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ABSTRACT
DNA exhibits remarkable potential as a data storage solution
due to its impressive storage density and long-term stability,
stemming from its inherent biomolecular structure. However,
developing this novel medium comes with its own set of chal-
lenges, particularly in addressing errors arising from storage
and biological manipulations. These challenges are further
conditioned by the structural constraints of DNA sequences
and cost considerations. In response to these limitations, we
have pioneered a novel compression scheme and a cutting-edge
Multiple Description Coding (MDC) technique utilizing neural
networks for DNA data storage. Our MDC method introduces
an innovative approach to encoding data into DNA, specifically
designed to withstand errors effectively. Notably, our new
compression scheme overperforms classic image compression
methods for DNA-data storage. Furthermore, our approach
exhibits superiority over conventional MDC methods reliant
on auto-encoders. Its distinctive strengths lie in its ability to
bypass the need for extensive model training and its enhanced
adaptability for fine-tuning redundancy levels. Experimen-
tal results demonstrate that our solution competes favorably
with the latest DNA data storage methods in the field, offering
superior compression rates and robust noise resilience.

Index Terms— DNA data storage, Multiple Description
Coding (MDC), Implicit Neural Network (INR), Quaternary
Shannon Fano Entropy Coder (SFC4).

1. INTRODUCTION
The memory of humanity hinges on our capacity to effectively
handle ever-expanding volumes of data, spanning timeframes
ranging from mere years to several centuries. As our current
storage media struggle to keep pace, there is an urgent need to
explore groundbreaking solutions that can be swiftly put into
practical use. In the development of alternative data storage
methods, synthetic molecules, particularly synthetic DNA, ap-
pear as one of the most promising options. Due to its density,
durability, and its low energy consumption, synthetic DNA is
an ideal storage support candidate for long-term data storage.
The initial phase in the data encoding process involves con-
structing a sequence of nucleotides A, T, C, and G (referred
to as nts). However, it is imperative that the DNA-encoded
information stream follows specific biochemical constraints.
These constraints include avoiding homopolymers, maintain-
ing a balanced GC content, and preventing repetitive patterns.
Additionally, it is crucial to acknowledge that the biochemical
procedures involved in this process can introduce errors that
may compromise the integrity of the stored data. Operations
such as synthesis, sequencing, storage, and DNA manipula-
tion can introduce errors in the form of substitutions and indels
(insertions or deletions of nucleotides). During the last decade,
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information therorists have developed different schemes for the
encoding of digital data into DNA, with some of them target-
ing the storage of images [1, 2]. Some compression algorithm
and coders have been developed specifically for this paradigm
of data storage [3, 4, 5, 6]. This work introduces a Single
Description Coder (SDC) and a Multiple Description Coder
(MDC) designed for DNA data storage with the SDC method
exhibiting superior compression performance compared to the
existing state of the art. MDC for image encoding involves en-
coding multiple representations of an image; if one is lost or
corrupted during transmission, the remaining descriptions can
still be used to reconstruct the original image with some qual-
ity degradation. Recent research [7, 8] show a potential use
of neural networks to generate different descriptions, which
involve Generative Networks and Compressive Autoencoders.
However, the main drawback of this method is its long training
process that has a high computational cost. Furthermore, the
training process must be performed with very large datasets to
converge towards an optimal model. This is even more chal-
lenging in the MDC context due to the redundancy adaptation
mechanism, which requires retraining the model.

