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Abstract

Errors in biomechanical simulations arise from modelling and discretization. Discretization errors can be quantified

with a posteriori error estimates. The relevance of such error estimates for practical biomechanics problems is rarely

adressed. In this contribution, we propose an implementation of a posteriori error estimates targeting a user-defined

quantity of interest, with the Dual Weighted Residual (DWR) technique tailored to biomechanics. We consider

a general setting that encompasses three-dimensional geometries as well as model non-linearities, appearing in

hyperelastic soft tissues. We take advantage of the capabilities of automatic differentiation embedded into modern

finite element software, that allows to compute the error estimates generically for a large class of models and

constitutive laws. First we validate our methodology using experimental measurements from silicone samples, and

then illustrate its applicability for patient-specific computations of pressure ulcers on a human heel.

1 Introduction

Patient-specific finite element models of soft tissue and organs receive a large amount of interest. Such finite

element models are widely employed to investigate both the underlying mechanisms that drive normal physiology of

biological soft tissues and the mechanical factors that contribute to the onset and development of diseases such

as tumour growth [60], atherosclerosis or aneurysms [50], or multilevel lumbar disc degenerative diseases [1], to

name a few. Finite element models are also valuable tools that contribute to the development of medical devices

such as, for example, vascular stent-grafts [46], and have the potential to improve prevention strategies [29, 54, 33],

surgical planning [56, 51, 10], pedagogical simulators for medical training [30, 16] and guidance of surgeons during

interventions [58, 14]. A survey of applications using simulation modelling for healthcare sector can be found for

instance in [38].
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In this context, one major issue is meshing, since the reliability of the predicted mechanical response arising from

computer simulation heavily relies on the quality of the underlying finite element mesh [2]. The patient-specific mesh

has to be built from segmented medical images (CT, MRI, ultra-sound), and has to conform to anatomical details

with potentially complex topologies and geometries [8]. In general the quality of a given mesh is assessed through

purely geometrical criteria, that allow in some way to quantify the distortion of the geometry of the elements [11].

Beyond mesh quality, mesh density is another, related, parameter which must be controlled during biomechanics

simulations. Moreover solutions must be obtained on commodity hardware within clinical time scales: milliseconds

(for surgical training); minutes (for surgical assistance); hours (for surgical planning). As a result one question that

always arises in practice is: “Given a tolerable error level, what is the coarsest possible mesh which will provide

the required accuracy?” This leads to the notion of “mesh optimality”, which is achieved for an optimal balance

between the accuracy in a given quantity of interest to the user and the associated computational cost.

In this paper, we investigate the capability of a posteriori error estimates [3, 57] to provide useful information

about the discretization error, i.e., the difference between the finite element solution and the exact solution of

the same boundary value problem on the same geometry. A posteriori error estimates are quantities computed

from the numerical solution, that indicate the magnitude of the local error. These estimates are at the core of

mesh adaptive techniques [40]. Many a posteriori error estimation methods have been developed in the numerical

analysis community. These methods have different theoretical and practical properties. However, despite their

great potential, error estimates have rarely been considered for patient-specific finite element simulations in the

biomechanical community.

To the best of our knowledge, the first works that address this issue are [13, 12], which study the discretization

error (based on energy norm) of real-time simulations using the recovery-based technique of Zienkiewicz and Zhu

[61]. This approach is inexpensive and allows to deal with real-time simulations. However, the error in energy norm

might not provide useful information for applications where one is interested in the error of a real physical quantity

of interest. To overcome this difficulty, estimates based on duality arguments are common for a posteriori error

estimation, see e.g. [5, 27, 42, 47, 35, 22]. A preliminary study has been carried out previously in this direction in

[18] by the authors of the present paper. This study makes use of the Dual Weighted Residuals (DWR) method, as

presented in [5]. Let us recall that the main idea of this method is to solve a dual problem, the solution of which is

used as a weight that indicates locally the sensitivity of the quantity of interest for each cell-wise contribution to the

discretization error. However, this aforementioned study is limited to a simplified setting, since it was aimed at

giving preliminary insights and at addressing the first technical difficulties. The modelling of soft tissues in [18]

is indeed restricted to two-dimensional linear elasticity (plane strain) problems and to a quantity of interest that

should depend linearly of the displacement.

