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Abstract

Interpolating or predicting data is of utmost importance in machine learning, and
Gaussian Process Regression is one of the numerous techniques that are often used in
practice. In this paper, we consider the case of multi-input and multi-output data.
A simple Joint Kriging model is proposed, where common combination weights are
applied to all output variables at the same time. This drastically reduces the num-
ber of hyperparameters to be optimised while keeping nice interpolating properties.
An original constraint on predicted values is also introduced, useful for considering
external information or adverse scenarios. Finally, it is shown that, when applied to
membership degrees, the model is especially helpful for constrained fuzzy classification
problems. In particular, the model allows for prescribed average percentages of each
class in predictions. Numerical illustrations are provided for both simulated and real
data and show the importance of the constraint on predicted values. The method also
competes with the 69 other models of an open real-world benchmark.

Keywords—Multi-output Kriging, Cokriging, Constrained classification, Spatial Pre-
diction, multi-task Gaussian Process regression.

1 Introduction

Interpolating data is widely used in many fields of computer experiments. It is especially
useful to predict the values of one or several variables of interest in the context of time-
consuming or costly experiments. One considers here a Kriging interpolation problem on
several output variables, with specific constraints on predicted values, so that applications
to constrained classification are possible. Let us detail the need to deal with such a problem.

Kriging on several outputs. Kriging, or Gaussian Process Regression, is a method of
interpolation, especially suited when there are only a few observations that have to be
interpolated. It is widely used in many fields of Machine Learning, originally for geostatis-
tical studies and spatial interpolation, but also for computer experiments in many domains
(finance, industry, environment, etc.).

∗didier.rulliere@emse.fr
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The most basic Kriging theory aims at predicting a single real-valued quantity of in-
terest, the output (for instance, gold concentration in the ground), depending on some
explanatory variables that are referred to as input values or locations (for instance, lati-
tude, longitude, and depth). From a statistical point of view, the Kriging method is based
on the best linear unbiased combination of observed outputs, with the assumption that
observations are random variables whose correlation depends on locations. From a Gaus-
sian random field point of view, in a Gaussian setting, the interpolation is the mean of
a conditional Gaussian random field, with confidence bands derived from the variance of
the conditional random field. An in-depth review of Gaussian Processes can be found in
(C. E. Rasmussen & Williams, 2006).

The method has several advantages. First, it is interpretable: the prediction is a
weighted average of observations, with quite a logical behaviour of the weights. Second,
the method fully interpolates the data, that is, predicts exactly an observed output if one
uses the same input values. And third, it not only gives a prediction but also confidence
intervals for this prediction. Among limitations of the method and proposed extensions in
the literature, one can cite the difficulty to handle numerous observations, (see e.g. Cressie
& Johannesson, 2008; Banerjee et al., 2013; Rullière et al., 2018, and references therein),
the difficulty to specify the covariance model and to estimate its hyperparameters (Bachoc,
2013), the difficulty to treat multivalued outputs (Furrer & Genton, 2011).

In this paper, we mainly consider this multivalued output problem, which is clearly of
practical interest. One originality of this work is that this kind of multivalued interpola-
tion is also applied to membership degrees in a classification setting. Moreover, a proposed
simplification of the model is especially useful since it keeps the property of membership
degrees summing to one. At last, another novelty is to consider a specific constraint on pre-
dicted values. As detailed below, it will allow for proportion constraints in a classification
setting.

Constraints on predicted values. There is a well known joke on actuaries: How much
is two plus two? An actuary will ask “What do you want it to equal?”. At first glance, it
seems dishonest to require constraints on predicted values, especially if these constraints
are very precise. But such constraints can be useful when having external information, for
adverse modelling, or for homogenisation needs, as illustrated below. The constraint we
consider, for the model presented in this paper, focuses on the average of predicted values.

It can be very helpful to prescribe a specific value for the average of predicted values.
Let us instantiate some examples: Due to an industrial accident, one wishes to measure
the pollution in the soil for different chemical products. Measures are done at some spatial
places, but the number of measures is limited. One would like to infer the quantity of
all chemical products everywhere in the soil. Knowing stockpiles of products before the
accident, the total quantity of lost chemicals may be known for every chemical product.
While Gaussian Process Regression is especially suited to predicting one product dosage
in the soil, it has difficulty handling jointly a lot of products as it needs to model many
cross-covariances. Furthermore, it cannot handle any constraint at all, like prescribing the
sum of predicted values to be equal to the known quantity of spilled product. Another
example is the case where one needs to build a prediction under an adverse scenario: even
if the total quantity of lost chemicals is unknown, it can be useful to get an idea of the
distribution of pollutants in an adverse case of massive loss.