In recent works on image compression using neural net-
works, the so-called Implicit Neural Representation (INR),
learns to represent an image implicitly through its weights,
a coordinate map, and possibly a latent space [9, 10]. More
recently, the Coordinate-based Low Complexity Hierarchical
Image Codec (COOL-CHIC) framework [11] has achieved
superior performance compared to traditional image compres-
sion methods. The first MD scheme using INR (INR-MDSQC)
is proposed in [12] with the following advantages: generalized
model training is unnecessary, high performance and flexible
redundancy tuning. However, INR-MDSQC’s drawback is the
number of descriptions, which is limited to two. Moreover,
those descriptions are not balanced. The goals of implement-
ing Multiple Description Coding (MDC) in DNA data storage
are twofold: minimizing the reading cost, and enhancing noise
robustness. This is particularly crucial due to the biochemical
constraints inherent in the process, which can result in the
absence of certain oligos. To our knowledge, this work consti-
tutes the first MDC application for DNA data storage. More
precisely, we propose a Spatial Frequency Multiple Descrip-
tion based on INR (SF-MDC) generalized to N descriptions,
and evaluate its performance on the Kodak Lossless True Color
Image Suite dataset.1.

2. SPATIAL FREQUENCY MDC

In this section, we introduce a SF-MDC approach that incorpo-
rating an INR. The SF-MDC architecture, as depicted in Fig.
1, comprises four main components:

• N sets of hierarchical latent spaces

1http://r0k.us/graphics/kodak/
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Fig. 1: SF-MDC: During the training process, N latent sets are initially divided into blocks of size 8x8. Each block is then quantized independently with
added uniform noise. These quantized latent blocks are then fed into the Block Merger module. In this module, each block is categorized as either redundancy
or principal. Principal blocks are merged to form the central description, as illustrated in Fig. 2. Both these side descriptions and the central description are
then input into the synthesis module, which generates the corresponding reconstruction and computes the related distortion. The latent space is updated using
the back-propagation process, which is based on the distortion measured in MSE. Simultaneously, the Auto-regressive model is refined to better estimate the
distribution of the quantized latent space.

• fθ: Synthesis Model with θ its parameters
• fψ: Auto-regressive Model with ψ its parameters
• Block Splitter/Merger

2.1. Synthesis model
The quantization process is defined as follows:

ŝ = Q(s,∆s) (1)
where s is the element to be quantized, and ∆s is its asso-
ciated quantization step. The latent spaces corresponding to
each description yj ∈ {y1..yN} are hierarchically organized
at different levels of resolution. Accordingly, we denote by
yk|j the latent space corresponding to resolution level k for de-
scription j. In our solution, each description contains a mix
of redundancy (low rate, low quality) and principal (high rate,
high quality) blocks. At the decoder, when all the descriptions
are received correctly, the decoder will merge all the principal
blocks to form the central description. Otherwise, the redun-
dancy blocks will be used to replace any corrupted principal
blocks. Therefore at the encoding phase, to distribute equal
amounts of redundancy across descriptions, block splitter di-
vides each yk|j into M blocks, each of size 8x8. The segment
of the latent delineated by block b is denoted as ybk|j , where
b ∈ {0, 1, ...,M − 1} is the block index. Each ybk|j is quan-
tized with a unique quantization step ∆ybk|j . A principal block
uses a finer step, and a redundancy block uses a coarser step.
The central description ŷ0 is merged from the principal blocks
as depicted in Fig. 2. Hence, each quantized block ŷbk|j is ex-
pressed as:

ŷbk|j = Q(ybk|j ,∆y
b
k|j) (2)

Therefore, the quantized latent space ŷk|j is defined as:

ŷk|j = {ŷbk|j ∈ Z8×8, b ∈ {0, 1, ...,M − 1}} (3)
From this, we deduce description j composed by the set of
different quantized latent spaces ŷk|j :

ŷj = {ŷk|j ∈ ZHk×Wk , k ∈ {0, 1, ..., L− 1}} (4)

where Hk =
H

2k
, Wk =

W

2k
, and L denotes the hierarchical

depth of ŷj . As discussed in [12], ŷj is sequentially input into
the synthesis model fθ with shared parameters, transforming
set of latent spaces into a reconstructed image. In the synthesis
model fθ, each ŷk|j is first upsampled using bi-cubic interpo-
lation to match the target image shape before being fed into the

MLP. The output of fθ is defined as:
x̂j = fθ(ŷj) where j ∈ {0, .., N} (5)

