distributions.

Definition 3.1. A random variable X is said to follow a stable distribution, denoted
by X ∼ S(α, β, σ, µ), if it’s characteristic function φX(t) = E(eitX), t ≥ 0, is expressed
as follows.

ϕ(t) = exp
(
−σα|t|α

(
1− iβ(tan(

πα

2
))sign(t)

)
+ iµt

)
I{α ̸=1}

+exp
(
− σ |t|

(
1 + iβ

2

π
sign(t) log(|t|)

)
+ iµt

)
I{α=1}

where i2 = −1 and sign(.) is the well-known sign function. This kind of parametriza-
tion is called the 1-parametrization in Nolan (2012)); see also Samoradnitsky (2017)
for other parameterizations (each having advantages and drawbacks). The parameter
α ∈ (0, 2] is the index of stability also called the tail index, β ∈ [−1, 1] the skewness
parameter, σ > 0 the scale and µ ∈ R the location parameter.

The case µ = 0 corresponds to a strictly α-stable distribution. Moreover, it is said
to be symmetric if β = 0. In the case where β = 1 and α < 1, it is the class of positive
stable distributions. A pratical difficulty when working with α-stable distributions for
most cases is the lack of closed formulas for the density and distribution functions.

3.3.2. Generalized Extreme value distributions

Now, let us turn to the family of Extreme Value distributions (EVD) arising as
limit distributions for maximums or minimums (extreme values) of a sample of
independent, identically distributed random variables, as the sample size increases,
see Kotz and Nadarajah (2000). They are important when data distribution reveals
events which occur with very low probability. Thus, these distributions are important
in statistics and are contained in the following generalized extreme value (GEV)
distribution.

Definition 3.2. The probability density function for the GEV distribution with lo-
cation parameter µ ∈ R, scale parameter σ > 0 and shape parameter ζ ∈ R is
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f(z/µ, σ, ε) =


exp

(
−
(
1 + ϵ

( z−µ
σ

))−1/ζ
)

if ζ ̸= 0,

exp

(
−
(
z−µ
σ

)−1/ζ
)

if ζ = 0

for all z such that 1+ ζ
( z−µ

σ

)
> 0. The case ζ > 0 corresponds to the Freichet type

distribution while ζ < 0 corresponds to the Weibull type distribution. The case ζ → 0
is the Gumbel distribution.

In this section we consider statistical methods in order to estimate the densities of
occurrence of some main quantitative variables such as students’ level in mathematics
and teachers’ attitudes towards mathematics. The probability densities chosen for the
estimation are the above familly following of Extreme Value and Stable distributions.

3.3.3. The proposed estimation method for stable distributions

Recall that, in the case of stable distributions, the tail exponent α determines the
rate at which the tails of the distribution decay. When α < 2, the variance is infinite
and the tails are asymptotically equivalent to a Pareto law. In this sub section and,
for practical issues, we shall be concerned with a given sample of positive data. We
establish α-stables distributions parameters estimators.

Theorem 3.3. : Assume that, the random variable X ∼ S(α, β, σ, 0) follows a strictly
stable distribution. We porpose the following consistent estimators α̂ σ̂ of α, σ respec-
tively for large k.

α̂k =

k∑
l=1

log(xl) log(yl)−
1

k

(
k∑

l=1

log(yl)

)(
k∑

l=1

log(xl)

)

1
k

(
k∑

l=1

log(xl)

)2

−
k∑

l=1

log(xl)
2

,

b̂k =
1

k

k∑
l=1

log(yl) +
α̂k

k

k∑
l=1

log(xl).

In the symmetric case (β = 0), given an estimation α̂ of α, we have :

σ̂ =
( eb̂k

Cα̂

)1/α̂

.

