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Abstract

The Finite Element Method (FEM) is a well-established procedure for computing approxi-

mate solutions to deterministic engineering problems described by partial differential equations.

FEM produces discrete approximations of the solution with a discretisation error that can be

an be quantified with a posteriori error estimates. The practical relevance of error estimates

for biomechanics problems, especially for soft tissue where the response is governed by large

strains, is rarely addressed. In this contribution, we propose an implementation of a posteriori

error estimates targeting a user-defined quantity of interest, using the Dual Weighted Residual

(DWR) technique tailored to biomechanics. The proposed method considers a general setting

that encompasses three-dimensional geometries and model non-linearities, which appear in

hyperelastic soft tissues. We take advantage of the automatic differentiation capabilities

embedded in modern finite element software, which allows the error estimates to be computed

generically for a large class of models and constitutive laws. First we validate our methodology

using experimental measurements from silicone samples, and then illustrate its applicability

for patient-specific computations of pressure ulcers on a human heel.

1 Introduction

The importance of finite element analyses (FEA) for biomechanical investigations has increased

considerably worldwide in recent years. Such finite element models are widely employed to
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investigate both the underlying mechanisms that drive normal physiology of biological soft

tissues and the mechanical factors that contribute to the onset and development of diseases

such as tumour growth [61, 55]), atherosclerosis or aneurysms [49], or multilevel lumbar disc

degenerative diseases [50], to name a few. Finite element models are also valuable tools that

contribute to the development of medical devices such as, for example, vascular stent-grafts

[45], and have the potential to improve prevention strategies [28, 54, 32], surgical planning

[57, 51, 8], pedagogical simulators for medical training [29, 14] and guidance of surgeons during

interventions [59, 12]. A survey of applications using simulation modelling for healthcare sector

can be found for instance in [37].

In this context, one major issue is meshing, since the reliability of the predicted mechanical

response arising from computer simulation heavily relies on the quality of the underlying finite

element mesh [23]. The patient-specific mesh has to be built from segmented medical images

(CT, MRI, ultra-sound), and has to conform to anatomical details with potentially complex

topologies and geometries [6]. In general the quality of a given mesh is assessed through purely

geometrical criteria, that allow in some way to quantify the distortion of the geometry of

the elements [9]. Beyond mesh quality, mesh density is another, related, parameter which

must be controlled during biomechanics simulations. Moreover solutions must be obtained on

commodity hardware within clinical time scales: milliseconds (for surgical training); minutes

(for surgical assistance); hours (for surgical planning). As a result one question that always

arises in practice is: “Given a tolerable error level, what is the coarsest possible mesh which

will provide the required accuracy?” This leads to the notion of “mesh optimality”, which is

achieved for an optimal balance between the accuracy in a given quantity of interest to the

user and the associated computational cost.

In this paper, we investigate the capability of a posteriori error estimates [1, 58] to provide

useful information about the discretization error, i.e., the difference between the finite element

solution and the exact solution of the same boundary value problem on the same geometry. A

posteriori error estimates are quantities computed from the numerical solution, that indicate the

magnitude of the local error. These estimates are at the core of mesh adaptive techniques [39].

Many a posteriori error estimation methods have been developed in the numerical analysis

community. These methods have different theoretical and practical properties. However,

despite their great potential, error estimates have rarely been considered for patient-specific

finite element simulations in the biomechanical community.

To the best of our knowledge, the first works that address this issue are [11, 10], which

study the discretization error (based on energy norm) of real-time simulations using the

recovery-based technique of Zienkiewicz and Zhu [62]. This approach is inexpensive and allows

to deal with real-time simulations. However, the error in energy norm might not provide useful

information for applications where one is interested in the error of a real physical quantity

of interest. To overcome this difficulty, estimates based on duality arguments are common

for a posteriori error estimation, see e.g. [3, 26, 41, 46, 34, 20]. A preliminary study has

been carried out previously in this direction in [16] by the authors of the present paper. This

study makes use of the Dual Weighted Residuals (DWR) method, as presented in [3]. Let

us recall that the main idea of this method is to solve a dual problem, the solution of which

is used as a weight that indicates locally the sensitivity of the quantity of interest for each

cell-wise contribution to the discretization error. However, this aforementioned study is limited

to a simplified setting, since it was aimed at giving preliminary insights and at addressing

the first technical difficulties. The modelling of soft tissues in [16] is indeed restricted to

two-dimensional linear elasticity (plane strain) problems and to a quantity of interest that
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should depend linearly of the displacement.