In other investigations, there may be external knowledge to consider. For example,
a regional study might want to be in line with some given national statistics if there is
no reason that the regional statistics differ on average. One can observe data due to
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an exceptional situation (e.g., COVID), and one may want to use it knowing that the
situation has returned to normal. Or one might want predictions over different years
or over different regions to coincide, at least on average. For instance, one may want
that some disease incidence prediction does not differ, on average, over different medical
centres. Another situation is the following: imagine that one knows, under an arbitrage-
free setting, that some predicted stock returns must be zero on average, or imagine that the
regulator wants to force a prediction under specific shock scenarios. Fairness constraints
can also be introduced to limit unfairness in algorithmic decision-making (Zafar et al.,
2019). Therefore, prescribing the average value of predictions is useful in multiple contexts,
be it external information (known quantity of chemical, national statistic, etc.), adverse
modelling (regulation, simulation under specific scenarios, etc.), or the need to homogenise
results (over different regions, observed years, fairness constraints, etc.).

Constrained Kriging and fuzzy classification. Fuzzy classification is useful when an
individual may simultaneously belong to multiple classes of a categorical variable, or when
one is trying to predict a distribution of the probabilities for an individual to belong to
each class of a categorical variable. In both cases, one usually builds a model to predict a
quantitative variable associated with each class. The larger the quantitative variable, the
more likely an individual is to belong to the associated class. These quantitative variables
are called membership degrees. If those membership degrees are positive and sum to 1,
they can be assumed to be probabilities.

Applying multi-output Kriging on membership degrees has several advantages for fuzzy
classification. One advantage is that the interpolation property can be preserved, which
is not necessarily the case for other classification or clustering techniques like KNN: even
at a location very close to a given observation, KNN can predict another class than the
observed one. Another advantage of using a multi-output Kriging model on membership
degrees is to get an estimation of the uncertainty of the prediction. For instance, at a
specific location, one may predict 10% of the chance that the class is one, but one can also
give a confidence interval for this quantity.

Applied to classification, a constraint on average predicted membership degrees is also
useful for the same reasons as above-mentioned. A specific simplification of multi-output
Kriging will nevertheless be required to fulfil all considered constraints on predicted mem-
bership degrees.

Literature. The proposal here is to use multi-output Kriging with classification, under
specific constraints on predicted values.

Regarding Multi-output Kriging, there is a huge amount of literature available. Refer-
ence books can be found on the topic, such as (Wackernagel, 2003) and (Chiles & Delfiner,
2012). The modelling of cross-covariance functions is detailed in several papers, as in
(Alvarez et al., 2012; Genton & Kleiber, 2015). Recent papers are dealing with inference
and prediction using multitask Gaussian Processes (Leroy et al., 2022, 2023). Co-Kriging
techniques are built to treat several outputs, but there is usually one main output, and
others are used to improve the prediction of the main considered output. Furthermore, all
cross-covariances between outputs at different locations have to be modelled, which creates
O(p2) covariance models, where p is the number of outputs (Goovaerts, 1998; Ver Hoef
& Cressie, 1993; Furrer & Genton, 2011). While highly parametrised models are useful
in many situations, the prediction quality relies on the proper specification of the model
and on the estimation of its parameters. A fine model with the wrong parameters can
sometimes be less efficient than a simpler model with more control over a few parameters
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(C. Rasmussen & Ghahramani, 2000). One considers, here, a model where Kriging is ap-
plied to multivalued outputs in Rp, but with a specific simplification leading to a single
covariance function to tune instead of O(p2).

Some works can be found in the literature about clustering or classification under
constraints. A survey on constrained classification can be found in (Gordon, 1996, and
references therein). Some research works treat size constraints for clustering (Bradley
et al., 2000; Höppner & Klawonn, 2008; Ganganath et al., 2014), while others treat the
problem of fuzzy clustering with weights (membership degrees), as in the present work, see
for example (Benatti et al., 2022). Fairness constraints are also considered in (Zafar et al.,
2019).

Regarding Kriging and classification, some works on classification using Gaussian set-
tings can be found in a dedicated Chapter 3 in the book (C. E. Rasmussen & Williams,
2006). In particular, for binary classification, membership probabilities can be approxi-
mated by a sigmoid transformation of some latent Gaussian Process. The approach can
be generalised to multi-class problems, and Bayesian inference can be conducted using an-
alytic approximations of integrals, or solutions based on Monte Carlo sampling (Williams
& Barber, 1998; C. E. Rasmussen & Williams, 2006, and references therein). Other re-
cent approaches involving Multi-task Gaussian processes, using several latent Gaussian
processes, and Bayesian inference with approximations or sampling can be found in (Dahl
& Bonilla, 2019; Panos et al., 2021).

Among works closer to what is proposed in the present work, Indicator Kriging aims at
determining the cumulative distribution function (cdf) of an underlying random field at an
unknown location, as a weighted average of indicators. It uses linear combinations of trans-
formed observations too, but relies on a direct link between indicators and the underlying
random field using thresholds. Hence, it does not seem to be directly suited to classify
non-ordinal data (without any hierarchy between classes). It also requires the observation
of the latent process that generates the indicators (Journel, 1983; Meer, 1996; Goovaerts,
2009; Chiang et al., 2013). Extensions like indicator co-Kriging require a large number of
cross-covariances (Agarwal et al., 2021). In the present paper, the proposed method can be
applied to non-ordinal data, and does not require a specific model or thresholds between
indicators of membership and an underlying real random field; furthermore, in a simplified
setting, the whole method can also rely on a single covariance function.