Proof. We first remark that, since the tails of any α-stable distributions are asymp-
totically equivalent to a Pareto law, we have from Samoradnitsky (2017) that

lim
x→+∞

xαP
(
X > x

)
= Cα(1 + β)σα
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where for α ̸= 1 we have

Cα =

(
2

∫ +∞

0
x−α sin(x)dx

)−1

=
1

π
Γ(α) sin(

πα

2
).

Let (Xi)i=1...n be a sequence of sample observations of X with size n. In this case,∑n−1
i=0 I[Yi>x]

n asymptotically approximate P
(
X > x

)
for large n. Hence for a given k

largest positive values xl >> 1 of x, we introduce the following statistical model, under
classical assumptions as in a linear regression model. More precisely,

yl := log
(∑n

i=1 I[Xi>xl]

n

)
≈ −α log(xl) + log(Cα(1 + β)σα + εi

where the noises εi are uncorrelated and centered. Set b = log
(
Cα(1 + β)σα

)
. We

use the Least Square Estimation (LSE) which consists in minimizing the following
objective function:

G =

k∑
i=1

[log(yi)− b+ α log(xi)]
2

Thus it is straightforward to obtain the desired estimators by derivation of G with
respect to α and b. The consistency of these estimators can easily be obtained under
the above assumptions on the noises εi.

As concerned the other parameters of the strictly stable distributions, namely σ and
β ̸= 0, we will use the following method called the logarithmic moment, see Kuruoglu
(2001). This method was proposed to establish a moment type method for parameter
estimation even though the first moment (for α < 1), second and higher moments
(α > 1) of stable distributions are not finite. The following result based on the paper
of Kuruoglu (2001) give a practical method through the moments of the logarithm of
the α-stable random variable; which are finite for certain parameter values.

Proposition 3.4. : Consider a strictly α-stable random variable X ∼ S(α, β, σ, 0; 1)
and set θ = arctan

(
β tan(απ2 )

)
. Then, we have

L1 = E [log(|X|)] = γ

(
1

α
− 1

)
− 1

α
log(| cos(θ)|) + log(σ)

L2 = E
[
(log(|X|)− E [log(|X|)])2

]
=

(
π2

6α2
+

π2

12
− θ2

α2

)
L3 = E

[
(log(|X|)− E [log(|X|)])3

]
= c1

(
1− 1

α3

)
where γ = 0.57721.. is Euler constant and constant c1 = 1.2020569 relies to the Rie-
mann zeta function.

From the above proposition, we derive the following result.

Theorem 3.5. : Let (Yi)
n
i=1 = (log |X|i)ni=1, where we assume that X = (X1, ..., Xn)

is a sequence of independent strictly α-stable random variables X ∼ S(α, β, σ, 0; 1) for
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α ̸= 1. Given an estimation α̂ of α, set

Ȳ = Y − E(Y ) and Ȳn =
Ȳ1 + ...+ Ȳn

n
.

Define

|θ̂n| =
π2

6
+
(π2

12
− Ȳ 2

n

)
α̂2; β̂n =

tan(θ̂n)

tan(α̂π
2 )

σ̂n = | cos θn|1/α̂eȲn+γ(1− 1

α̂
).

Then, we have {
β̂n

p.s.−−→ β

σ̂n
p.s.−−→ σ

when n → +∞.

Proof. We recall firstly Proposition 4 in Kuruoglu (2001) and by equating the sample
moments (first, second first and third moments) and the real moments, we easily
derive the estimators formula. Finally, the strong law of large numbers for the random
variables (

log Yi − E(log Yi)
)3

,
(
log Yi − E(log Yi)

)2
, log Yi

together with the continuous mapping theorem give the consistency of the proposed
estimators.