The distortion of each x̂j compared to the target image is de-
noted by Dj and measured using Mean Squared Error (MSE).
Given that the latent space is discrete and the quantization pro-
cess is non-differentiable, uniform noise is introduced to enable
differentiable operations, as described in [13]. Thus, the latent
space quantization is defined as:

ŷbk|j =

{
ybk|j + u, u ∼ U [−0.5, 0.5] during training
Q(ybk|j) otherwise

where U is the uniform noise and j ∈ {1, ..., N} (6)

Fig. 2: Block Merger Module: In this example, the number of descriptions
is N = 4. The Principal and Redundancy blocks are assigned using the prin-
ciple of round-robin item attribution. The central description is derived from
the principal blocks of the 4 descriptions. Each description is then sequentially
fed into the Synthesis model.

2.2. Autoregressive model
The auto-regressive probability model fψ , implemented as
MLP aims to closely estimate the quantized latent distribution
pψ . Since the distribution of each pixel in the latent space is
conditioned by their neighbors, according to [14] the probabil-
ity of the pixels is determined by a factorized model:

pψ(ŷj) =
∏
i,k

pψ(ŷik|j |cik|j) (7)



where ŷik|j is the latent pixel at the position i of level k of
description j and cik|j ∈ ZC are the set of decoded neighbor-
ing pixels C of ŷik|j representing decoding context. The auto-
regressive model pψ uses the Laplace distribution as described
in [11] to approximate the real probability of latent space and
by using the factorized model equation (7), the rate for each
description ŷj can be expressed as:

R(ŷj) = −log2(pψj
(ŷj)) = −log2

∏
i,k

pψj
(ŷik|j |cik|j)

= −
∑
i,k

log2pψj
(ŷik|j |cik|j) (8)

2.3. Multiple description optimization
The optimization process is divided into two distinct phases:
training and post-training. The objective of the training phase
is to update the model parameters θ and ψ, and to adapt the var-
ious latent spaces {y1, . . . ,yN} to the dynamics of the target
image. Its cost function is defined as:

Jt = D0(ŷ0) + α

N∑
j=1

Dj(ŷj) +

N∑
j=1

λjR(ŷj) (9)

where α ∈ [0, 1] is the redundancy factor, R(ŷj) denotes the
rate as defined in equation (8),Dj is the side distortion, andD0

is the central reconstruction distortion. The differences in dis-
tortion, represented by D1, . . . , DN , between the side recon-
structions x̂1, . . . , x̂N and the central reconstruction distortion
D0, are dependent on the redundancy factor α. The configu-
ration of cost function (9) pushes the Synthesis model to par-
tition the image information into N distinct descriptions and
converges towards maintaining the lowest D0 possible while
accommodating different rates. After training the network, the
model parameters ψ, θ are represented as 32-bit values, but
such precision is not necessary for transmission. Thus, in the
post-training phase the model parameters θ andψ are quantized
according to equation (1), transforming them into θ̂ and ψ̂, re-
spectively. The quantization steps for θ̂ and ψ̂ are optimized as
outlined in [12] by minimizing the post-training cost function:

Jp =D0(ŷ0, θ̂, ψ̂) + α

N∑
j=1

Dj(ŷj , θ̂, ψ̂)

+

N∑
j=1

λj(R(ŷj , θ̂, ψ̂) +R(θ̂) +R(ψ̂)) (10)

Where, R(θ̂) and R(ψ̂) represent the estimated rate utilizing a
Laplace model.