Proposal To the best of our knowledge, the use of Kriging on several outputs with ap-
plication to classification under constraints on predicted values has not been developed
yet. We present, in this work, such a model. It involves a reduction of the number of
hyperparameters. And it includes the possibility of considering specific constraints. The
present approach directly yields closed-form formulas without the need for conditional den-
sity approximations or sampling. Such original constraints are not typically addressed by
classical multi-output Kriging or Gaussian Process regression.

It seems to us that using multi-output Kriging on classification offers many modelling
perspectives as well as practical results and performance. We will see that the proposed
model competes with the best available methods on an open data set, among the 69
competitors of an open benchmark.

Structure The paper is structured as follows. In Section 2, we define a simplified Kriging
model that is suited for multivalued outputs. The model is detailed in three cases: with
no specific constraint, similarly to Simple Kriging; with weights summing to 1, similarly
to Ordinary Kriging; with constraints on weights summing to 1 and on average predicted
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values. In each case, we derive optimal weights together with the prediction mean and
variance. An extension using an affine prediction is also developed. In Section 3, the
proposed interpolation technique is applied to membership degrees, and it is shown that it
preserves useful basic properties for the prediction. Section 4 details strategies to fill the
required covariance matrices and hyperparameters. In Section 5, numerical applications
of the proposed interpolation technique are given. One considers in particular a minimal
application on a toy example, an illustration on a multivalued time series on a real data
set, and a more detailed real-world application on a classification problem. A conclusion
closes the paper.

Appendix . For more readability, all proofs are gathered in Appendix A, page 36. A list of
notation and symbols is given in Appendix B. All illustrations are generated with notebooks
that are available as online supplementary material1, in modifiable and executable format
.Rmd and in already executed directly readable .html format (Grossouvre & Rullière, 2023).
Hence, the results are fully reproducible, and all specifications for drawing figures are easy
to retrieve.

2 Joint Kriging Model

Let us consider a multivalued random field Y(x) := (Y1(x), . . . , Yp(x))
⊤ ∈ Rp, x ∈ χ

where χ is a metric set of input points, typically χ = Rd. For the sake of clarity and using
analogy with geostatistics, we will refer to x as locations, but χ may contain any explanatory
variable. The components Y1(.), . . . , Yp(.) will be referred to as the p considered output
variables. Components of the random field Y(x) can be dependent. Furthermore, Y or its
components are not necessarily Gaussian. However, one assumes that first- and second-
order moments exist. One considers here that Y(x) ∈ Rp and χ = Rd, but other metric
spaces would be possible as soon as expectation and cross-covariances between Y(x) and
Y(x′) can be derived.

Given n observations of Y(x1), . . . ,Y(xn), we aim at predicting the values of the
random field at some unobserved locations x⋆1, . . . , x

⋆
q , i.e., we aim at giving a predictor of

Y(x⋆1), . . . ,Y(x⋆q). At an unobserved location x⋆, we define the Joint Kriging predictor as
a predictor M(x) = (M1(x), . . . ,Mp(x))

⊤ depending linearly on observations, where real
coefficients apply jointly to all components of the observations:

M(x⋆) :=

n∑
i=1

αi(x
⋆)Y(xi) where ∀i ∈ {1, . . . , n}, αi(x

⋆) ∈ R. (1)

These weights α(x⋆) := (α1(x
⋆), . . . , αn(x

⋆))⊤ are optimised in order to minimise some
error that we will detail later on, under various possible constraints. Now, defining the
p× n matrix Y := [Y(x1), . . . ,Y(xn)], Equation (1) also writes in a compact way:

M(x⋆) = Yα(x⋆). (2)

The main assumption here is that the weights are impacting all components the same
way: the first component M1(x

⋆) is a linear combination of the observed first components,
namely Y1(x1), . . . , Y1(xn); the second component M2(x

⋆) is the same linear combination
of the observed second components Y2(x1), . . . , Y2(xn), etc. In other words, the weights
affect jointly, or simultaneously, all the components of observed Y(xi), i = 1, . . . , n, hence

1at https://gitlab.com/urbs-imope/rdscripts/jointkrigingsupplementary
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the chosen name of Joint Kriging model. We will see in Section 3 that this key simplifying
assumption is especially useful for classification under constraints. It would be technically
possible to release this assumption, e.g., by replacing weights αi(x) by some p×p matrix for
i = 1, . . . , n; one would get closer to some general co-Kriging model with O(p2) covariance
models, but that is not the purpose of the present work.

