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Abstract. The dynamically positioned wind turbine concept consists of a floating platform
equipped with a wind turbine and propellers. In contrast to a conventional floating offshore
wind turbine, it has no moorings. Instead, the propellers are used to keep the wind turbine
stationary. It may also be equipped with an on-board energy storage system (e.g. batteries,
hydrogen, etc.) to avoid grid-connection. This concept is well suited for deployment in the
far-offshore, where grid-connection and installation operations are challenging.

As the propellers which are used to control the position of the wind turbine require power
supply, the aim of this study is to investigate whether and in what conditions there can be a
positive net power production. To this end, we have developed a velocity and power prediction
program (VPPP) to estimate the power consumed by the propellers and the power generated
by the wind turbine, as a function of wind conditions, and design parameters (e.g. diameter of
the wind turbine and characteristics of the propellers rotors). The VPPP is based on Newton’s
first law of motion. The forces applied on the system are: the wind turbine thrust, the mean
wave drift, and the propellers thrust.

Inspired by an existing floating offshore wind concept, an example design has been devel-

oped. The diameter of the wind turbine’s rotor is 78 m. Its rated power is 2 MW . The wind

turbine is mounted on a 40 m square barge. The diameter of the propellers’ rotor is 6 m. Using

the VPPP, the power performance of this example design has been investigated as function of

wind conditions. The maximum generated power is 0.89 MW . It is obtained for a true wind

speed of 13.4 m/s. If deployed in the Northern Atlantic Ocean, this design could achieve a

capacity factor of 15%, which is low in comparison to the 70% capacity factor which would be

achieved by a moored floating offshore wind turbine if deployed at the same location.

Keywords— Dynamically positioned wind turbine, Offshore wind, Capacity factor,
Modelling.

1. Introduction
Deployment potential of offshore wind turbines is limited to relatively near-shore areas, because
costs associated with grid-connection, moorings and installation, and maintenance increase
dramatically with distance from shore [1]. Therefore, if far-offshore wind energy conversion
systems are to become feasible, new approaches are required.

The possible concepts include the energy ship (patented in 1982 by Salomon [2]) and the
dynamically positioned wind turbine based on the sailing wind turbine concept (patented in 1983
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by Vidal [3]). Energy ships are ships propelled by wind power and which generate electricity by
means of water turbines attached underneath their hull. Dynamically positioned wind turbines
are non-moored floating offshore wind turbines. In both cases, the energy production platforms
can be equipped with an on-board energy storage system (e.g. batteries, electrolyzers for
hydrogen production and hydrogen storage tanks for storage, etc.) to avoid grid-connection.

Figure 1. Artist view of a dynamically
positioned wind turbine.

Figure 1 shows an artist view of a dynamically positioned wind turbine. It is a floating
offshore barge platform equipped with a wind turbine and propellers. The propellers are used
to insure that the platform does not drift away: they are controlled such as to deliver a thrust
counter-acting the forces generated by the wind and waves. To do this end, part of the power
generated by the turbine is consumed by the propellers. Thus, a key question is whether there
can be a positive net power production, i.e. whether the consumed power is greater or smaller
than the generated power.

In 1986, Blackford reported experiments using a 4 m catamaran on which a 4 m diameter wind
turbine was mounted [4]. The wind turbine was used to spin a propeller attached underneath
the boat. He showed that using this concept, it is possible to sail directly against the wind. This
shows that positive net power production is possible as otherwise he would have not been able
to sail against the wind.

More recently, Annan et al. investigated the Wind Trawler concept [5], which is a mobile
floating wind-and-hydro power producing plant. Using a numerical model, they showed that this
concept can achieve similar capacity factors to that of nearshore fixed offshore wind turbines.
The key difference between their concept and the concept investigated in the present study
is that their concept is not stationary (it drifts with the wind) which can be a challenge for
operations.

To our best knowledge, there has not been yet an investigation of the performance of a
dynamically positioned offshore wind turbine concept. Thus, it it the aim of this paper.