As a result, the main goal of this paper is to handle a setting much closer to current

practice in soft tissue simulation. For this purpose, we consider three-dimensional (passive)

hyperelastic soft tissue and arbitrary quantities of interest, that may depend non-linearly on

the displacement. The DWR method is very well adapted to this setting, as it was designed

originally for non-linear problems [3] (see also [30, 60, 21, 22] for applications in non-linear

elasticity). Nevertheless, one major issue for its application is the practical calculation of the

dual solution, which involves the derivatives of the primal weak form and of the quantity of

interest (this problem does not appear in the linear setting). This formal derivation can be

intricate for soft tissue models built from complex hyperelastic constitutive laws. To handle

this issue, we take advantage of the capabilities of modern finite element softwares such as

FEniCS or GetFEM++, that integrate automatic symbolic differentiation. Not only it makes

easier the implementation of the DWR method for error estimation, but also it requires no real

effort if the constitutive law is changed. Then, we validate the methodology using experimental

data obtained from in-vitro study of silicone samples [36] and show its potential interest on an

example coming from patient-specific simulation.

This paper is organized as follows. In Section 2, we describe the hyperelastic setting for

passive soft tissue, the corresponding finite element discretization, the DWR a posteriori

error estimation as well as the algorithm for mesh refinement. In Section 3, we illustrate the

methodology for different test-cases. The results are discussed in Section 4.

2 Methods

First we present the model problem, then the finite element discretization and finally the error

estimation and mesh refinement techniques.

2.1 Problem setting: incompressible hyperelastic soft tissue

We consider an (incompressible) hyperelastic body in a reference configuration denoted by Ω,

an open subset of R3, and subjected to a given body force B. The unknown displacement

field and the unknown static pressure are denoted by u and p, respectively. The deformation

gradient is denoted F , with F := I + ∇Xu, where I stands for the identity matrix, and ∇X

denotes the gradient with respect to coordinates in the reference configuration. The first

Piola-Kirchhoff stress tensor denoted Π is derived from the hyperelastic strain-energy density

function W , which depends on the displacement field u and the pressure p, as follows:

Π =
∂W

∂F
. (1)

In the present paper, we will consider different incompressible material models corresponding

to some strain-energy densities, namely:

1. Mooney-Rivlin model (see [38]):

W := c10(J1 − 3) + c01(J2 − 3) − p(det(C) − 1) (2)

2. Gent model (see [19]) :

W :=
−EJm

6
ln

(
1 − J1 − 3

Jm

)
− p(det(C) − 1) (3)
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3. Haines-Wilson model (see [27]):

W := c10(J1 − 3) + c01(J2 − 3) + c20(J1 − 3)2 + c02(J2 − 3)2

+ c30(J1 − 3)3 + c11(J1 − 3)(J2 − 3) − p(det(C) − 1) (4)

where C(:= F T · F ) denote the right Cauchy-Green tensor, J := det F the jacobian of the

deformation, where I1 := trace C, I2 := 1
2
((tr C)2−tr (C ·C)), J1 := I1J

− 2
3 and J2 := I2J

− 4
3

are invariants associated to the deformation and cij , Jm and E are some coefficients which

will be given in Table 1. For the sake of simplicity, the boundary ∂Ω of Ω is partitioned into

two subsets ΓD and ΓN , and we apply a prescribed displacement u = uD on ΓD and a given

force T on ΓN .