Let us define the prediction error associated with a vector of weights α(x⋆), at a
prediction location x⋆. This loss is defined as the scalar value:

∆(x⋆) := E
[
∥M(x⋆)−Y(x⋆)∥2W

]
, (3)

where ∥v∥2W := v⊤Wv is a squared norm with W a given symmetrical positive-definite
matrix of real weights. For instance, if one changes the unit of the first output variable, say
multiply it by 100, then it sounds logical that the resulting norm be unchanged. Thus, some
weights’ matrix may seem reasonable: an inverse covariance matrix as in the Mahalanobis
distance, or a diagonal matrix of inverse variances, etc. For simplicity, the reader may
imagine that all p output variables are already scaled and that W is the p × p identity
matrix.

The main difficulty is to derive the optimal weights α(x⋆) under the various constraints
one would like to consider. At all prediction locations x⋆1, . . . , x

⋆
q , one thus aims at deter-

mining the optimal weights, gathered in a n× q matrix:

A :=
[
α(x⋆1), . . . ,α(x⋆q)

]
.

This is performed in the three following subsections under different constraints.

2.1 Optimal Weights Without Constraints

In this subsection, we define optimal weights that minimise the prediction error without
supplementary constraints.

Let us denote S+
n (R) the set of real valued symmetric semi-definite positive n × n

matrices and Mn×q(R) the set of real valued n × q matrices. The following Proposition
expresses the weights such that M(x⋆) is a BLUP of Y(x⋆), in the sense of minimising
the loss (3). The result looks exactly the same as in the simple Kriging model, but the
components in the symmetric positive semidefinite matrix K and in the vector h(x⋆) here
aggregate the values of all p observed, mutually dependent, output variables. One retrieves
the usual Simple Kriging equations in the case where p = 1 and W is the identity matrix.

Proposition 1 (Simple Joint Kriging weights). The optimal weights α(x⋆) minimising
the loss of Equation (3) are given by:

α(x⋆) = K−1h(x⋆) ∈ Rn, (4)

or equivalently, using a matrix expression to predict simultaneously over the q locations,

A = K−1H ∈ Mn×q(R), (5)

where

K :=E
[
Y⊤WY

]
∈ S+

n (R) is assumed to be invertible,

h(x⋆) :=E
[
Y⊤WY(x⋆)

]
∈ Rn,

H :=
[
h(x⋆1), . . . ,h(x

⋆
q)
]
∈ Mn×q(R)
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If furthermore for all output variables j = 1, . . . , p, for all location x ∈ χ, E [Yj(x)] = 0,
then M(x⋆) is unbiased.

Proof. The proof is postponed to Appendix. A.1, page 36.

Note that the matrix K is necessarily a covariance matrix since it is symmetric positive
semidefinite.

Here, we have weights applied jointly to all components, which leads to a simplified
predictor. The prediction accuracy may suffer from this simplifying assumption, compared
to heavily parameterised models. However, we operate with general assumptions that are
the finite moments of orders 1 and 2, and we do not require stationarity, independence or
a Gaussian setup. The assumptions we make are about the covariance function of a tun-
able weighted sum of components. The predictor can still take into account dependencies
between those components and non-stationarities.

We will see that this simplified predictor is required to handle specific constraints, such
as “higher-scale constraints” in Section 3.1. More details on covariances in K and H will
be given in a dedicated Section 4, where links with specific cross-covariance models of the
literature are also presented.

2.2 Optimal Weights Summing to One

In this section, one considers an additional constraint. This constraint raises naturally
when the random variables Yi(x) are not centred, and it leads to weights summing to one,
as in Ordinary Kriging (Cressie, 1988), namely for all x⋆,

α⊤(x⋆)1n = 1 (6)

where 1n is a n× 1 vector of ones.
The above constraint implies that the prediction is a weighted average of observations.

Therefore, in the case where output variables’ expectation is constant over the territory χ
and equal to µ = (µ1, . . . , µp)

⊤, then the expectation of the prediction is also µ:

If (6)
and ∀x ∈ χ, E [Y(x)] = µ

then E [M(x⋆)] = µ

and therefore E [M(x⋆)] = E [Y(x⋆)] .

Conversely,

If ∀x ∈ χ, E [Y(x)] = µ

and ∀i ∈ {1, . . . , p}, µi ̸= 0

and E [M(x⋆)] = µ

then (6).

Hence, (6) is a very natural constraint. It does not imply, however, that M(x⋆) is a
convex combination of all Y(xi), because some weights can still be negative.

Under this constraint of weights summing to 1, the following proposition gives the
optimal weights. One retrieves similar formulae as in ordinary Kriging, but the involved
elements in matrices K and H are different: they are computed taking into account all p
mutually dependent output variables over all observations.
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Proposition 2 (Ordinary Joint Kriging weights). Under the constraint of Equation (6),
the optimal weights α(x⋆) minimising the loss of Equation (2) are given by:

α(x⋆) = K−1 (h(x⋆) + λ(x⋆)1n) ∈ Rn.

