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Abstract

Cry11Aa and Cyt1Aa are two pesticidal toxins produced by Bacillus thuringiensis subsp.

israelensis. To improve our understanding of the nature of their oligomers in the toxic

actions and synergistic effects, we performed the atomic force microscopy to probe

the surfaces of their natively grown crystals, and used the L-weight filter to enhance

the structural features. By L-weight filtering, molecular sizes of the Cry11Aa and

Cyt1Aa monomers obtained are in excellent agreement with the three-dimensional

structures determined by x-ray crystallography. Moreover, our results show that the

layered feature of a structural element distinguishes the topographic characteristics of

Cry11Aa and Cyt1Aa crystals, suggesting that the Cry11Aa toxin has a better chance

than Cyt1Aa for multimerization and therefore cooperativeness of the toxic actions.

K E YWORD S
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Bacillus thuringiensis subsp. israelensis (Bti) has appealed a great deal of

attention for its importance in biological control against mosquitoes

and blackflies.1,2 The toxin lyses erythrocytes and is toxic to mice as

well.3 The toxicity of Bti resides in its parasporal inclusions where four

major insecticidal proteins Cry11Aa, Cry4A, Cry4B, and Cyt1A were

found.4 Among the four, Cry11Aa, previously called CryIVD, is most

toxic, yielding the lowest value of lethal concentration (LC50).
5 Never-

theless, the Cry11Aa knockout Bti still exhibited variable degrees of

toxic effects on different mosquito species.6 In the parasporal inclu-

sions, Cry11Aa is a 70-kDa protoxin activated by proteolytic processing

to generate the N- and C-terminal fragments (36 and 32 kDa), which

remain associated and retain toxicity to insects.7 Cyt1Aa is 27 kDa pro-

tein that belongs to a family called the cytolytic (Cyt) toxin, whereas

Cry11Aa is a member of one of the crystalline (Cry) toxin families.8

Cry11Aa is a three-domain toxins, characterized by three struc-

tural domains responsible for receptor binding and membrane

insertion.9–11 However, the domain-function relationship is not so

strict, some Cry toxins targeted the receptor of larval midgut cells by

different domains.12 The binding of Cry toxins to various specific

receptors was therefore exploited as to differentiate the toxicity

extent.13 Moreover, swapping of domain III occurred among Cry

toxins in evolutionary paths, resulting in the diversity of the toxin fam-

ily.11 In pore formation, the Cry crystal proteins were proposed to

interact sequentially with several membrane receptors, inducing the

oligomerization and membrane insertion.8 Based on a molecular

model of Cry11Aa using the crystal structure of Cry2Aa (PDB code

1I5P),14 a loop epitope of domain II (protein sequence 257–268) was

identified in interaction with membrane receptors of Aedes aegypti

midgut cells.15

Toxicity synergism is observed between Cry11Aa and

Cyt1Aa.16,17 The reduction of mosquito resistance to Cry11Aa with

the presence of Cyt1Aa provides a molecular genetic strategy for

transgenic plants and bacterial insecticides.18 To understand the

molecular mechanisms of the synergistic toxicity of Cry11Aa and

Cyt1Aa, many efforts of genetic engineering were made such as

single-point to triple mutations on Cyt1Aa protein residues19,20 or

analyzing the three-dimensional (3D) structure of both toxins for iden-

tification of specific binding sites in either toxins or membranes of
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host cells. Cyt1Aa was shown to act as a receptor in the membrane

for Cry11Aa to bind specifically.21 By anchoring Cry11Aa onto the

membrane surface, it promotes the oligomerization of Cry11Aa, which

is required prior to pore formation in the membrane.22

Atomic force microscopy (AFM) has been widely applied to visual-

izations of the distribution and multimerization of Cry and Cyt toxins

from various Bt subspecies interacting with different membrane

systems.23–28 As described above, the two proteolytically cleaved

Cry11Aa fragments remain associated,7 and thus, the 3D structure of

active Cry11Aa must resemble the crystal structure of the protoxin.26

Since multimerization of Cry11Aa molecules is a key process for its

toxic activity,22 the native association of Cry11Aa monomers in crys-

tal is likely most representable for the nature of the protein assembled

in the process of toxic actions. Despite the 3D crystal structure of

Cry11Aa (or Cyt1Aa) protoxin has been determined,26,28 the molecu-

lar arrangement of the protein crystal subjective to the native growth

is difficult for visual perception of the lattice pattern of crystal cell

units. To shed light on the molecular arrangement of Cry11Aa crystal

as well as Cyt1Aa grown natively, we employed the AFM imaging to

visualize topographic structures of these two protoxin crystals.