Let us introduce the virtual works associated to the internal and external forces:

A(u,p;v, q) :=

∫
Ω

Π(u,p) : ∇Xv dΩ+

∫
Ω

(1−det(C))q dΩ, L(v) :=

∫
Ω

B·v dΩ+

∫
ΓN

T ·v dΓ,

where u and v are admissible displacements and p and q are admissible pressures. The

hyperelastic problem in weak form reads Find a displacement u,with u = uD on ΓD and a pressure p such that

A(u,p;v, q) = L(v), ∀(v, q), v = 0 on ΓD,
(5)

Let Kh be a mesh of the domain Ω. Let us denote by Vh×Qh the finite element pair that makes

use of the lowest-order Taylor-Hood finite elements on Kh (continuous piecewise polynomials

of order 2 for the displacement and of order 1 for the pressure). The finite element method to

solve our hyperelastic problem reads Find a displacement uh ∈ Vh, with uh = uh
D on ΓD and a pressure ph ∈ Qh such that

A(uh,ph;vh, qh) = L(vh), ∀(vh, qh) ∈ V 0
h ×Qh,

(6)

where V 0
h is composed by the functions of Vh vanishynig on ΓD and where uh

D is a finite

element approximation of uD, obtained for instance by Lagrange interpolation or by projection.

Note that the above choice of Taylor-Hood finite elements is for the sake of simplicity,

and that the methodology described below for mesh refinement can be extended rather

straightforwardly to other conforming variational discretization techniques, provided they

ensure a stable and accurate approximation of the finite elasticity equations, and that they

allow to split the residual as a sum of local contributions. For instance, any other infsup stable

pair of finite elements (mini-element, P2-iso-P1) on simplicial, tensor-product or mixed meshes

can be considered.

2.2 Quantity of interest

The objective of goal-oriented error estimation is to estimate the error of the finite element

solution for a user-defined quantity, possibly different from the energy norm, see [2, 3, 20, 21, 40].

The idea of this technique comes from the fact that one would like to analyse the error of a

predefined target quantity since in certain circumstances the global error norm may not be

useful.

Let Q(u,p) be a quantity of biomechanical interest computed from the exact solution

(u,p) of the problem (5), with smooth, but possibly nonlinear, dependence on (u,p). The
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aim is to estimate the error for the quantity of interest

|Q(u,p) −Q(uh,ph)|

where (uh,ph) is the approximated finite element solution of (6).

2.3 Dual problem for computing the weights

One of the main ingredients of the DWR method is to solve an adjoint problem to extract

information from the quantity of interest, and get feedback about the regions where it is more,

or less, influenced, by the approximation error. As a result, we compute a pair of dual variables

(zh,wh) by solving Find (zh,wh) ∈ V 0
h ×Qh such that

(A′)∗(uh,ph|zh,wh;vh, qh) = Q′(uh,ph|vh, qh) ∀(vh, qh) ∈ V 0
h ×Qh,

(7)

where A′ and Q′ denote the Fréchet derivative of A and Q, respectively, and (A′)∗ is the adjoint

form of A′. Then we extrapolate the solution in a finite element space of higher polynomial

degree following [48, Fig. 5.1]. This function weights the residual in our estimator.

Remark that the dual problem (7) is linear, so solving it is not expensive in comparison to

(5). For model problems such as (5), and some expressions of Q, the practical calculation of

A′ and Q′ can be tough. For this purpose, we take advantage of the capabilities of automatic

symbolic differentiation embedded into modern finite element software such as FEniCS or

GetFEM++. Furthermore, this feature makes possible some genericity in the implementation:

virtually nothing has to be changed in the program if the hyperelastic constitutive law is

modified.

2.4 The representation formula of Becker and Rannacher

We introduce r(uh,ph;v, q) the residual of Problem (6) as

r(uh,ph;v, q) = L(v, q) −A(uh,ph;v, q) ∀(v, q) ∈ V ×Q. (8)

This, roughly speaking, quantifies how well the hyperelasticity equations are approximated

(it should tendsto zero if the mesh is uniformly refined). Thanks to the dual system (7), we

obtain expression of the error on Q as a best approximation term involving the residual and

the (exact) dual solution (see [3, Proposition 2.3]):

Q(u,p) −Q(uh,ph) = min
(vh,qh)∈Vh×Qh

r(uh,ph;z − vh,w − qh) + Rm (9)

where Rm is the high order remainder related to the error caused by the linearization of the

nonlinear problem (the precise expression of which can be found in [3]). In practice, this

quantity is, hopefully, negligible. Note at this stage that there are various possibilities to

represent the error on Q, which are detailed in [3], and for instance, in [48], the authors make

use of another representation formula (Proposition 2.4) which is then approximated.