Equivalently, using matrix expressions, one gets

A = K−1
(
H+ 1nλ

⊤
)

∈ Mn×q(R)

where

δ := 1n
⊤K−11n ∈ R,

λ(x⋆) :=
1

δ

(
1− 1n

⊤K−1h(x⋆)
)
∈ R, K := E

[
Y⊤WY

]
∈ S+

n (R),

λ :=
(
λ(x⋆1), . . . , λ(x

⋆
q)
)⊤ ∈ Rq, h(x⋆) := E

[
Y⊤WY(x⋆)

]
∈ Rn,

λ⊤ =
1

δ

(
1q

⊤ − 1n
⊤K−1H

)
, H :=

[
h(x⋆1), . . . ,h(x

⋆
q)
]

∈ Mn×q(R).

If furthermore, for all output variables i = 1, . . . , p, for all locations x ∈ χ, E [Yi(x)] = µi,
then M(x⋆) is unbiased.

Proof. The proof is postponed to Appendix. Subsection A.2, page 36.

In some cases, matrices can be expressed indifferently with compact expressions, us-
ing K and h(x⋆), or with more classical covariances, using K̃ and h̃(x⋆), as stated in the
following remark.

Remark 1 (Covariance matrices). Let us define the true unknown values of Y at all
prediction points by Y⋆ :=

[
Y(x⋆1), . . . ,Y(x⋆q)

]
. Assume E [Y(x)] = µ for all x ∈ χ.

Furthermore, assume that either weights sum to one, that is, α(x⋆)⊤1n = 1, or µ = 0p.
Then the matrices K, H, and the vector h(x⋆) can be replaced by

K̃ := E
[
Y⊤WY

]
− E

[
Y⊤

]
WE [Y]

H̃ := E
[
Y⊤WY⋆

]
− E

[
Y⊤

]
WE [Y⋆]

h̃(x⋆) := E
[
Y⊤WY(x⋆)

]
− E

[
Y⊤

]
WE [Y(x⋆)]

everywhere in Proposition 2, without changing the optimal weights α(x⋆).

Proof. The proof is postponed to Appendix. Subsection A.3, page 37.

2.3 Optimal Weights With Constraint on Predictions

The constraint we consider here is more original than the previous one: we would like that,
given observations Y, the average of the predicted values has some prescribed value. For-
mally, we introduce X⋆, a random variable taking values in prediction locations {x⋆1, . . . , x⋆q},
and we introduce the constraint:

E [M(X⋆) |Y] = m for some m ∈ Rp. (7)

This constraint relies on predicted values for a given set of observations. The idea
is to force the optimal weights to take into account this a posteriori constraint. The
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interpretation of this constraint is that there is a secondary source of information that
gives knowledge of the output expectation over the points to predict. A typical case would
be one where the observations and the points to predict both form a representative sample
of the territory.

Notice the importance of conditioning by Y. Otherwise, if all Yi(x) are centred, then
the constraint would not be possible to satisfy in general since all M(x⋆) would be centred.
We will see that this kind of constraint is particularly useful for fuzzy classification when
one wishes to force the proportions of classes, whatever the observed values.

Gathering all predictors in a single matrix M, we have:

M :=
[
M(x⋆1), . . . ,M(x⋆q)

]
i.e. M = YA,

and denoting πx⋆ := P [X⋆ = x⋆] ,

π :=
(
πx⋆

1
, . . . , πx⋆

q

)⊤
,

we have YAπ = m. (8)

One specificity is that the resulting weights in the matrix A will have to be solved all
at once for all q prediction locations. This is different from usual Kriging settings, where
prediction locations can be treated separately if desired.

The constraint (7) is cumulated with the above constraint (6), so that the new system
of constraints is: {

A⊤1n = 1q

YAπ = m
(9)

In general, those constraints are linearly independent. The necessary and sufficient
condition for those constraints to be linearly dependent is:

∃ω ∈ Rp \ {0p},∃ω0 ∈ R, such that Y⊤ω = ω01n

It is the case, in particular, if Y is a matrix of membership degrees in a fuzzy classifi-
cation context, where Y⊤1p = 1n.

In the following proposition, we give the matrix of optimal weights A when both con-
straints are considered at the same time: the constraint (7) on predicted values and the
constraint (6) on weights summing to one. We treat both cases: when the system of Equa-
tions (9) is of full rank q + p and when its rank is q + p− 1.