3. ENTROPY CODER ADAPTED TO DNA
3.1. Description coder: Range Transcoder
In the binary case, the Range coder [15] has been used to en-
tropy code the latent space in different MDC schemes. Since
the Range coder offers high performance at a very low entropy,
we decided to adapt it to DNA by designing a transcoder that
encodes its output into DNA. The principle of context latent
coding is depicted in Fig. 3. The encoded values from Range
coder are then fed to the C3 coder described in [16]. In this
paper, we introduced an arithmetic coder inspired by the JPEG
2000 MQ coder. This coder is based on a fixed-length code C3

composed of 48 elements. Further inspired by the Run-length
Limited (RLL) binary codes, it has been designed to prevent

Fig. 3: Context Entropy Coding with C3 DNA coder: In this example, the
model uses 12 pixels, cik|j , to yield µik|j and σik|j , modeling a Laplacian
distribution. The symbol probability is calculated, and an entropy decoder esti-
mates the latent pixel, ŷik|j , from a bitstream. The bitstream is then converted
to quaternary code by using the C3 DNA coder.

the occurrence of homopolymers, which are repetitions of the
same nucleotide too many times consecutively. The ANS coder
output will be represented in base 48. Its base 48 development
will be encoded in DNA with the C3 code.
C3 = {AAT,AAC,AAG,ATA,ATC,ATG,ACA, ...,
GCT,GCG,GGA,GGT,GGC}
|C3| = 48

3.2. ARM and Synthesis Models coder: SFC4
In [17], we introduced a novel constrained quaternary entropy
coder adapted to the biochemical constraints of DNA data stor-
age, with increased performance over the state of the art Huff-
man/Goldman algorithm [4]. In [12], the MLP can be modeled
by a Laplace distribution, so the code-book is initialized with a
frequency table following this Laplace model. After initializa-
tion, the SFC4 encoder will be used to encode all the parame-
ters of the ARM and synthesis models, since they are necessary
for decoding.

Fig. 4: Design of the differents oligos format. General format: The format
remains consistent across all oligos, with the only variation occurring in the
payload. ”S” is the orientation nt, ID is the encoded file’s label, P is a set of 4
parity nucleotides. GIO: General informations for the encoded image such as
the image size, the number of descriptions and the coding dynamics. ARMO:
Contains the weight and the bias of the ARM model. SynthO: Contains the
weight and the bias of the Synthesis model. DO: Contains the latent spaces’
pixels.

4. OLIGO STRUCTURE

DNA data storage requires the use of short strands called oli-
gos, of length generally lying between 100 and 300 nts. In this
work, we use oligos of length 200 nts. The decodability is en-
sured only if we manage to decode at least one of the descrip-
tions, the Auto Regressive Model, and the synthesis model. In
our design, we separated the different parts of the encoded data
into separate oligos. Some oligos will encode the ARM model,
some the synthesis, and other oligos will encode separate latent
spaces, as presented in Fig. 4.



(A) SDC’s Rate Distortion (B) MDC’s Rate Distortion
Fig. 5: (A) Average results over the kodak dataset. Our novel SDC coding scheme overperforms all the state of the art coders by at least 0.5 to 3 dB (JPEG DNA
BC: [2], JPEG DNA BC Transcoder: [18], JPEG DNA SFC4: [17]), (B) Average result curve over kodak dataset, the MDC side curve is the mean curve across
different descriptions. The benchmark is done with the following configuration: N number of descriptions with N = {2, 4}, α = 0.1. The SDC (N = {2, 4}) is
its rate ×N , it is equivalent to the compression rate used with MDC (N = {2, 4}), it allows us to compare SDC and MDC in terms of quality for the same rates.

(A1) Side description 1: 38.757 dB (A2) Side description 2: 38.789 dB (A3) Central description: 41.829 dB

(B1) Side description 1: 20.329 dB (B2) Side description 2: 20.039 dB (B3) Central description: 35.829 dB
Fig. 6: Loss simulation on kodim01: The image is encoded with two side description shown in (A1) and (A2). The central reconstruction computed from these
side descriptions is shown in (A3). Noise was then introduced (oligo loss), removing entire latent spaces from those side descriptions. (B1) and (B2) are respective
visual results of this noise added to the side descriptions (A1) and (A2), and (B3) is the visual result on the central reconstruction computed from (B1) and (B2).