Proceeding as usual in a posteriori error estimation, i.e., after performing integration by

parts on the residual r, we localize the different contributions to the goal-oriented error as

follows:

|Q(u,p) −Q(uh,ph)| ≤
∑

K∈Kh

ηK((uK ,pK), (zK ,wK)) + H.O.T. (10)
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In the above expression, K denotes any cell of the mesh Kh, and expressions such as uK

denote the local restriction of the finite element variable uh ot the cell K. Moreover H.O.T.

denotes high order terms, that are not considered in the implementation. In Appendix are

provided the detailed expression of ηK .

2.5 Adaptive mesh refinement

Using the error estimate on Q, we implement a standard procedure for mesh refinement. As

described in Algorithm 1, we start with an initial mesh called meshi, and by providing a guest

solution u
(0)
i , the nonlinear primal problem can be solved using the Newton’s method (see

Algorithm 2). Once accepting ui as the solution of the primal problem, solving the discrete

dual problem (see Algorithm 3) provides the dual solution zi of the actual mesh meshi. The

estimator ηK is then computed providing the primal and dual solutions ui and zi, respectively.

From the estimator, different strategies can be used to mark the elements whose error is

high. In this paper, we use the Dörfler marking strategy [15] (see Algorithm 4). The detailed

algorithms are given in the Appendix.

3 Results

In this section, we present the performance of the DWR method in controlling the discretisation

error in simulations employing hyperelastic models. We will consider two test cases. In the

first one, we will compare different constitutive laws and compute the model error thanks to

experimental data. We will then highlight the performance of the DWR strategy to reduce

the discretisation error. The second test case will be only in silico on a heel geometry. The

simulations have been realized thanks to the python library FEniCS and the code is available

online[17].

3.1 First test case : silicone samples

The experimental procedure is briefly recalled here for the sake of clarity. For more information,

the reader is referred to [36]. Simple tensile tests are performed on dumbbell shaped samples

of silicone rubber (RTV 141) having an initial gauge length l0 of 82.5 mm, a gauge width b0 of

61.5 mm and a gauge thickness e0 of 1.75 mm. The sample contains five holes of diameter 20

mm and the position of the centres of the holes and the corners are given in Figure 1. There

is also a cut between the circles C1 et C3.
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X (mm) Y (mm)

O 0 0

B -62 0

C -62 -82.5

D 0 -82.5

C1 -47.5 -21.4

C2 -14.0 -23.0

C3 -31.5 -41.0

C4 -47.7 -59.1

C5 -14.5 -58.0

Figure 1: Geometry of the silicone sample, position of the holes and initial mesh.

Tested samples are deformed using a universal mechanical testing machine (MTS 4M) (see

[36]). Dirichlet boundary conditions are imposed on the bottom edge of the dumbell silicone

sample. On the left and right boundaries, we impose a homogeneous Neumann boundary

condition (F = 0). In the experiment, the following Neumann boundary condition is imposed

on the top edge: F = (fA/(b0 × e0))n such that
∫
ΓN

F · nds = 20 N. This force implies

an observed vertical displacement of 57.3mm. In the simulations, we do it the other way

round: we fix the bottom and we impose a displacement of 57.3mm on the top. We guess

the corresponding traction force on the top boundary. Thus,we will consider the following

quantities of interest

Q(u,p) =

∫
top

(Π(u) ·N) ·Nds,

where the integral is taken on the top of the silicon band.

Table 1 recalls the value of the constitutive parameters used in the simulations. In Table 2,

we compare the model and discretisation error for the constitutive laws of Mooney-Rivlin (2),

Gent (3) and Haine-Wilson (4), respectively, for the quantity Q. The model error corresponds

to the relative error between a very fine FEM solution ufine and the experimental quantity

of interest. The discretization error corresponds to the relative error between the computed

solution on the current mesh and the computed solution on a very fine mesh, i.e.

model error =
|Q(ufine) − 20|

20
and discr. error =

|Q(uh) −Q(ufine)|
Q(ufine)

.

The parameters of each law have been estimated from [36] and are provided in Table 1. We

give in Figure 3 the refined mesh in the case of the Haine-Wilson law (left) and the deformed

geometry when we apply the load (right). We remark that the refinement occurs mainly on

the top the silicone where is localised the quantity of interest but also near the holes.