Proposition 3 (Joint Kriging weights under a predicted values constraint). The Joint
Kriging weights minimising the loss of Equation (3) under the constraint of weights sum-
ming to one of Equation (6), and prescribed average predicted values of Equation (7) write:

A = K−1
(
H+ 1nλ

⊤ + Y⊤λ′π⊤
)

(10)

• If the system of Equations (9) is of full rank q + p, Lagrange multipliers are:

λ′ =
1

γ

(
1

δ
uu⊤ − YK−1Y⊤

)−1(
YK−1Hπ +

1

δ
u
(
1− 1n

⊤K−1Hπ
)
−m

)
∈ Rp

λ =
1

δ

(
1q −H⊤K−11n − πλ′⊤u

)
∈ Rq
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• If the system of Equations (9) is of rank n + p − 1, we remove arbitrarily the first
constraint of the first equation and Lagrange multipliers become:

λ′ =
(γ1
δ
uu⊤ − γYK−1Y⊤

)−1

(
YK−1Hπ +

1− π1
δ

u− 1

δ
u1n

⊤K−1H1π1 −m

)
∈ Rp

λ1 =
1

δ

(
1q−1 −H1

⊤K−11n − π1λ
′⊤u

)
∈ Rq−1

λ =

(
0
λ1

)
∈ Rq

where π1 := πx⋆
1
∈ R, π1 :=

(
πx⋆2, ..., πx⋆

q

)⊤
∈ Rq−1

+ , u := YK−11n ∈ Rp, γ := π⊤π ∈ R,

γ1 := π1
⊤π1 ∈ R, δ := 1n

⊤K−11n ∈ R, H :=
[
h(x⋆1), ...,h(x

⋆
q)
]
∈ Mn×q(R), H1 :=[

h(x⋆2), ...,h(x
⋆
q)
]
∈ Mn×(q−1)(R).

Proof. The proof is postponed to Appendix. A.4, page 37.

Note that it is also possible to compute a model with the only constraint YAπ = m, but
without requiring weights summing to one. In view of further classification applications,
we do not develop it here and keep both constraints.

Again, an originality is that the previous result can be expressed using compact ex-
pressions for K and H or more classical covariances, as stated in the following remark. The
covariance functions that can be used to fill those matrices are detailed in Section 4.

Remark 2 (Covariance matrices with two constraints). Under the assumptions of Re-
mark 1 and using the same notations, the matrices K and H can be replaced by K̃ and H̃
everywhere in Proposition 3, without changing the optimal weights A.

Proof. The proof is postponed to Appendix. A.5, page 41.

Notice that the constraint on predicted values depends on prediction locations, which is
the innovative aspect of this work. And the constraints become obviously too strong with
a single predicted location; the prediction would be entirely prescribed. In practice, such
a constraint is typically applied either on a given static grid of locations or on problems
where the prediction locations are known (e.g., when the observed locations constitute a
subset of some given finite set).

2.4 Optimal Weights With Affine Extension

A well-known characteristic of Simple Kriging is that the Kriging weights and the Kriging
mean both tend to zero far from observed locations. In our setting, predicted values should
be m on average. Hence, one may desire that predictions return to m far from the observed
locations. This behaviour is similar to what one may expect from a Simple Kriging model
applied on Y−m, where predictions’ weights far from the observations tend to 0. However,
it is important to keep in mind that since we want the sum of a prediction’s weights to
be equal to 1, it is incompatible with Simple Kriging with a null limit. We present in this
section an affine extension of the Joint Kriging model, which is useful when one needs, at
the same time, weights summing to 1 and a tunable behaviour far from the observations.
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Up to this point, one has only considered linear predictors, where a predictor is a linear
combination of observed responses Y(x1), . . . ,Y(xn), under various constraints. We now
consider the case where the prediction involves one additional term.

The constraint on predicted values in the Joint Kriging model suggests that there is
an external source of information giving a hint on the prediction. In addition to the
observations, one knows that predicted values should be m on average. This information
may come, for instance, from some known overall statistics on the territory, some expert
knowledge, or from an expectancy estimator. Let us denote Z the p × 1 random vector
containing this external source of information.

With this in mind, we define an affine prediction:

M+(x⋆) := α0(x
⋆)Z+

n∑
i=1

αi(x
⋆)Y(xi), (11)

given Z = m, a constant term is included in the sum, hence the name “affine prediction”.
The sum of weights constraint on the new vector α+ = (α0(x

⋆), . . . , αn(x
⋆)) can be

written:
1n+1

⊤α+(x⋆) = 1.

This way, if the p components of m and Y(xi), i = 1, . . . , n are probabilities summing
to one, then the p components of the predictor M(x⋆) will also sum to one.

For the second constraint on average predicted values, previously detailed in Equa-
tion (7), there is an implicit conditioning by Z = m. This constraint may write, with X⋆

a r.v. defined on {x⋆1, . . . , x⋆q}:

E
[
M+(X⋆)

∣∣Z = m,Y
]
= m. (12)

Finally, provided covariances between Z and Y(x) are given for all x ∈ χ, then the
setting is the same as in previous Propositions 1, 2, and 3, except that one observation
Z = m is added in the vectors of observations Y(x1), . . . ,Y(xn). The covariance matrices
are also updated. This is detailed in the following Proposition.