As a result, the main goal of this paper is to handle a setting much closer to current practice in soft tissue

simulation. For this purpose, we consider three-dimensional (passive) hyperelastic soft tissue and arbitrary quantities

of interest, that may depend non-linearly on the displacement. The DWR method is very well adapted to this

setting, as it was designed originally for non-linear problems [5] (see also [31, 59, 23, 24] for applications in non-linear

elasticity). Nevertheless, one major issue for its application is the practical calculation of the dual solution, which

involves the derivatives of the primal weak form and of the quantity of interest (this problem does not appear in

the linear setting). This formal derivation can be intricate for soft tissue models built from complex hyperelastic

constitutive laws. To handle this issue, we take advantage of the capabilities of modern finite element softwares

such as FEniCS or GetFEM++, that integrate automatic symbolic differentiation. Not only it makes easier the

implementation of the DWR method for error estimation, but also it requires no real effort if the constitutive law

is changed. Then, we validate the methodology using experimental data obtained from in-vitro study of silicone

samples [37] and show its potential interest on an example coming from patient-specific simulation.
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This paper is organized as follows. In Section 2, we describe the hyperelastic setting for passive soft tissue, the

corresponding finite element discretization, the DWR a posteriori error estimation as well as the algorithm for

mesh refinement. In Section 3, we illustrate the methodology for different test-cases. The results are discussed in

Section 4.

2 Methods

First we present the model problem, then the finite element discretization and finally the error estimation and mesh

refinement techniques.

2.1 Problem setting: incompressible hyperelastic soft tissue

We consider an (incompressible) hyperelastic body in a reference configuration denoted by Ω, an open subset of

R3, and subjected to a given body force B. The unknown displacement field and the unknown static pressure are

denoted by u and p, respectively. The deformation gradient is denoted F , with F := I + ∇Xu, where I stands

for the identity matrix, and ∇X denotes the gradient with respect to coordinates in the reference configuration.

The first Piola-Kirchhoff stress tensor denoted Π is derived from the hyperelastic strain-energy density function W ,

which depends on the displacement field u and the pressure p, as follows:

Π =
∂W

∂F
. (1)

In the present paper, we will consider different incompressible material models corresponding to some strain-energy

densities, namely:

1. Mooney-Rivlin model (see [39]):

W := c10(J1 − 3) + c01(J2 − 3) − p(det(C) − 1) (2)

2. Gent model (see [21]) :

W :=
−EJm

6
ln

(
1 − J1 − 3

Jm

)
− p(det(C) − 1) (3)

3. Haines-Wilson model (see [28]):

W := c10(J1 − 3) + c01(J2 − 3) + c20(J1 − 3)2 + c02(J2 − 3)2

+ c30(J1 − 3)3 + c11(J1 − 3)(J2 − 3) − p(det(C) − 1) (4)

where C(:= F T · F ) denote the right Cauchy-Green tensor, J := det F the jacobian of the deformation, where

I1 := trace C, I2 := 1
2
((tr C)2 − tr (C · C)), J1 := I1J

− 2
3 and J2 := I2J

− 4
3 are invariants associated to the

deformation and cij , Jm and E are some coefficients which will be given in Table 1. For the sake of simplicity, the

boundary ∂Ω of Ω is partitioned into two subsets ΓD and ΓN , and we apply a prescribed displacement u = uD on

ΓD and a given force T on ΓN .

Let us introduce the virtual works associated to the internal and external forces:

A(u,p;v, q) :=

∫
Ω

Π(u,p) : ∇Xv dΩ +

∫
Ω

(1 − det(C))q dΩ, L(v) :=

∫
Ω

B · v dΩ +

∫
ΓN

T · v dΓ,
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where u and v are admissible displacements and p and q are admissible pressures. The hyperelastic problem in

weak form reads  Find a displacement u,with u = uD on ΓD and a pressure p such that

A(u,p;v, q) = L(v), ∀(v, q), v = 0 on ΓD,
(5)