In the remainder of the present paper, we first describe a Velocity and Power Prediction
Program (VPPP) which allows the velocity and energy performance of a dynamically positioned
wind turbine to be investigated as function of the design parameters and the environmental
conditions. We then use it to analyze the performance of an example design of the proposed
dynamically positioned floating offshore wind turbine concept.
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2. Methods
2.1. Equation of motion
In this study, it is assumed that the wind turbine is attached to a barge platform. The
dimensions of this barge are inspired by the ”Floatgen” concept, which performance and stability
were demonstrated at sea. The static angle as well as the dynamic effects resulting from the
linear wave-structure interactions are expected to be small [6]. Therefore, these phenomena can
be neglected and the generalised equation of motion reduces to the equation of equilibrium
(Newton’s first law). In addition, assuming that the wind turbine’s rotor area is always
perpendicular to the wind direction, Newton’s first law of motion is further reduced to a single
equation written along the true wind direction:

TT + Fd + TP = 0, (1)

where, TT , Fd and TP = TP1 + TP2 respectively correspond to the wind turbine thrust force,
mean wave drift force and propellers thrust force. Those forces are detailed in the following
sections.

2.2. Wind turbine mathematical model
The thrust force on the wind turbine is evaluated using the apparent wind speed, which depends
on both the true wind speed W and the platform’s velocity U . In this study, the platform is
dynamically positioned, thus its velocity is approximately 0. Therefore, the apparent wind speed
V is equal to the true wind speed W .

According to [7], the thrust force on the wind turbine is,

TT =

{
1
2ρaATCTV

2 if Vcut-in ≤ V < Vcut-out

0 otherwise
, (2)

where, ρa is the density of the air at standard atmospheric conditions, AT is the wind turbine
rotor’s area, CT is the wind turbine thrust coefficient, Vcut-in is the cut-in wind speed (i.e. the
wind speed for which that turbine starts operating) and Vcut-out is the cut-out wind speed (i.e.
the wind speed for which the wind turbine stops operating because the wind is too strong). The
wind turbine thrust coefficient is expressed as,

CT = 4afc(1− a), (3)

where a denotes the induction factor and fc is the tip-hub losses correction factor. fc is a value
between 0 and 1 (fc = 1 corresponds to the ideal case of no losses [8]). In this study, fc = 0.9.
For Vcut-in ≤ V < Vrated, the optimal induction factor is a = 1/3. For wind velocities above the
rated wind speed (Vrated ≤ V < Vcut-out), the induction factor is the solution of,

1

2
ρATCT (1− a)V 3 − Prated

ηT
= 0, (4)

where Prated and ηT respectively denotes the rated power of the wind turbine and the efficiency
of the drive-train and generator. Finally, the power generated by the wind turbine is,

PT = ηT × 2ρAT fca(1− a)2V 3 (5)

Figure 2 shows the thrust and power as functions of the wind speed at the nacelle height for
the wind turbine considered in this study (i.e. 78 m rotor’s diameter). It can be seen that the
thrust is maximum (approximately 300 kN) for the rated wind speed (11.4 m/s). The rated
power is approximately 2 MW .



EERA DeepWind'2021
Journal of Physics: Conference Series 2018 (2021) 012001

IOP Publishing
doi:10.1088/1742-6596/2018/1/012001

4

Figure 2. Thrust force and electrical power
of the wind turbine considered in this study
as function of the wind speed at the nacelle
height.

2.3. Mean wave drift mathematical model
The sea water is coupled with the thin atmospheric boundary layer in such a way of exchanging
heat, momentum and water mass at the air-water interface. Dynamically, the turbulent
fluctuation of the atmospheric pressure at the free surface generates small, unstable waves known
as capillary waves, which grow with time and ultimaltely lead to fully developed ocean waves
[9]. The wave energy distribution of a fully developed sea can be represented by the Pierson-
Moskowitz spectrum,

S(f) =
αPMg

2

(2π)4f5
e
−β0

(
g

2.154πW10f

)4

, (6)

where αPM = 0.0081, β0 = 0.74 and f is the frequency of the propagating waves, g is the
gravitational acceleration and W10 is the true wind speed at 10 m altitude [10].