Proposition 4 (Affine version of predictors). Assume that the following covariance vectors
are given:

P⊤ := E
[
Z⊤WY

]
− E

[
Z⊤

]
WE [Y] ,

Q⊤ := E
[
Z⊤WY⋆

]
− E

[
Z⊤

]
WE [Y⋆] ,

σ2
Z := E

[
Z⊤WZ

]
− E

[
Z⊤

]
WE [Z] .

Then, affine predictors corresponding to the simple unconstrained case, to the ordinary
case with one constraint, and to the case with two constraints can be obtained by replacing
Y, K, and H by

Y+ =
(
m Y

)
, K+ =

(
σ2
Z P⊤

P K

)
, H+ =

(
Q⊤

H

)
,

in Propositions 1, 2, and 3 respectively.

Proof. The proof is straightforward, hence not appearing in the Appendix.

11



Notice that the previous Proposition 4 can be easily extended to several sources of
information: Z1,Z2, . . .. For the sake of simplicity, this is not developed here.

As detailed in Section 4, the matrices K,H can be derived from simple correlation
functions. Now it remains to derive one expression for P and Q.

Remark 3 (Extra covariances for affine prediction). Let P = (P1, . . . , Pn), Q = (Q1, . . . , Qq),
and Z = (Z1, . . . , Zp).

Let us assume that P and Q do not depend on xi nor on x⋆j , which means that the gen-
eral source of information informs about the whole process, not about a particular location.
then one can propose

Pi = ρσσZ , i = 1, . . . n

Qj = ρσσZ , j = 1, . . . q

This happens, for instance, when Yk(x) = ρ σ
σZ

Zk + Gk(x), k = 1, . . . , p, where all Gk(x)
are independent of all Zk.

The parameter ρ ∈ [−1, 1] measures how redundant the information provided by Z is,
and can even be set to 0 if one considers that the external information source is completely
independent of observations. The parameter σZ measures how certain the external infor-
mation is: when σZ is high, the added information cannot be trusted, and one retrieves
the linear predictor; when σZ is low, the added information is trustable, so that far from
observed locations, M(x) gets nearer to m. In practice, one can set 0 < σZ ≪ σ to see the
maximal difference with the linear predictor. One can even optimise this parameter σZ to
smoothly switch from a linear to an affine model.

Other assumptions can be made, leading to different vectors P and Q.

Far from observations, all the weights in Equation (11) tend to predict the external
source of information Z. By choosing specific values of Z, the default behaviour of the
output variables is tunable. The affine predictor hence satisfies both weights summing to
one and the default limit of the output variables, which is chosen here to be Z = m.

2.5 Joint Kriging Mean and Variance

In this subsection, we derive the mean predictor and the prediction error, assuming the
optimal weights have been calculated with chosen constraints, as detailed in previous sub-
sections.

Consider M(x⋆) and α(x⋆) a Joint Kriging predictor and the associated weights with or
without constraints. In the following, we call Joint Kriging mean the value of the predictor
M(x⋆) and Joint Kriging variance the value of the quadratic error ∆(x⋆). Let us recall
that:

M(x⋆) := Yα(x⋆),

∆(x⋆) := E
[
∥M(x⋆)−Y(x⋆)∥2W

]
.

where Y = [Y(x1), . . . ,Y(xp)] is the p× n matrix of observations. If p = 1 and if W is
the identity matrix, Joint Kriging mean and Joint Kriging variance are exactly the Kriging
mean and the Kriging variance usually known in Kriging.

The following Proposition gives a closed formula to compute the Joint Kriging variance.

12



Proposition 5 (Joint Kriging variance with arbitrary weights). Let α(x⋆) be any vector
of weights, possibly satisfying supplementary constraints. The associated Joint Kriging
variance writes:

∆(x⋆) = α(x⋆)⊤Kα(x⋆)− 2α(x⋆)⊤h(x⋆) + v(x⋆), (13)

or using a matrix expression, denoting ∆ := (∆(x⋆1), . . . ,∆(x⋆1))
⊤, we get

∆ = diag
[
A⊤KA

]
− 2diag

[
A⊤H

]
+ diag[K⋆] ,

where K := E
[
Y⊤WY

]
∈ S+

n (R),

K⋆ := E
[
Y⋆⊤WY⋆

]
∈ S+

q (R),

h(x⋆) := E
[
Y⊤WY(x⋆)

]
∈ Rn,

v(x⋆) := E
[
Y(x⋆)⊤WY(x⋆)

]
∈ R

are assumed to be known. diag[.] is the vector whose entries are the diagonal of the
considered matrix.

Proof. The proof is postponed to Appendix. A.6, page 42.

Note that the above Proposition 5 can be directly adapted to the affine case of Propo-
sition 4 by replacing Y,K,H by Y+,K+,H+, v being unchanged: one can interpret the
predictor to be a linear predictor with one more observation, with correct covariances.