3.2 Second test case : Human heel

A pressure ulcer (PU) is a wound stemming from excessive loads on biological soft tissues

which leads to ischemia, which in turn triggers tissue necrosis. Two fifth of the patients taken

in charge by a reanimation unit or in a geriatric unit will develop a PU. 40% of those ulcers

are located at the posterior part of the heel because the patient stays for hours lying on his
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Mooney C10 = 0.14 C01 = 0.023
Gent E = 0.97 Jm = 13
Haines-Wilson C10 = 0.14 C20 = −0.0026 C30 = 0.0038

C01 = 0.033 C02 = 0.00095 C11 = −0.0049

Table 1: First test case (silicone sample). Values of the constitutive parameters of each hyperelastic
law, following [36].

Mooney-Rivlin Gent Haine Wilson
Nb Model Discr. Nb Model Discr. Nb Model Discr.
Cells Error Error Cells Error Error Cells Error Error
1333 7.0% 1333 9.6% 1333 8.0%
1664 8.1% 1654 10.4% 1706 8.8%
3047 7.2% 3281 9.1% 3441 7.8%
5307 17.0% 4.3% 5414 2.1% 5.9% 5692 0.5% 4.6 %
9426 3.0% 9947 3.7% 10383 2.9 %
18118 2.3% 18088 2.6% 19489 2.0%
33982 1.9% 34883 2.0% 38466 1.8%

Table 2: First test case (silicone sample). Relative model and discretisation error of the quantity
of interest Q1 with respect to the number of cells. The model error is computed thanks to the
experimental data.

Figure 2: lar

Figure 3: First test case (silicone sample). Refined mesh for the Haine-Wilson model (left);
Deformed geometry (right)
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103 104 105
10−2

10−1

Nb of cells

|Q(uh)−Q(u)|/Q(u) Uniform

|Q(uh)−Q(u)|/Q(u) adaptative

103.5 104

0

1

2

3

Nb of cells

ηh/[Q(uh)−Q(u)]∑
T ηT /[Q(uh)−Q(u)]

Figure 4: First test case (silicone sample). Relative error of discretisation (left) and efficiency of
the estimator (right).

back without moving [43]. This condition is often followed by amputation of part of the foot.

The high prevalence of the pathology is the motivation behind the recent development of PU

prevention strategies. Some of these approaches resort to personalized biomechanical modeling

of the patient’s soft tissues, where tissue compression is numerically predicted based on the

loads measured underneath the bedridden patient’s heels. The current consensus in the PU

prevention community is that PU risk assessment should be based on an indicator of tissue

suffering derived from the Von Mises stress, see [31]. Thus, a personalized biomechanical

model should be able to predict the onset of a PU by continuously monitoring this quantity of

interest, and by triggering an alarm if the risk exceeds a pre-defined threshold.

The accuracy of such prediction not only highly depends on the accuracy of the determined

mechanical properties of the heel tissue, on the correct boundary conditions used in the

simulation, but also on the numerical method (here the FEM) which is capable to solve the

problem in a way that the error is controlled.

Figure 5 shows a heel tissue model used in our simulation. Its orientation corresponds to

the situation when the patient is on bed. Boundary conditions used are shown in Figure 6.

We consider Von Mises stress is a good factor to predict the tissue damage. A region in which

we consider the heel tissue is vulnerable is shown by cyan colour in Figure 6b. Our quantity of

interest is thus expressed through the first Piola-Kirchhoff stress tensor Π over the domain of

interest ω, as

Q(Π(u,p)) =

∫
ω

√
1

2
((Π11 −Π22)2 + (Π22 −Π33)2 + (Π33 −Π11)2 + 3(Π2

12 + Π2
21 + Π2

23 + Π2
32 + Π2

31 + Π2
13)).

(11)

The heel tissue is supposed to behave like an incompressible hyperelastic material with the

mechanical properties: Mooney-Rivlin with C10 = 16.6kPa and C01 = 0 (see [44]).

Figure 7 shows the convergence of the error estimator under both uniform and adaptive

refinements. It is observed again that using adaptive refinement scheme is more advantageous

than the uniform one since the corresponding error converges with higher rate. Refinement

patterns are shown in Figure 8.
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Figure 5: A part of a heel tissue model used in simulations in which its orientation corresponds to
the situation when the patient is on bed.