Let Kh be a mesh of the domain Ω. Let us denote by Vh × Qh the finite element pair that makes use of the

lowest-order Taylor-Hood finite elements on Kh (continuous piecewise polynomials of order 2 for the displacement

and of order 1 for the pressure). The finite element method to solve our hyperelastic problem reads Find a displacement uh ∈ Vh, with uh = uh
D on ΓD and a pressure ph ∈ Qh such that

A(uh,ph;vh, qh) = L(vh), ∀(vh, qh) ∈ V 0
h ×Qh,

(6)

where V 0
h is composed by the functions of Vh vanishynig on ΓD and where uh

D is a finite element approximation of

uD, obtained for instance by Lagrange interpolation or by projection.

Note that the above choice of Taylor-Hood finite elements is for the sake of simplicity, and that the methodology

described below for mesh refinement can be extended rather straightforwardly to other conforming variational

discretization techniques, provided they ensure a stable and accurate approximation of the finite elasticity equations,

and that they allow to split the residual as a sum of local contributions. For instance, any other infsup stable pair of

finite elements (mini-element, P2-iso-P1) on simplicial, tensor-product or mixed meshes can be considered.

2.2 Quantity of interest

The objective of goal-oriented error estimation is to estimate the error of the finite element solution for a user-defined

quantity, possibly different from the energy norm, see [4, 5, 22, 23, 41]. The idea of this technique comes from the

fact that one would like to analyse the error of a predefined target quantity since in certain circumstances the global

error norm may not be useful.

Let Q(u,p) be a quantity of biomechanical interest computed from the exact solution (u,p) of the problem (5),

with smooth, but possibly nonlinear, dependence on (u,p). The aim is to estimate the error for the quantity of

interest

|Q(u,p) −Q(uh,ph)|

where (uh,ph) is the approximated finite element solution of (6).

2.3 Dual problem for computing the weights

One of the main ingredients of the DWR method is to solve an adjoint problem to extract information from the

quantity of interest, and get feedback about the regions where it is more, or less, influenced, by the approximation

error. As a result, we compute a pair of dual variables (zh,wh) by solving Find (zh,wh) ∈ V 0
h ×Qh such that

(A′)∗(uh,ph|zh,wh;vh, qh) = Q′(uh,ph|vh, qh) ∀(vh, qh) ∈ V 0
h ×Qh,

(7)

where A′ and Q′ denote the Fréchet derivative of A and Q, respectively, and (A′)∗ is the adjoint form of A′. Then

we extrapolate the solution in a finite element space of higher polynomial degree following [49, Fig. 5.1]. This

function weights the residual in our estimator.
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Remark that the dual problem (7) is linear, so solving it is not expensive in comparison to (5). For model

problems such as (5), and some expressions of Q, the practical calculation of A′ and Q′ can be tough. For this

purpose, we take advantage of the capabilities of automatic symbolic differentiation embedded into modern finite

element software such as FEniCS or GetFEM++. Furthermore, this feature makes possible some genericity in the

implementation: virtually nothing has to be changed in the program if the hyperelastic constitutive law is modified.

2.4 The representation formula of Becker and Rannacher

We introduce r(uh,ph;v, q) the residual of Problem (6) as

r(uh,ph;v, q) = L(v, q) −A(uh,ph;v, q) ∀(v, q) ∈ V ×Q. (8)

This, roughly speaking, quantifies how well the hyperelasticity equations are approximated (it should tendsto zero if

the mesh is uniformly refined). Thanks to the dual system (7), we obtain expression of the error on Q as a best

approximation term involving the residual and the (exact) dual solution (see [5, Proposition 2.3]):

Q(u,p) −Q(uh,ph) = min
(vh,qh)∈Vh×Qh

r(uh,ph;z − vh,w − qh) + Rm (9)

where Rm is the high order remainder related to the error caused by the linearization of the nonlinear problem (the

precise expression of which can be found in [5]). In practice, this quantity is, hopefully, negligible. Note at this

stage that there are various possibilities to represent the error on Q, which are detailed in [5], and for instance, in

[49], the authors make use of another representation formula (Proposition 2.4) which is then approximated.