The non-linear action of waves on the platform generates a wave-structure interaction force.
It has a steady component which is the average drift force. It can be estimated according to,

Fd =

∫ ∞
0

Φ(h)S(f)df, (7)

where Φ(h) is the drift force response amplitude operator. This operator can be calculated using
potential theory-based numerical codes. In this study, the software DIODORE has been used
[11].

In addition to the average drift force, first order and second order wave-structure interaction
effects also generate dynamic loads at various frequencies. As the present study focus on the
steady response, they are not considered.

For sake of simplicity, the irregular wave is replaced by a regular wave of period equal to the
spectrum peak period and carrying the same amount of energy. Its amplitude is given by,

A =
Hs

2
√

2
, (8)

where Hs is the specific wave height and given by,

Hs = 4

√∫ ∞
0

S(f)df. (9)
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Figure 3 shows a comparison of the average drift force calculated using Eq. 7 (blue curve)
and the equivalent drift force calculated from the equivalent regular wave (Fd,eq = Φ(h)A 2, red
curve). One can see that the equivalent drift force approximates very well the average drift
force. As it is much quicker to calculate, this approach has been retained in this study.

Figure 3. Comparison of the average drift
force and its approximation calculated from
the equivalent regular wave as function of W10

and for a and in the direction of the true wind.

2.4. Propellers mathematical model
The propulsion force delivered by the two identical propellers is,

TP = ρwn
2D4

P (KT,P1 +KT,P2) , (10)

where ρw is the seawater density at standard atmospheric conditions, n is the propeller’s
rotational velocity, DP is the disc diameter of each propeller and KT,P1 = KT,P2 = KT are
the propellers thrust coefficients evaluated using a polynomial fit of the experimental results for
the Wageningen B-series screw propellers [12]. They depend on the advance coefficient given by

J =
U

nDP
, (11)

as well as the pitch to diameter ratio ξ
D , the blade area ratio AE

Ao
and the number of blades

Z. Thus, assuming a uniform inflow equals to the velocity of the platform (U), the thrust
coefficients is expressed as,

KT = f(J,
ξ

DP
,
AE
AP

, Z). (12)

For more details, the reader is referred to [12]. The power consumed by the propellers is expressed
as function of the propellers’ torque such as,

PP = 2πnQP1 + 2πnQP2, (13)

where QP1 = QP2 = QP and expressed as,

QP = ρwn
2D5

PKQ, (14)
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Figure 4. Propellers’ thrust force TP
and consumed power PP as function of the
rotational velocity, for an inflow velocity of 0
m/s, corresponding to the case of dynamically
positioned floating platform.

with KQ denoting the torque coefficient of the propeller.
Figure 4 shows the thrust force and the power consumption as function of the rotational

velocity for the propellers, each having the following characteristics: 6 m diameter, 1.4 pitch
diameter ratio, 0.3 blade area ratio and 3 blades. One can notice that when increasing the
rotational velocity, the thrust force and the consumed power are also increased.

2.5. Net power production
In the dynamically positioned wind turbine concept, part of the electric power generated by the
wind turbine PT (equation 5) is used to power the propellers PP (equation 13). The remaining
net power production Pnet is stored in an energy storage system. Thus,

Pnet = PT − PP . (15)

2.6. Velocity and power prediction program
A velocity and power prediction program has been developed in Matlab. It solves the equilibrium
equation described in section 2.1. It allows evaluating the rotational velocity of the propellers,
their power consumption, the wind turbine power generation and the net power production.

3. Results
3.1. Power curve
Figure 5 shows the wind turbine generated power, propellers power consumption, net power
production and propellers rotational velocity as function of the wind speed at the nacelle height.
A net positive power is achieved for a wind velocity in the range 4 m/s to 18.3 m/s. The peak
power (0.89 MW ) is achieved for a wind speed (at the nacelle height) of 13.4 m/s. Beyond 18.3
m/s, the propellers’ power consumption becomes greater than the generated power resulting in
negative net power. Hence, overall, the range and the magnitude of net positive power achieved
by this concept is less than that achieved by a conventional floating offshore wind turbine.