1 | METHODOLOGY

1.1 | AFM imaging and L-weight filter

One major obstacle to visualize the detail of surface structures of

materials in an AFM image is that the intensity variation is too minute,

relative to the global contrast, to be perceived by the human eye.29

Consequently, the topographic information of molecular structure is

either ignored or disregarded, leading to misdiagnosis of image con-

tents or un-optimized AFM instrumentation. Even worse, the useful-

ness of this handy imaging technology is totally undervalued.

Notwithstanding, this type of impediment can be alleviated by appro-

priate post-processing, which is essential for “single-image analysis”
on AFM topographs at high resolution30 when multi-image averaging

is unrealistic for improving the image quality.

L-weight filter has been proved as a powerful processing tool for

AFM molecular images for the studies of estimation of molecular size of

an anonymized protein29 to DNA-HU protein binding reaction,31 and

from fibrillation of cytosolic abundant heat-soluble proteins from tardi-

grades32 to the deposition of bacteriorhodopsin with lipid membranes on

mica.33 It has a similar function as the well-known Laplacian mask34 to

sharpen the boundary of the image object, and substantially diminishes

severe broadening effects brought by the AFM probing tip. It has also

been implicitly implemented in the DeStripe program for removing strip-

ping noise.35 The outcome format of the L-weight filtered image is

expressed as I(x, y) � ΔÎ(x, y) with the intensity value I(x, y) at pixel (x, y)

and the normalized value of offset Laplacian functionΔÎ(x, y).29,31 In order

to modulate the fluctuating amplitudes of ΔÎ(x, y) data values, a 2D-

isotropic Gaussian smoothing window34 was implemented; the window

size 2w + 1 and the Gaussian spread σ are tunable in order to obtain a

desirable sharpness for topographic features. The processing effect of

this filter can be further enhanced by repetitive use. The processed image

still keeps some sense of topographic height, unlike the micrographs

acquired by TEM (transmission electron microscopy) which are flat.

1.2 | AFM Instrumental setups and data
acquisition

The objects to be imaged are Cyt1Aa and Cry11Aa protoxin crystals.

Purified crystals were conserved in ultrapure water. AFM imaging was

performed using the PeakForce tapping mode of Multimode 8 AFM

(Bruker, Santa Barbara, CA) equipped with a Nanoscope V controller. A

semi-automated scanasyst mode was used with a classical ramp of

150 nm while the set point was manually controlled. ScanAsyst-Air HR

cantilever for Cry11Aa and SNL cantilever for Cyt1Aa were used

(Bruker AFM probes, Camarillo, CA) with a scanning rate of �1.0 Hz.

All measurements have been performed in air. The original AFM

images, by default, are the raw image pre-treated by the Gwyddion

software36 as described elsewhere.37 Length measurements were

extracted with the profile along an arbitrary line tool of Gwyddion.36

The corresponding histograms were tabulated using GraphPad Prism 5.

2 | RESULTS

The AFM topography of a Cry11Aa bulky crystal is shown in Figure 1A;

the size was estimated as about 0.93 � 0.50 � 0.15 μm3 with an

appearance of a very bright solid object and non-convex geometry.