Proceeding as usual in a posteriori error estimation, i.e., after performing integration by parts on the residual r,

we localize the different contributions to the goal-oriented error as follows:

|Q(u,p) −Q(uh,ph)| ≤
∑

K∈Kh

ηK((uK ,pK), (zK ,wK)) + H.O.T. (10)

In the above expression, K denotes any cell of the mesh Kh, and expressions such as uK denote the local restriction

of the finite element variable uh ot the cell K. Moreover H.O.T. denotes high order terms, that are not considered

in the implementation. In Appendix are provided the detailed expression of ηK .

2.5 Adaptive mesh refinement

Using the error estimate on Q, we implement a standard procedure for mesh refinement. As described in Algorithm 1,

we start with an initial mesh called meshi, and by providing a guest solution u
(0)
i , the nonlinear primal problem can

be solved using the Newton’s method (see Algorithm 2). Once accepting ui as the solution of the primal problem,

solving the discrete dual problem (see Algorithm 3) provides the dual solution zi of the actual mesh meshi. The

estimator ηK is then computed providing the primal and dual solutions ui and zi, respectively. From the estimator,

different strategies can be used to mark the elements whose error is high. In this paper, we use the Dörfler marking

strategy [17] (see Algorithm 4). The detailed algorithms are given in the Appendix.

3 Results

In this section, we present the performance of the DWR method in controlling the discretisation error in simulations

employing hyperelastic models. We will consider two test cases. In the first one, we will compare different constitutive

laws and compute the model error thanks to experimental data. We will then highlight the performance of the
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DWR strategy to reduce the discretisation error. The second test case will be only in silico on a heel geometry. The

simulations have been realized thanks to the python library FEniCS and the code is available online[19].

3.1 First test case : silicone samples

The experimental procedure is briefly recalled here for the sake of clarity. For more information, the reader is

referred to [37]. Simple tensile tests are performed on dumbbell shaped samples of silicone rubber (RTV 141) having

an initial gauge length l0 of 82.5 mm, a gauge width b0 of 61.5 mm and a gauge thickness e0 of 1.75 mm. The

sample contains five holes of diameter 20 mm and the position of the centres of the holes and the corners are given

in Figure 1. There is also a cut between the circles C1 et C3.

X (mm) Y (mm)
O 0 0
B -62 0
C -62 -82.5
D 0 -82.5
C1 -47.5 -21.4
C2 -14.0 -23.0
C3 -31.5 -41.0
C4 -47.7 -59.1
C5 -14.5 -58.0

Figure 1: Geometry of the silicone sample, position of the holes and initial mesh.

Tested samples are deformed using a universal mechanical testing machine (MTS 4M) (see [37]). Dirichlet

boundary conditions are imposed on the bottom edge of the dumbell silicone sample. On the left and right boundaries,

we impose a homogeneous Neumann boundary condition (F = 0). In the experiment, the following Neumann

boundary condition is imposed on the top edge: F = (fA/(b0 × e0))n such that
∫
ΓN

F · n ds = 20 N. This force

implies an observed vertical displacement of 57.3mm. In the simulations, we do it the other way round: we fix the

bottom and we impose a displacement of 57.3mm on the top. We guess the corresponding traction force on the top

boundary. Thus,we will consider the following quantities of interest

Q(u,p) =

∫
top

(Π(u) ·N) ·Nds,

where the integral is taken on the top of the silicon band.

Table 1 recalls the value of the constitutive parameters used in the simulations. In Table 2, we compare the model

and discretisation error for the constitutive laws of Mooney-Rivlin (2), Gent (3) and Haine-Wilson (4), respectively,

for the quantity Q. The model error corresponds to the relative error between a very fine FEM solution ufine
and the experimental quantity of interest. The discretization error corresponds to the relative error between the
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Mooney C10 = 0.14 C01 = 0.023
Gent E = 0.97 Jm = 13
Haines-Wilson C10 = 0.14 C20 = −0.0026 C30 = 0.0038

C01 = 0.033 C02 = 0.00095 C11 = −0.0049

Table 1: First test case (silicone sample). Values of the constitutive parameters of each hyperelastic law, following [37].