3.3.4. Mixture estimation method using EM Algorithm for EVD

The EM algorithm, known as the most popular inferential tool, was developed by
Dempster et al Dempster, Laird, and Rubin (1977) to find the maximum likelihood of
the parameters of probabilistic models. Let X = (x1, x2, ..., xn) be a random sample
of size n containing observations, where xi is a realisation of a random variable with
probability density function fj . A mixture estimation which is a flexible tool (see (Li
and Barron, 1999; Redner and Walker, 1984) ) to model a known smooth probability
density function as a weighted sum of parametric density functions. The density of
a mixture model with k components for one observation xi is given by the mixture
density p(xi) =

∑k
j=1 pjfj(xi, θj) where p = (p1, ..., pk) contains the corresponding

mixture proportions with
∑k

i=1 pi = 1 and fj(xi, θj) is the density component of
mixture j and θj , j = 1, 2, ..., k are vectors of component specific parameters for each
density and θ = (θ1, ..., θn) denotes the vector of all parameters of the model. The log
likelihood of the model for a sample of size n is then given by

L(θ) =

n∑
i=1

log(

k∑
j=1

pjfj(xi, θj)).
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The sum of term appearing inside the logarithm makes the optimization quite diffi-
cult. There are, of course, many general iterative procedures which are suitable for
finding an approximate solution of the likelihood equations. The parameters can be
estimated using the EM algorithm. For this purpose, let us introduce latent variables
Z = (Z1, ..., Zk), which are categorical variables taking on values 1, ...., k with proba-
bilities p1, ..., pk such that P(Xi/Zi = j) = fj(xi, θj) for j = 1, ..., k. The EM algorithm
works in two (E and M) steps. In the E-step, it estimates the expected value of the
latent variables Zi given the current parameter estimates. In the M-step, it maxi-
mizes the likelihood of the observed data based on the expected values obtained in
the E-step. This alternating process continues until convergence is achieved, resulting
in the optimal parameter estimates for the model. The EM algorithm is summarised
as follows.

Algorithm 1 EM Algorithm

Input: θ(0) initial value of the model parameters;
1: X a set of the observed data distribution ;
2: ϵ a threshold for the convergence of the algorithm.

Output: θ optimal parameter estimates
3: E-step. Compute the conditional expectation of the complete log-likelihood func-

tion at current t-th iteration:

Q(θ, θ(t)) = E
(
Lc(θ, p, Z)|X, θ(t)

)
4: M-step. Maximize the above conditional expectation:

θ(t+1) = argmaxθ(Q(θ|θ(t)))

5: while

|Q(θ|θ(t+1))−Q(θ|θ(t))| > ϵ

do
6: Repeat the E and M-steps.
7:

8: end while
9: return θ
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(a)

(b)

Figure 3. Experience and related teachers’ conception of mathematical concepts and professional training
desired.

4. Results and Discussion

The results presented in this section is concerned with the above mentioned survey
sample databases. Let us start with the statistical and didactic cross analysis. The
analysis of the mathematics’ elementary concepts that teachers find difficult to teach
reveals a high proportion of number and calculation, geometry and problem solving,
whereas the concepts they would like to teach are essentially number and calculation,
and problem solving for generally young teachers (less than 5 years of experience),
Figure 3. Moreover we remark that many teachers (for instance young teachers) who
had difficulties in problem solving, geometry, numbers and calculations previously as
students want to overcome such difficulties. In summary, some particular teachers who
have difficulties in a given area originally as a student (geometry, problem solving,
numbers and calculations) and who seek professional training in these areas to fill
their gaps, like to teach them. Professional training in mathematics depends on the
experience of the teachers as shown in Figure 4.

Thus, young teachers want general training in fundamental aspects such as geom-
etry, problem solving, numbers and calculations, pedagogy and didactics, except for
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(a)

Figure 4. Experience and professional training desired

a few experienced teachers (more than 5 years of experience). There is a desire for
algorithmic training among the latter teachers. Such observations, if confirmed in a
global study, should make it possible to envisage the teaching-learning process for a
constructive engagement and the future development of the teaching profession; see
Kansanen and Meri (1999); Pino-Fan, Assis, and Castro (2015). A generalized Lin-
ear Model apply to the data was used to select variables (according to the p-value
in Fig. 1 of the Supplementary Material) allow to conduct the above mentioned
unsupervised clustering method. We found that the selected variables are involved in
each cluster group (4 in total), see Figure 5.