Owing to the high contrast of the crystal object against the back-

ground, one may tune the range of intensity display for gaining some

structural features from the AFM image. Elevating the minimal intensity

displayed in Figure 1A almost to the half of the maximal value,

Figure 1B reveals vaguely the stacking sequence of layer-like structures

which progressively shrink to give the final shape of the crystal. The

height difference between adjacent layers was estimated as 6.6

± 0.9 nm based on the original topography. Distribution of values is

shown in Figure 1G. The visibility of the layered structure in (A) can be

further enhanced by applying the L-weigh filter, shown in Figure 1C. It

becomes evident that the structure of these layer-like elements resem-

bles a latticework. The same structural feature appeared in other

Cry11Aa crystals with different sizes and shapes, indicating that the

feature of the latticed layer is a characteristic of native Cry11Aa crystal

surface. This structural element of shorter-length scale implies that

fewer toxin molecules are required to initiate multimerization. As

known, the protein multimerization provokes a high-concentration

mimicry locally, in turn, it promotes the biological activity of the pro-

tein.38 With the aid of the L-weight filter, AFM imaging reveals that

Cry11Aa crystal exhibits a hierarchical order39 of surface structure on

different size (length) scales, as revealed in Figure 1D,E.

To better view the structure, Figure 1F is a higher-resolution scan-

ning over a subimage of Figure 1A processed by the L-weight filter and

numerically magnified (�2), wherein a layer structural element was

marked by several profile lines to indicate the filamentous ridges formed

of connected protein monomers. The interval distance of two adjacent

ridges (oriented according to the yellow line in Figure 1F) was estimated
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from the processed images as 15.5 ± 1.1 nm (a sampling number of 37).

Analyzing the profile of intensities over the filamentous ridges (oriented

according to the white line in Figure 1F), we obtained a width of 15.5

± 4.1 nm for the protruding sub-structures along the ridges (with a sam-

pling number of 40). Values obtained from all these profiles are assem-

bled in distribution plots (Figure 1G). Taken together, the size of

F IGURE 1 Legend on next page.
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Cry11Aa monomers was estimated as (15.5 ± 1.1) � (15.5 ± 4.1) nm2,

which is very close to that obtained from the 3D crystal structure,

6 � 16 � 17 nm3, by the x-ray crystallography.26

Apart from Cry11Aa, the results of AFM imaging on Cyt1Aa pro-

toxin crystals are presented in Figure 2A, and the L-weight filtered

(A) was dissected into three parts illustrated in Figure 2B–D. From

F IGURE 1 (A) Atomic force microscopy (AFM) topography of crystalline Cry11Aa protoxin acquired at the probing resolution of 0.98 nm per pixel.
The image is composed of 1024 � 1024 pixels in a full range of height display, 0–222 nm with the z-scale bar in the unit of nanometer. (B) Image
(A) presented in a narrowed intensity range, 139–250 nm, for increasing the visibility of image content. (C) Image (A) processed by the L-weight filter.
The L-weight filter was consecutively applied twice; the smoothing parameters w = 12 and σ = 4.06 pixels (see Section 1.1). The black square in the
image is corresponding to that in (A). (D) AFM imaging on Cry11Aa crystals of various sizes and shapes. The image is composed of 512 � 512 pixels in
a physical dimension of 5 � 5 μm2. The z-scale color bar is up to 0.5 μm. (E) The processed image of (D) by the L-weight filter; see parameterization
details in (C). The L-weight filter was consecutively used two times with w = 1 and σ = 1.02 pixels. (F) The AFM magnified and subsequently processed
image of the black-outlined region in (A). The image consists of 380 � 380 pixels with a pixel width of 0.55 nm. Note that L-weight filtered images lose
the true meaning of physical height; therefore, the z-scale color bars are not presented. (G) Distribution of extracted lengths from unprocessed (A) and
processed (F) AFM images. The left panel is the adjacent layer height (green mark on F) that is obtained on the unprocessed image (A). The middle panel
is the filamentous ridge intensity that corresponds to measurements along the white direction (white line on F), the right panel is the adjacent ridge
interval that corresponds to measurements obtained in the yellow direction (yellow line on F).