Mooney-Rivlin Gent Haine Wilson
Nb Model Discr. Nb Model Discr. Nb Model Discr.
Cells Error Error Cells Error Error Cells Error Error
1333 7.0% 1333 9.6% 1333 8.0%
1664 8.1% 1654 10.4% 1706 8.8%
3047 7.2% 3281 9.1% 3441 7.8%
5307 17.0% 4.3% 5414 2.1% 5.9% 5692 0.5% 4.6 %
9426 3.0% 9947 3.7% 10383 2.9 %
18118 2.3% 18088 2.6% 19489 2.0%
33982 1.9% 34883 2.0% 38466 1.8%

Table 2: First test case (silicone sample). Relative model and discretisation error of the quantity of interest Q1 with
respect to the number of cells. The model error is computed thanks to the experimental data.

computed solution on the current mesh and the computed solution on a very fine mesh, i.e.

model error =
|Q(ufine) − 20|

20
and discr. error =

|Q(uh) −Q(ufine)|
Q(ufine)

.

The parameters of each law have been estimated from [37] and are provided in Table 1. We give in Figure 3 the

refined mesh in the case of the Haine-Wilson law (left) and the deformed geometry when we apply the load (right).

We remark that the refinement occurs mainly on the top the silicone where is localised the quantity of interest but

also near the holes.

3.2 Second test case : Human heel

A pressure ulcer (PU) is a wound stemming from excessive loads on biological soft tissues which leads to ischemia,

which in turn triggers tissue necrosis. Two fifth of the patients taken in charge by a reanimation unit or in a geriatric

unit will develop a PU. 40% of those ulcers are located at the posterior part of the heel because the patient stays for

hours lying on his back without moving [44]. This condition is often followed by amputation of part of the foot.

The high prevalence of the pathology is the motivation behind the recent development of PU prevention strategies.

Some of these approaches resort to personalized biomechanical modeling of the patient’s soft tissues, where tissue

compression is numerically predicted based on the loads measured underneath the bedridden patient’s heels. The

current consensus in the PU prevention community is that PU risk assessment should be based on an indicator of

tissue suffering derived from the Von Mises stress, see [32]. Thus, a personalized biomechanical model should be

able to predict the onset of a PU by continuously monitoring this quantity of interest, and by triggering an alarm if

the risk exceeds a pre-defined threshold.

The accuracy of such prediction not only highly depends on the accuracy of the determined mechanical properties

of the heel tissue, on the correct boundary conditions used in the simulation, but also on the numerical method

(here the FEM) which is capable to solve the problem in a way that the error is controlled.

Figure 5 shows a heel tissue model used in our simulation. Its orientation corresponds to the situation when the
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Figure 2: lar

Figure 3: First test case (silicone sample). Refined mesh for the Haine-Wilson model (left); Deformed geometry (right)

103 104 105
10−2

10−1

Nb of cells

|Q(uh)−Q(u)|/Q(u) Uniform

|Q(uh)−Q(u)|/Q(u) adaptative

103.2 103.4 103.6 103.8 104 104.2 104.4

0

1

2

3

Nb of cells

ηh/[Q(uh)−Q(u)]∑
T ηT /[Q(uh)−Q(u)]

Figure 4: First test case (silicone sample). Relative error of discretisation (left) and efficiency of the estimator (right).
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patient is on bed. Boundary conditions used are shown in Figure 6. We consider Von Mises stress is a good factor

to predict the tissue damage. A region in which we consider the heel tissue is vulnerable is shown by cyan colour

in Figure 6b. Our quantity of interest is thus expressed through the first Piola-Kirchhoff stress tensor Π over the

domain of interest ω, as

Q(Π(u,p)) =

∫
ω

√
1

2
((Π11 −Π22)2 + (Π22 −Π33)2 + (Π33 −Π11)2 + 3(Π2

12 + Π2
21 + Π2

23 + Π2
32 + Π2

31 + Π2
13)).

(11)

The heel tissue is supposed to behave like an incompressible hyperelastic material with the mechanical properties:

Mooney-Rivlin with C10 = 16.6kPa and C01 = 0 (see [45]).

Figure 5: A part of a heel tissue model used in simulations in which its orientation corresponds to the situation when
the patient is on bed.