(a) (b)

Figure 6: The heel tissue is considered to be fixed on the surface which has contact with the
calcaneum, and on the upper surface, shown by gray colour in (a); the tissue surface where a
pressure is applied is shown by red colour, whereas a region of interest is also shown by red colour
(b).
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103.5 104

10−2.5

10−2

Nb of cells

|Q(uh)−Q(u)|/Q(u) uniform

|Q(uh)−Q(u)|/Q(u) adaptative

103.2 103.4 103.6 103.8 104

−4

−2

0

2

4

Nb of cells

ηh/[Q(uh)−Q(u)]∑
T ηT /[Q(uh)−Q(u)]

Figure 7: Second test case (Human heel undergone surface pressure). Relative error of discretisation
(left) and efficiency of the estimator (right).

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8: Second test case (Human heel undergone surface pressure). From the back, initial mesh
(a), adaptive mesh obtained after the first iteration of refinement (b), after the second iteration of
refinement (c), the final mesh obtained after the 3th iteration of refinement (d). The same meshes
from the front (e)-(h).
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We remark that the algorithm refine in the lower part of the heel which is in coherence

with [56, 18, 52, 33]. These zones correspond to the onset of pressure ulcers (see [53]). The

added value of our DWR-driven adaptative meshing is that it automatically refines according

to a quantity of interest. It not only optimises locally in the region of interest but also takes

into account the far-field / global errors that contribute.

4 Discussion

We summarize below our main achievements, discuss their current limitations and suggest

some perspectives.

4.1 Main achievements

We illustrate in this paper the feasibility of carrying out mesh refinement in modern finite

element environments such as FEniCS, driven by a goal oriented error estimate, to improve the

accuracy of an arbitrary user-defined quantity of interest. This is done for a three-dimensional

nonlinear problem that involves incompressible hyperelasticity. This model is of common use

in the biomechanics community. Notably, large displacements and large strain are taken into

account. Furthermore, there is no difficulty to incorporate incompressibility.

The prediction outcome of the simulations has been confronted to experimental mea-

surements on silicone sheets. Validation and verification of simulations in computational

biomechanics is a complicated issue, since measurements on real patients and real clinical

situations lack of precision and reproductibility. Indeed, some difficulties arise to control

and know accurately all the relevant parameters. Though they are of course not identical as

human soft tissues, materials such as silicone are interesting, since the numerical model can

be calibrated with precision and numerical simulations can be confronted to measurements.

However, it is still very difficult to find some published material for this purpose, and we took

advantage of the study of Meunier et al [36]. In addition, let us emphasize the following points

1. The test with the silicone sample provides extra information about the modelling error,

in the sense it also quantifies the predictive power of the constitutive law.

2. When the mesh is too coarse, the discretization error is of the same magnitude of this

modelling error.

3. With adaptive mesh refinement, the discretization error can be controlled and driven

below a given threshold that makes it negligible, without having to overrefine the mesh.

4. Another example close to clinical biomechanics has been carried out on a three-dimensional

complex patient-specific geometry of the heel.

5. The method is easy to implement in an environment such as FEniCS, and the scripts

are freely available. They can be transposed without much difficulty to other similar

environments such as SONICS[35], GetFEM++[47], FreeFEM++[25] or SciKit-FEM[24].

6. Notably the automatic differentiation tools now available in modern finite element

software facilitate a lot the assembly of the dual problem. Solving the, linear, dual

problem remains inexpensive in comparison with the total solution procedure needed for

the nonlinear problem. Last but not least, the solution of this dual problem is the basis

of counterintuitive refinement strategies, much more efficient than adhoc refinement.
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4.2 Current limitations

Let us point out as well some limitations of the proposed methodogy:

1. The dual solution needs to be approximated, and when the same finite element spaces

are used for the primal and dual problem, an extra extrapolation step needs to be carried

out. The accuracy of this procedure may be quantified more precisely and improved. In

practice it has revealed small effect and does not hamper the efficiency of the methodology,

but better results may even be expected if this point is improved. Another possibility is

to use higher order spaces for the dual problem, but this solution is much more expensive.

2. The adjoint problem, though it is linear, inherits its coefficients from the nonlinear primal

problem. In specific situations, it may be ill conditionned and this issue would need

further investigation.