Clusters 1 and 2 are composed of young teachers as opposed to Clusters 3 and 4.
What these groups have in common is that they all enjoy teaching calculus and they
mostly want training (65 per cent of them) in calculus and problem-solving skills to
help their pupils make progress in these areas. In Cluster 1, as students, the difficulties
of teachers were mainly calculus and problem solving. Geometry is a difficult subject
to teach and is in demand as the desired professional training for clusters 2 to 4.
Moreover, Algorithm is a special subject training requested by teachers in Cluster 4.
In Clusters 2 and 4, they find it difficult to teach geometry and calculus or numbers
whereas in Clusters 3 and 4 they find difficult to teach problem solving. In Cluster
3, they find it difficult to teach geometry, numbers and calculations and problem
solving. Paradoxically in Cluster 2, teachers (67 per cent of total individuals) who
found problem solving difficult to teach, none of them requested training in these
areas. A new clustering analysis adding the notions they found difficult as students
during their past student training period, show that mathematical contents, teachers
found difficult as students during their student training period did not change the
teacher’s needs in mathematics training desired to strengthen themselves. In general
in Clusters 1, 3 and 4, the attitude towards mathematics is greater than the mean.
Cluster 2 differs from the others for its low average attitude towards mathematics
compared to Cluster 3 which have a higher attitude average towards mathematics
and also a higher teaching preparation time.

Now, let us turn to the students’ database. Regarding the importance of mother
tongue, we find that those whose mother tongue is French and Malagasy have a level

12



(a)

Figure 5. Clustering of the recorded teachers profiles

in maths greater than the average value recorded; otherwise, the level differ from one
to another; see Figure 6. Regardless of their level in mathematics, they ask for ex-
planations, illustrations and comprehension in their mother tongue. This shows that
a mathematical level and hence language is not linked to the language of the indi-
vidual. It is more than that, since it is also composed of a semiotic language in the
form of symbolic writings, semiotic representations and registers, which gives its own
complexity. This point of view has been developed by since by many researchers, see
Barrier and Durand-Guerrier (2017); Shaftel, Belton-Kocher, Glasnapp, and Poggio
(2006).

Moreover, they have language difficulties in understanding maths concepts and the
assimilated maths notions is linked to their mathematics level, see Figure 7. This result
is also similar to the general work of Dias (2020); Prasad (2014) and raises questions
about the implementation of a system where there would be exercises to complete with
instructions in french and in students’ mother tongue. The mathematical concepts
assimilated by students vary according to their level of mathematics. We can see
that for maths levels above the mean, algorithms, statistics and geometry are mostly
assimilated and contribute to an increase of the level in mathematics. Among the other
concepts assimilated with an average level were algebra and analysis. Some students
with a very mixed level state that geometry and maths in general are assimilated
notions. Those with a good math level felt that they had no difficulty. We remark
that there is a lack of motivation for students mathematics levels under the mean
level. The latter do not receive any private lessons and do not have enough time to
learn maths (coming back to this; note that half of them do not have any teaching
hours in maths). For all students with different mathematics levels, we pointed out
concentration, reading and training difficulties.

This is confirmed by the odds ratios resulting from the above described generalized
Linear Model (see Fig. 1 of the Supplementary Material). This shows that the
following variables contribute to an increase of the level of mathematics : the math-
ematical concepts assimilated, such as algorithm, analysis, statistics, geometry; the

13



(a)

(b)

Figure 6. Observed language characteristics in student database.