F IGURE 2 (A) Atomic force
microscopy (AFM) topography of
crystalline Cyt1Aa protoxin. The image is
composed of 1024 � 512 pixels with a
physical dimension of 4.98 � 2.49 μm2 in
a full range of height display of 0–0.8 μm;
alongside is the z-scale bar. (B–D) Three
dissected (or cropped) sub-images,
somewhat overlapped for tracing the
disposition of those crystal particles, from
the processed image of (A) by four times
of the L-weight filter. The size of
smoothing window for the filter is 2 � 2
+ 1 pixels with σ = 1.03 pixels (see
Figure 1). Each dissected image is formed
of 370 � 370 pixels (i.e., 1.8 � 1.8 μm2)
and displayed at different intensity
ranges for better visualization of the
objects dispersed in the full image. The
dissection starts with the two large
bipyramid-like crystals and then reaches
the left border of the full image.
(E) Magnified the local area of image
(B) indicated by the black arrow. With
� 3.32 magnification, image (E) is
composed of 380 � 380 pixels with a
physical dimension of
278.3 � 278.3 nm2. Several holes are
visible on the surface.
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these divided subimages, Cyt1Aa exhibits a variety of particle sizes

and shapes. Figure 2C,D displays Cyt1Aa protoxin that forms smaller

clustered particles, whereas Figure 2B aims to reveal the two largest

Cyt1Aa crystals of bipyramid-like shape. The size of the largest crystal

(on the right in Figure 2B) was estimated as 0.74 � 1.1 � 0.85 μm3,

while that of the protein monomer is estimated using vertical profiles

mapped with the processed image (Figure 2E) as (6.7 ± 0.9) � (6.9

± 1.7) nm2 (a sampling number of 16 and 19, respectively), which is in

good agreement with the observation from the 3D crystal structure

(6 � 6 � 16 nm3).28 The surface features of Cyt1Aa are less discern-

ible with further magnification, as shown in Figure 2E, owing to a

much lower probing resolution. Nevertheless, it is obvious that

Cyt1Aa lacks the layered substructure in the crystal topography com-

pared to Cry11Aa, which hinders the estimation of the vertical dimen-

sion of the protein monomer. The clustered solid particles shown in

Figure 2D infer that Cyt1Aa tends to aggregate at low numbers of

toxin molecules, as displayed elsewhere.28 The rise of two distinct

molecular mechanisms regarding the Cyt1Aa toxicity, the pore forma-

tion40 and detergent-like models,41,42 probably reflects the process of

increasing toxin molecules in interaction with the membrane.

Although Cry11Aa and Cyt1Aa are both structurally classified as a

Cry solid, their monomeric molecules do not follow exactly the period-

icity while exhibiting some disorders locally over all the crystal. Analo-

gous to the definitions of structural orders for characterizing

amorphous solids,43 Cry11Aa crystal renders itself as the largest struc-

tural element with the highest hierarchical order 3; the layer-like

structures are of order 2 with local dimensionality of 2 to stack up the

3D crystal, wherein the filamentous ridges are of order 1. The present

results show fewer structural hierarchical orders for Cyt1Aa than for

Cry11Aa, suggesting the structural orders 2 and 1 of Cry11Aa are

closely related to multimerization and molecular mechanisms in syner-

gistic toxicity in specific interaction with Cyt1Aa-membrane

complexes.

3 | CONCLUSION

The present results have shown that Cry11Aa protoxin exhibits a lay-

ered substructure in the crystal topography while Cyt1Aa lacks such a

surface characteristic. Although Cry11Aa and Cyt1Aa are both in Cry

forms, their translational and orientational orders are not perfectly

organized in a definite lattice pattern, leading to various sizes and

shapes as well as structural features. In solution, the monomers of

Cry11Aa or Cyt1Aa move freely and disorderedly. Once anchored

onto a membrane surface, the development of molecular assembly

will depend on the networking forces underlying the surface struc-

tures of Cry11Aa and Cyt1Aa crystals and the synergistic toxicity.

Combining with the L-weight filter, this work has demonstrated the

power of AFM in imaging on arbitrary shapes of solid objects to reveal

the molecular architecture. Together with our previous experiences,

AFM imaging with the L-weight filter has been shown to be extremely

useful for acquiring high-resolution information of biomolecular sys-

tems from solution to solid state.
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