Moreover, Figure 5 shows that the propellers’ rpm, hence, the power consumption increases
with increasing wind speed because of increasing wave drift and wind turbine thrust forces,
except in the range of wind speed between 11.4 m/s and 13.4 m/s. This decrease can be
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Figure 5. Power curve of the dynamically
positioned wind turbine.

explained by the fact that the wind turbine thrust decreases for wind speeds greater than 11.4
m/s. Nevertheless, despite the wind turbine thrust is still decreasing beyond 13.4 m/s wind
speed, the propellers’ power consumption increases because of the increasing wave drift force.

3.2. Sensitivity to the wind turbine and propellers dimensions
In this section, the sensitivity of the net power production to the wind turbine and propellers
dimensions is studied. The wind turbine diameter is varied between 10 m and 110 m with
an increment of 10 m. The hub heights is defined according to the rotor’s diameter based on
the data provided by [13]. The propellers’ diameter is varied between 3 m and 10 m with an
increment of 1 m. The true wind speed is set to 11 m/s at 10 m elevation above sea level.

Figure 6. Pnet as function of the propellers’
diameter DP and the turbine’s diameter DT .

Figure 6 shows the net power production as function of the wind turbine diameter (DT ) and
propellers diameter (DP ). One can see that the generated net power increases with increasing
wind turbine and propellers’ diameters.

It appears that the smaller the propellers’ diameter, the larger the wind turbine diameter
is required to achieve positive net power production. The reason is that propellers with large
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Figure 7. Power consumed by the propellers. Figure 8. Propellers’ rotational velocity.

diameters are more energy efficient than small propellers. This is shown in Figures 7 and 8,
which respectively represent contour plots of the propellers power consumption PP and rotational
velocity as function of DP and DT .

In this study, the diameter of the wind turbine is 78 m diameter and the diameter of the
propellers is 6 m. Figure 6 shows that propellers of even greater diameter can increase the net
power production. Nevertheless, the investigation of the capacity factor is next conducted for
propellers of 6 m because they are believed to be quite big already.

3.3. Capacity factor of dynamically positioned wind turbines operating in the far offshore
In this section, the capacity factor of dynamically positioned wind turbines that would be
deployed in the far-offshore is estimated and compared to hypothetical moored floating wind
turbines deployed in the same locations. Following Abd-Jamil et al. [14], average capacity
factors over the years 2015, 2016 and 2017 have been estimated. The wind data was obtained
from the ERA-Interim data-set provided by the European Centre for Medium-Range Weather
Forecasts (ECMWF) [15].

Results for moored floating wind turbines are shown in figure 9, showing that very high
capacity factors, in the range of 40% to 70%, could be achieved. These results are in agreement
with capacity factors estimates derived by Dupont et al. [16]. For the sake of comparison, it
can be noted that the average capacity factor for offshore wind farms currently operating in
Europe is 37% [17]. For the dynamically positioned wind turbine concept, this capacity factor
is reduced to a maximum of 15% compared to the hypothetical moored system. This can be
related to the smaller rated power range and the addition of propellers which consume power.

4. Conclusion
In this paper, the concept of dynamically positioned wind turbines was investigated. A model
was developed which enables the velocity and power performance of a dynamically positioned
wind turbine to be estimated as a function of environmental conditions.

Using this model, it was shown that a positive net power can be achieved for an example
design (2 MW wind turbine mounted on a 40 m square barge equipped with two propellers of 6
m diameter) for wind speeds ranging between 4 m/s and 18.3 m/s at the nacelle height (that is
between 3.28 m/s and 15 m/s at 10 m elevation). For the proposed operation of this concept,
in which the rotational velocity of the propellers is controlled to maintain the position of the
wind turbine, a capacity factor of 15% can be achieved if deployed in the North Atlantic Ocean.
This does not preclude the possibility that other design parameters and platform types as well
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Figure 9. Mean capacity factors - from 2015 to 2017 - of a hypothetical 2
MW moored floating offshore wind turbines deployed in the North Atlantic
Ocean.