(a)

Figure 7. Observed language difficulties and assimilated maths notions of students.
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(a)

Figure 8. Observed social factors and maths level of students.

school environment, comprehension through the mother tongue, private lessons, par-
ents’ status. The other variables (self-discipline, concentration and training) entail a
decreasing in maths levels. For a third of the students, we find that concepts of alge-
bra such as linear functions and mathematics in general are often explained in their
mother tongue. With regard to the profiles of the students, a common point which
emerges in the mathematical concepts assimilated are in algebra and with different
kind of access to Internet. We observe also that the school environment (furniture,
material learning conditions excluding learning time in class) impacts their level in
mathematics, see Figure 8. Otherwise, students level in mathematics seems to be in-
dependent of the Internet access, parents’ status and place of birth; but unemployed
parents had a negative impact on the students maths level.

The unsupervised classification reveals four type of students profiles in our
database, see Figure 9. Cluster 3 (12 students) showed a very good level in maths
(above 7) compared to the other profile groups and almost no difficulties were
highlighted. Cluster 1 (28 students) did not record a below-average level in maths.
Unlike the other clusters, Cluster 1 shows very few students wishing to go on to
university, and most of them do not know where they are going. In addition, these
students felt that they did not need to understand mathematics through their mother
tongue. Cluster 2 (48 students) and Cluster 4 have in common the fact that not only
the student average in mathematics level is around 4 but also the fact they usually
need comprehensions in the mother tongue. In cluster 2, the school environment has
a higher impact than the others. Among the clusters, only cluster 4 (18 students)
reveals a less important impact of the school environment.

Now let us discuss about the parameter estimation strategy developed above. The
following result is the EM estimation based on a two-component mixture model, the
mixture component parameter is confirmed by the use of k-means clustering method
Sinaga and Yang (2020). We summarize the estimation results of the mixture models
in Figures 10 and 11 and in Table 6 and 7 of the Supplementary Material. We
conclude that the best-fit mixture is given by a Weibull mixture distributions.

As concerned the proposed new estimation method based on the tail regression
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(a)

Figure 9. Clustering of student profiles.

(a) (b)

(c)

Figure 10. Mixture estimation using EM algorithm for students’ Maths level distribution.
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(a) (b)

(c)

Figure 11. Mixture estimation using EM algorithm for teachers’ Maths attitude level distribution.

(a) (b)

Figure 12. Stable density Estimation.

estimation method and log-moments estimation method for stable distributions, we
firstly give a simulation study result based on the performance of the underlined
estimators of α (see Table 5 of the Supplementary Material) for various sample
size n and some choice of the threshold k (or largest positive values x). Note that we
are concerned with positive and independent sample data of student maths level and
teachers’ maths attitude. The others parameters of the strictly stable distribution was
done using the log-moments estimation method, see Table 8 of the Supplementary
Material. The estimated stable density is shown in Figure 12. We can see that α-
stable distributions, α ∈ (0, 2), are not suitable for teachers’ maths attitude toward
mathematics distributions.
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Conclusion and Perspectives

In this study, we considered two aspects of the attitude towards mathematics both
for students (perception, usefulness, interest, social factors, school environment) and
teachers (perception,experience). Didactic approaches though semiotic representation
and contextualisation offers a modeling study from a survey data where languages
issues are considered. Statistical modeling tools such as the Generalized linear model
allow preliminary to check for the variable selection and importance. We examined
the different cluster profiles of teachers and students obtained by the unsupervised
classification method. We consider some new parameter estimation methods to study
the distribution of the students’ maths level and teachers’ attitude level from stable
distributions. We also deal with classical parameter estimation for extreme value dis-
tributions. This work provide a first view the attitudes toward mathematics modeling
and allow some fruitful discussions in order to point out a teaching-learning process
for a constructive engagement and the future development of the teaching profession
taking into account students attitudes’ toward mathematics. We are currently expe-
riencing the use of traditional games for student to better learn some mathematical
contents and for teachers to perform the teaching of mathematics in the form of Lesson
study; thus improving the attitudes toward mathematics.
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Table 1. Results description in French and Maths for students