5. EXPERIMENTS
In the following subsections, we are going to introduce com-
parative results from different DNA coding methods. All the
coders presented here use oligos of length 200 to avoid gener-
ating side effects on one of the method’s performance. The im-
ages used to conduct the test are extracted from the previously
mentioned kodak dataset. The number of hierarchy levels used
is six (L = 6).
5.1. Performance study
The new SDC shows better performance over the state of the art
image coding methods adapted to DNA as shown in Fig. 5(A).
With this new method, we were able to show gains between 0.5
and 3 dB in terms of quality of reconstruction in comparison to
the best previous method (JPEG DNA SFC4 Transcoder). The
results have been computed and averaged on the kodak dataset.

To ensure the validity of SF-MDC, its performance at cen-
tral reconstruction should neither surpass the upper limit of the
SDC nor fall below the SDC at an N× Rate. As shown in Fig.
5 (B), with α = 0.1, the solution approaches the upper bound
limit of the single SDC as the rate increases, and never goes
under the lower bound limit for different N . Besides, we ob-
served that the compression rate increases with the number of
descriptions used. On the other hand, increasing the number of
description makes the coder more robust to noise.
5.2. Noise robustness
In this section, we simulate the loss for the MDC case N = 2.
As each latent space is entropy coded and independently de-
codable. Therefore, to analyze a typical case scenario, we drop
three out of six latent spaces from each description, alternating

between different levels of descriptions (Description 1: 77%
oligo loss, Description 2: 23% oligo loss, and Central Descrip-
tion: 50% oligo loss). The results have been computed on the
image kodim01 of the kodak dataset previously mentioned. As
observed in Fig. 6, the MDC demonstrates a high resilience
capacity, maintaining a loss of only 5dB when losing a big part
of the information contained in the different latent spaces.

6. CONCLUSION
This work introduces an innovative DNA-based image codec
that achieves substantial improvements in reconstruction qual-
ity when compared to existing DNA-based image codecs. On
average, these improvements amount to 3 dB, with peak gains
of up to 5 dB. These notable enhancements result from the uti-
lization of the ARM, synthesis networks, and the DNA-adapted
ANS coder, which deliver exceptional performance even at low
entropy levels.

Furthermore, we present a Multiple Description Coder
(MDC) capable of generating a variable number of descrip-
tions. This MDC enhances the resilience of oligos to the noise
inherent in DNA data storage channels. We also conducted
experiments that involved introducing noise into the storage
channel. The result shows that we only lost 5dB in the worst
scenario.

In future works, we aim at building a noise model for the
DNA data storage channel that could further improve the noise
robustness of the MDC.
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Nicolò Cesa-Bianchi, and Roman Garnett, Eds., 2018, pp.
10794–10803.

[15] Robert Bamler, “Understanding entropy coding with
asymmetric numeral systems (ans): a statistician’s per-
spective,” arXiv preprint arXiv:2201.01741, 2022.

[16] Xavier Pic and Marc Antonini, “Mq-coder inspired arith-
metic coder for synthetic dna data storage,” 30th Inter-
national Conference on Image Processing (ICIP 2023),
2023.

[17] Xavier Pic and Marc Antonini, “A constrained shannon-
fano entropy coder for image storage in synthetic dna,”
European Signal Processing Conference (EUSIPCO),
2022.

[18] Luka Secilmis, Michela Testolina, Davi Nachtigall Laz-
zarotto, and Touradj Ebrahimi, “Towards effective visual
information storage on dna support,” Applications of Dig-
ital Image Processing XLV, 2022.


	 Introduction
	 Spatial frequency MDC 
	 Synthesis model
	 Autoregressive model
	 Multiple description optimization

	 Entropy coder adapted to DNA
	 Description coder: Range Transcoder
	 ARM and Synthesis Models coder: SFC4

	 Oligo structure 
	 Experiments
	 Performance study
	 Noise robustness

	 Conclusion
	 References