Figure 7 shows the convergence of the error estimator under both uniform and adaptive refinements. It is observed

again that using adaptive refinement scheme is more advantageous than the uniform one since the corresponding

error converges with higher rate. Refinement patterns are shown in Figure 8.

We remark that the algorithm refine in the lower part of the heel which is in coherence with [55, 20, 52, 34].

These zones correspond to the onset of pressure ulcers (see [53]). The added value of our DWR-driven adaptative

meshing is that it automatically refines according to a quantity of interest. It not only optimises locally in the region

of interest but also takes into account the far-field / global errors that contribute.
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(a) (b)

Figure 6: The heel tissue is considered to be fixed on the surface which has contact with the calcaneum, and on the
upper surface, shown by gray colour in (a); the tissue surface where a pressure is applied is shown by red colour,
whereas a region of interest is also shown by red colour (b).

103.2 103.4 103.6 103.8 104 104.2

10−2.5

10−2

Nb of cells

|Q(uh)−Q(u)|/Q(u) uniform

|Q(uh)−Q(u)|/Q(u) adaptative

103.2 103.4 103.6 103.8 104

−4

−2

0

2

4

Nb of cells

ηh/[Q(uh)−Q(u)]∑
T ηT /[Q(uh)−Q(u)]

Figure 7: Second test case (Human heel undergone surface pressure). Relative error of discretisation (left) and efficiency
of the estimator (right).
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8: Second test case (Human heel undergone surface pressure). From the back, initial mesh (a), adaptive mesh
obtained after the first iteration of refinement (b), after the second iteration of refinement (c), the final mesh obtained
after the 3th iteration of refinement (d). The same meshes from the front (e)-(h).
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4 Discussion

We summarize below our main achievements, discuss their current limitations and suggest some perspectives.

4.1 Main achievements

We illustrate in this paper the feasibility of carrying out mesh refinement in modern finite element environments such

as FEniCS, driven by a goal oriented error estimate, to improve the accuracy of an arbitrary user-defined quantity

of interest. This is done for a three-dimensional nonlinear problem that involves incompressible hyperelasticity. This

model is of common use in the biomechanics community. Notably, large displacements and large strain are taken

into account. Furthermore, there is no difficulty to incorporate incompressibility.

The prediction outcome of the simulations has been confronted to experimental measurements on silicone sheets.

Validation and verification of simulations in computational biomechanics is a complicated issue, since measurements

on real patients and real clinical situations lack of precision and reproductibility. Indeed, some difficulties arise to

control and know accurately all the relevant parameters. Though they are of course not identical as human soft

tissues, materials such as silicone are interesting, since the numerical model can be calibrated with precision and

numerical simulations can be confronted to measurements. However, it is still very difficult to find some published

material for this purpose, and we took advantage of the study of Meunier et al [37]. In addition, let us emphasize

the following points

1. The test with the silicone sample provides extra information about the modelling error, in the sense it also

quantifies the predictive power of the constitutive law.

2. When the mesh is too coarse, the discretization error is of the same magnitude of this modelling error.

3. With adaptive mesh refinement, the discretization error can be controlled and driven below a given threshold

that makes it negligible, without having to overrefine the mesh.

4. Another example close to clinical biomechanics has been carried out on a three-dimensional complex patient-

specific geometry of the heel.

5. The method is easy to implement in an environment such as FEniCS, and the scripts are freely available. They

can be transposed without much difficulty to other similar environments such as SONICS[36], GetFEM++[48],

FreeFEM++[26] or SciKit-FEM[25].

6. Notably the automatic differentiation tools now available in modern finite element software facilitate a lot

the assembly of the dual problem. Solving the, linear, dual problem remains inexpensive in comparison with

the total solution procedure needed for the nonlinear problem. Last but not least, the solution of this dual

problem is the basis of counterintuitive refinement strategies, much more efficient than adhoc refinement.

4.2 Current limitations

Let us point out as well some limitations of the proposed methodogy:

1. The dual solution needs to be approximated, and when the same finite element spaces are used for the primal

and dual problem, an extra extrapolation step needs to be carried out. The accuracy of this procedure may

be quantified more precisely and improved. In practice it has revealed small effect and does not hamper the

efficiency of the methodology, but better results may even be expected if this point is improved. Another

possibility is to use higher order spaces for the dual problem, but this solution is much more expensive.