Variable Observation
Understanding phrases read by the teacher [32.10%; 33.60%]
Read aloud words [31%; 42%]
Read aloud a text [31%; 41%]
Understand sentences read alone [39.5%; 44%]
Problem solving [20%; 25.5%]

Table 2. Teacher’s choice for training in french and maths lessons

Variable Observation
Learning to read 25%
Written production training 21%
Developing oral skills 16%
Reading comprehension 11%
Developing the lexicon 7%
Phonology 11%
Mental calculation 2%
Problem solving 44%
Number’s construction 26%
Geometry 19.5%
Measure and object 5%
Explicit teaching 3.5%

Table 3. Full description of the student survey database variables

Recoded Variable Description
Math level Student mean math level recorded
Makeup class Question related to homework reinforcement
Age Age of the respondent
Encountered Difficulties Question about the difficulties

encountered in maths course
Nbh maths Total number of teaching math hours

courses received
Nbh French Total number of teaching french hours

courses received
Parent status Question related to parent

professional status
Maths notions often explained mother tongue Type of mathematical concepts

explained in local languages by classmates
Understanding by Mother tongue Type of mathematical explanations

received in local language
Assimilated maths notions Mathematical concepts assimilated
Birth place Place of birth
Commune Commune of residence
Post high school p Post baccalaureate study plans
Mother tongue Type of the local mother tongue
Internet access Does the student have access to the internet?
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Table 4. Full description of the teacher survey database variables

Recoded Variable Description
Experience Experience
Math level and report as teacher Teacher’s attitude level

towards mathematics
liked math notion as student Mathematical contents, teachers enjoyed as students
Difficulty math notion as student Mathematical concepts, teachers found difficult as students
Math notions like to teach Mathematics concepts teachers like to teach
Math notions difficult to teach Mathematics concepts, teachers found difficult to teach
Professional training desired as teacher Mathematics training desired by teachers
Teaching preparation time Teaching preparation time

Table 5. Performance of the tail exponent parameter estimator with simulated data

n k= x% n α α̂
100 x=15 0.5 0.55
150 x=15 0.5 0.52
250 x=20 0.5 0.49
1000 x=20 0.5 0.50
100 x=15% 1.5 1.53
250 x=25 1.5 1.49
1000 x=20 1.5 1.58

Table 6. Explicit parameters and Log-likehood Estimation (LLE) for teachers’ maths attitude level fitted
distribution

Law Parameters LLE
Weibull p=0.8242; scale1=5.008906 ; shape1= 3.597334 ; scale2=8.1768 ; shape2= 12.7306 -177.7614
Frechet p=0.8675; scale1=3.3841 ; shape1= 1.6743 ; scale2=7.2974 ; shape2= 15.9227 -219.7841
Gumbel p=0.9074; location1=3.9914 ; scale1= 1.7145 ; location2=7.4265 ; scale2= 0.5208 -208.4474

Table 7. Table S7: Explicit parameters and Log-likehood (LLE) for students’ maths level fitted distribution

Law Parameters LLE
Weibull p=0.8241; scale1=5.0087 ; shape1= 3.5976; scale2=8.1766 ; shape2= 12.72805 -325.7509
Frechet p=0.8675; scale1=3.3841; shape1= 1.6743; scale2=7.2974 ; shape2= 15.92271 -394.4327
Gumbel p=0.9073; location1=3.9914; scale1= 1.7144 ; location2=7.4265 ; scale2= 0.5208 -340.5867

Table 8. Explicit parameters and Log-likehood (LLE) with a strictly stable density

Target distribution Parameters LLE
Students’ maths level α=0.7730; β= 0.08 ; σ=2.6823; µ= 0 -401.5666
Teachers’ attitude level α=0.4821; β= 0.008; σ=4.73 ; µ= 0 -482.4655
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Figure 13. A view of the variable importance in the teachers’ database.

Figure 14. A view of the variable importance in the students’ database.
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