3. From the representation formula (9) of Becker and Rannacher at the core of the error

estimate, we neglect the linearization error. Of course, this one is complicated to estimate

in general and is expected to be small, but this point may deserve to be studied more

carefully in the future.

4. Reference solutions are computed solutions on fine meshes or eventually experimental

data. It could be interesting also to test the methodology with manufactured solutions

in hyperelasticity [42, 7, 13].

4.3 Perspectives

To decrease the computation time, it can be interesting to perfom the refinement at each

step throughout the loading. It can be significant when considering non-linear problems. A

stimulating perspective would be first to combine the current methodology with techniques for

model selection, and to estimate more systematically the model error. Also, since, for patient-

specific biomechanics, some data can be used for (possibly) real time parameter calibration, it

would be interesting to take advantage of the flexibility of the current framework to account for

parameter calibration, as already done in Becker & Vexler [4, 5] for a general setting. Another

point would consist in making the methodology available in software that are of common use

in the whole biomechanics community. More generally, a perspective can be the comparison of

the model et discretisation error with the errors coming from the geometry, the parameters of

the model and the forces applied on the organ.
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A Expression of the estimator and algorithms

We give below for each cell-wise contribution:

ηK =

∣∣∣∣∫
K

Ru · (zh − Ih(Eh(zh))dΩ +

∫
K

Rp · (ph − Ih(Eh(ph))dΩ +

∫
∂K

J · (zh − Ih(Eh(zh))dγ

∣∣∣∣
(12)

with, Eh and Ih are resp. the extrapolation (see [48]) and the Lagrange interpolation, the

interior residual

Ru = B + divΠ(uh) and Rp = det(C) − 1

and the stress jump

J =


− 1

2
[[Π(uh)]] if γ ̸⊂ Γ,

T −Π(uh) ·N if γ ⊂ ΓN ,

0 if γ ⊂ ΓD.

The jump can be defined for a function vh on a facet F between two cells K and K′ by

[[vh]] = vh|K · nK + vh|K′ · nK′ , where nK and nK′ are the normal of K and K′ on F .

Algorithm 1 Algorithm for mesh refinement

Select an initial triangulation meshi of the domain Ω

Guest solution (u
(0)
i ,p

(0)
i )

while
∑

K ηK > ϵ do
F (ui,pi;v, q)← A(ui,pi;v, q)− L(v, q)

ui,pi ← NewtonMethod (F (ui,pi;v, q), (u
(0)
i ,p

(0)
i )) ▷ Problem (5), see Algo 2

zi,wi ← DualProblem (ui,pi, Q) ▷ Problem (7), see Algo 3
ηK ← ComputeEstimator (ui,pi, zi,wi)
markedElements ← DorflerMarking (ηK , α) ▷ See Algo Algorithm 4
meshi ← meshi.refine(markedElements)
Compute

∑
K ηK

end while

Algorithm 2 Solving a non-linear problem: NewtonMethod (F (u
(0)
i ,v),u

(0)
i )

(uk,pk) = (u
(0)
i ,p

(0)
i )

while |(δu, δp)| > ϵ do
F ′(uk; δu,v) = −F (uk;v) ▷ Solve for δu
(uk+1,pk+1)← (uk + δu,pk + δp) ▷ Update the solution
Compute |(δu, δp)|

end while

Algorithm 3 Solving the dual problem: DualProblem (ui, Q)

Compute A′(ui,pi|zi,wi;v, q)
Compute Q′(ui,pi;v, q)
(zi,wi)← solve (A′(ui,pi|zi,w;v, q) = Q′(ui,pi;v, q)) ▷ Solve the linear system

14



Algorithm 4 Mark elements after Dörfler strategy by providing a element-wise estimator ηK =
[ηK1

, ηK2
, . . . ηKN

], and 0 < α < 1 a parameter which characterises the marking rate: the smaller
the value of α is, the fewer the number of elements will be marked: DorflerMarking (ηK , α)

Sort the elements Ki after descending order of the corresponding estimator ηKi

Mark the first M elements such that

markedElements← min

{
M ∈ N

∣∣∣∣∣
M∑
i=1

ηKi
≥ α

N∑
i=1

ηKi

}
.
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