2. The adjoint problem, though it is linear, inherits its coefficients from the nonlinear primal problem. In specific

situations, it may be ill conditionned and this issue would need further investigation.
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3. From the representation formula (9) of Becker and Rannacher at the core of the error estimate, we neglect the

linearization error. Of course, this one is complicated to estimate in general and is expected to be small, but

this point may deserve to be studied more carefully in the future.

4. Reference solutions are computed solutions on fine meshes or eventually experimental data. It could be

interesting also to test the methodology with manufactured solutions in hyperelasticity [43, 9, 15].

4.3 Perspectives

To decrease the computation time, it can be interesting to perfom the refinement at each step throughout the

loading. It can be significant when considering non-linear problems. A stimulating perspective would be first to

combine the current methodology with techniques for model selection, and to estimate more systematically the

model error. Also, since, for patient-specific biomechanics, some data can be used for (possibly) real time parameter

calibration, it would be interesting to take advantage of the flexibility of the current framework to account for

parameter calibration, as already done in Becker & Vexler [6, 7] for a general setting. Another point would consist

in making the methodology available in software that are of common use in the whole biomechanics community.

More generally, a perspective can be the comparison of the model et discretisation error with the errors coming from

the geometry, the parameters of the model and the forces applied on the organ.
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A Expression of the estimator and algorithms

We give below for each cell-wise contribution:

ηK =

∣∣∣∣∫
K

Ru · (zh − Ih(Eh(zh))dΩ +

∫
K

Rp · (ph − Ih(Eh(ph))dΩ +

∫
∂K

J · (zh − Ih(Eh(zh))dγ

∣∣∣∣ (12)

with, Eh and Ih are resp. the extrapolation (see [49]) and the Lagrange interpolation, the interior residual

Ru = B + divΠ(uh) and Rp = det(C) − 1

and the stress jump

J =


− 1

2
[[Π(uh)]] if γ ̸⊂ Γ,

T −Π(uh) ·N if γ ⊂ ΓN ,

0 if γ ⊂ ΓD.

The jump can be defined for a function vh on a facet F between two cells K and K′ by [[vh]] = vh|K ·nK +vh|K′ ·nK′ ,

where nK and nK′ are the normal of K and K′ on F .

Algorithm 1 Algorithm for mesh refinement

Select an initial triangulation meshi of the domain Ω

Guest solution (u
(0)
i ,p

(0)
i )

while
∑

K ηK > ϵ do
F (ui,pi;v, q)← A(ui,pi;v, q)− L(v, q)

ui,pi ← NewtonMethod (F (ui,pi;v, q), (u
(0)
i ,p

(0)
i )) ▷ Problem (5), see Algo 2

zi,wi ← DualProblem (ui,pi, Q) ▷ Problem (7), see Algo 3
ηK ← ComputeEstimator (ui,pi, zi,wi)
markedElements ← DorflerMarking (ηK , α) ▷ See Algo Algorithm 4
meshi ← meshi.refine(markedElements)
Compute

∑
K ηK

end while

Algorithm 2 Solving a non-linear problem: NewtonMethod (F (u
(0)
i ,v),u

(0)
i )

(uk,pk) = (u
(0)
i ,p

(0)
i )

while |(δu, δp)| > ϵ do
F ′(uk; δu,v) = −F (uk;v) ▷ Solve for δu
(uk+1,pk+1)← (uk + δu,pk + δp) ▷ Update the solution
Compute |(δu, δp)|

end while

Algorithm 3 Solving the dual problem: DualProblem (ui, Q)

Compute A′(ui,pi|zi,wi;v, q)
Compute Q′(ui,pi;v, q)
(zi,wi)← solve (A′(ui,pi|zi,w;v, q) = Q′(ui,pi;v, q)) ▷ Solve the linear system

14



Algorithm 4 Mark elements after Dörfler strategy by providing a element-wise estimator ηK = [ηK1 , ηK2 , . . . ηKN
],

and 0 < α < 1 a parameter which characterises the marking rate: the smaller the value of α is, the fewer the number
of elements will be marked: DorflerMarking (ηK , α)

Sort the elements Ki after descending order of the corresponding estimator ηKi

Mark the first M elements such that

markedElements← min

{
M ∈ N

∣∣∣∣∣
M∑
i=1

ηKi
≥ α

N∑
i=1

ηKi

}
.
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[30] U. Kühnapfel, H. Çakmak, and H. Maaß. Endoscopic surgery training using virtual reality and deformable

tissue simulation. Computers & Graphics, 24(5):671 – 682, 2000.