Figure 10. Mean capacity factors - from 2015 to 2017 - of a 2 MW
dynamically positioned floating offshore wind turbines deployed in the North
Atlantic Ocean.

as propellers types may be considered so that resisting forces are minimized, which may lead to
greater capacity factors.

Finally, with respect to energy cost, significant savings in CAPEX can be expected for
dynamically positioned wind turbines, as they require neither moorings nor anchors. In addition,
this concept is well suited for far offshore applications, where grid-connection is challenging.
However, dynamically positioned wind turbines require on-board energy storage and a means
to transport energy to the end users. They would also need very reliable propellers. Therefore,
further research is required regarding the type and the cost of the energy delivered to end users.



EERA DeepWind'2021
Journal of Physics: Conference Series 2018 (2021) 012001

IOP Publishing
doi:10.1088/1742-6596/2018/1/012001

10

Acknowledgments
This research was partially supported by WEAMEC (EOLNAV project) with funding from
Région Pays de la Loire.

References
[1] Beiter P, Musial W, Smith A, Kilcher L, Damiani R, Maness M, Sirnivas S, Stehly T, Gevorgian V,

Mooney M and Scott G 2016 A spatial-economic cost-reduction pathway analysis for u.s. offshore wind
energy development from 2015-2030 Tech. rep. National renewable energy laboratory, Technical Report
NREL/TP-6A20-66579

[2] Salomon R E 1982 Process of converting wind energy to elemental hydrogen and apparatus therefor, u.s.
patent 4335093

[3] Vidal J P 1983 System for propulsion of boats by means of winds and streams and for recovery of energy,
u.s. patent 4371346

[4] Blackford B L 1986 Journal of ship research 29 139–149
[5] Annan A M, Lackner M A and Manwell J F 2020 Journal of Physics: Conference Series 1452 012031 URL

https://doi.org/10.1088/1742-6596/1452/1/012031

[6] Choisnet T, Rogier E, Percher Y, Courbois A, Crom I L and Mariani R 2018 Proc. of the 16e Journees de
l’hydrodynamique (Marseille, France)

[7] Burton T, Jenkins N, Sharpe D and Bossanyi E 2011 Wind Energy Handbook 2nd ed (Wiley)
[8] Buhl Jr M L 2005 New empirical relationship between thrust coefficient and induction factor for the turbulent

windmill state Tech. rep. National renewable energy laboratory, Technical Report NREL/TP-500-36834
[9] Massel S R 2017 Ocean surface waves: their physics and prediction vol 45 (World scientific)

[10] Tucker M J and Pitt E G 2001 Waves in Ocean Engineering Elsevier Ocean Engineering Series (Elsevier
Science) ISBN 9780080435664

[11] Berhault C and Buhan P 1992
[12] Bernitsas M M, Ray D and Kinley P 1981 kT kQ and efficiency curves for the wageningen b-series propellers

Tech. rep. The University of Michigan, Technical Report
[13] Al Katsaprakakis D and Christakis D G 2012 Comprehensive Renewable Energy

ed Sayigh A (Oxford: Elsevier) pp 169 – 223 ISBN 978-0-08-087873-7 URL
http://www.sciencedirect.com/science/article/pii/B9780080878720002080

[14] Jamil R A, Chaigneau A, Gilloteaux J C, Lelong P and Babarit A 2019 Journal of Physics: Conference
Series 1356 012001 URL https://doi.org/10.1088/1742-6596/1356/1/012001

[15] Berrisford P, Dee D P, Poli P, Brugge R, Fielding M, Fuentes M, K̊allberg P W, Kobayashi S, Uppala S and
Simmons A 2011 The era-interim archive version 2.0 Tech. Rep. 1 ECMWF Shinfield Park, Reading URL
https://www.ecmwf.int/node/8174

[16] Dupont E, Koppelaar R and Jeanmart J 2018 Applied Energy 209 322–338
[17] Komusanac I, Fraile D and Brindley G 2019 Wind energy in europe in 2018 - trends and statistics Tech. rep.

WindEurope Shinfield Park