[31] F. Larsson, P. Hansbo, and K. Runesson. Strategies for computing goal-oriented a posteriori error measures in

non-linear elasticity. Internat. J. Numer. Methods Engrg., 55(8):879–894, 2002.

[32] S. Loerakker, E. Manders, G. J. Strijkers, K. Nicolay, F. P. Baaijens, D. L. Bader, and C. W. Oomens. The

effects of deformation, ischemia, and reperfusion on the development of muscle damage during prolonged loading.

Journal of Applied Physiology, 111(4):1168–1177, 2011.

[33] V. Luboz, M. Bailet, C. Boichon Grivot, M. Rochette, B. Diot, M. Bucki, and Y. Payan. Personalized modeling

for real-time pressure ulcer prevention in sitting posture. Journal of Tissue Viability, 27(1):54–58, 2018.

16



[34] V. Luboz, A. Perrier, M. Bucki, B. Diot, F. Cannard, N. Vuillerme, and Y. Payan. Influence of the calcaneus

shape on the risk of posterior heel ulcer using 3d patient-specific biomechanical modeling. Annals of Biomedical

Engineering, 43:325–335, 2015.

[35] Y. Maday and A. T. Patera. Numerical analysis of a posteriori finite element bounds for linear functional

outputs. Mathematical Models and Methods in Applied Sciences, 10(5):785–799, 2000.

[36] A. Mazier, S. E. Hadramy, J.-N. Brunet, J. S. Hale, S. Cotin, and S. Bordas. Sonics: Develop intuition on

biomechanical systems through interactive error controlled simulations. arXiv preprint arXiv:2208.11676, 2022.

[37] L. Meunier, G. Chagnon, D. Favier, L. Orgéas, and P. Vacher. Mechanical experimental characterisation and

numerical modelling of an unfilled silicone rubber. Polymer Testing, 27(6):765–777, 2008.

[38] B. Mielczarek and J. Uzia llko-Mydlikowska. Application of computer simulation modeling in the health care

sector: a survey. SIMULATION, 88(2):197–216, 2012.

[39] M. Mooney. A theory of large elastic deformation. Journal of Applied Physics, 11(9):582–592, 1940.

[40] R. H. Nochetto, K. G. Siebert, and A. Veeser. Theory of adaptive finite element methods: an introduction. In

Multiscale, nonlinear and adaptive approximation, pages 409–542. Springer, Berlin, 2009.

[41] J. Oden and S. Prudhomme. Goal-oriented error estimation and adaptivity for the finite element method.

Computers & Mathematics with Applications, 41(5):735 – 756, 2001.

[42] M. Paraschivoiu, J. Peraire, and A. T. Patera. A posteriori finite element bounds for linear-functional

outputs of elliptic partial differential equations. Computer Methods in Applied Mechanics and Engineering,

150(1-4):289–312, 1997. Symposium on Advances in Computational Mechanics, Vol. 2 (Austin, TX, 1997).

[43] Y. Payan and J. Ohayon. Biomechanics of living organs: hyperelastic constitutive laws for finite element

modeling. Academic Press Series in Biomedical Engineering. Elsevier, 2017.

[44] T. Perneger, C. Heliot, A. Rae, F. Borst, and J. Gaspoz. Hospital acquired pressure ulcers. risk factors and use

of preventive devices. Arch Intern Med, 158(17):1940 – 1945, 1998.

[45] A. Perrier, V. Luboz, M. Bucki, F. Cannard, N. Vuillerme, and Y. Payan. Biomechanical modelling of the foot.
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