As previously stated in Remarks 1 and 2, and using the same notation, one can replace
K,H,h with K̃, H̃, h̃, provided that the following new quantities are defined:

K̃⋆ = E
[
Y⋆⊤WY⋆

]
− E

[
Y⋆⊤

]
WE [Y⋆]

ṽ(x⋆) = E
[
Y(x⋆)⊤WY(x⋆)

]
− E

[
Y(x⋆)⊤

]
WE [Y(x⋆)] .

The result is stated in Remark 4 below. Hence, in practice, all these covariances can
be filled using a given covariance function k(x, x′), under suitable assumptions, as detailed
in Section 4.

Remark 4 (Covariance matrices in Joint Kriging mean and variance). Under the as-
sumptions of Remark 1 and using the same notation, the matrices K, H, K⋆, the vector
h(x⋆) and the scalar v(x⋆) can be replaced by K̃, H̃, K̃, h̃(x⋆) and ṽ(x⋆) everywhere in
Proposition 5, without changing the Joint Kriging mean and variance.

Proof. The proof is postponed to Appendix. A.7, page 42.

Now, remark that Proposition 5 gives only an overall error:

∆(x⋆) := E
[
∥M(x⋆)−Y(x⋆)∥2W

]
which is a weighted sum of errors over all components of M(x⋆).
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This is a strength of the method since the quantity to optimise is real-valued, which
allows using standard covariance functions as detailed in Example 3. This is also an impor-
tant limitation, because in practice, one surely needs prediction errors for each component
of M(x):

δi(x
⋆) := E

[
∥Mi(x

⋆)− Yi(x
⋆)∥2

]
, i = 1, . . . , p.

The following Proposition 6 shows that one can get this error δi(x
⋆) for each compo-

nent i = 1, . . . , p. It relies on a supplementary assumption on the matrix W, but this
assumption is only useful for determining the confidence bands for each component of the
predictor M(x), not for computing M(x) itself.

Proposition 6 (Variance sharing). Assume that transformed observations Ỹ(x) := W1/2Y(x)
are such that components of Ỹ are uncorrelated and bear the same share of the covariance
function k, that is to say:

Cov
[
Ỹi(x), Ỹj(x

′)
]
=

1

p
k(x, x′)1{i=j}, i, j ∈ {1, . . . , p}, x, x′ ∈ χ,

Assume also that E [Y(x)] = µ for all x ∈ χ. Furthermore, assume that either the weights
sum to one or µ = 0p. Then, the local errors write:

δi(x
⋆) =

σ2
i

σ2
∆(x⋆), i = 1, . . . , p. (14)

where σ2
i := Var [Yi(x)] is the variance of the component Yi(x), assumed to be constant

over x.

Proof. The proof is postponed to Appendix. A.8, page 42.

The result of Proposition 6 states that for a well-chosen matrix W, the error δi(x
⋆) is

proportional to the unit global error σ−2∆(x⋆): one has to apply the variance σ2
i of the

component instead of the variance σ2 of the aggregated weighted components.

3 Constrained Classification

In this section, we now apply multi-output prediction to membership degrees for fuzzy
classification. We show that the Joint Kriging predictor, together with constraints on
weights and predicted values, is especially suited to this task, and the above constraints
make sense in a classification setting.

3.1 Prescribed Constraints

We aim here at proposing a fuzzy classification with a prescribed average of predicted mem-
bership degrees. Either because one requires that predicted values are overall distributed
like the observed ones or because an external source of information gives the expected label
percentages on a higher scale. It can be the case for a regional study, knowing some statis-
tics at a national level. It can also be used for modelling adverse scenarios, as discussed in
the Introduction of this paper.

Consider a classification problem with p possible labels. Labels depend on some ex-
planatory variables x ∈ χ, so that one may observe labels ℓ(x1), . . . , ℓ(xn) taking values in
{1, . . . , p}. Assume that, at a prediction point x⋆, a fuzzy classification method provides
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membership degrees of the p classes, gathered in a vector M(x⋆). Consider q prediction
points x⋆1, . . . , x

⋆
q , and bind all predicted membership degrees in a p× q matrix:

M :=
[
M(x⋆1), . . . ,M(x⋆q)

]
.

Components of M(x⋆) should be positive and sum to one at each prediction point x⋆, and
the weighted average of predictions M(x⋆1), . . . ,M(x⋆q) is prescribed. As a result, we must
satisfy positivity and the following system of constraints:{

1p
⊤M = 1q

⊤ (probabilistic constraint)
Mπ = m (higher-scale constraint)

(15)

where π and m are two vectors of positive weights summing to one (i.e., two distributions).
Hence, the set of predictions is subject to both constraints on the prescribed sum of rows
and the prescribed sum of columns.

In Table 1, we show an example of a confusion matrix, deriving from the previous
constraints: the distribution of predicted classes is chosen to be identical to the one of
actual classes, assumed to be given (or estimated). This is especially useful in situations
where a class is dominant: all models tend to predict this dominant class, ensuring good
accuracy, but the study of other classes thus becomes very difficult. The constraint forces
the model to predict the right class probabilities, providing a way to study rarer classes.

Predicted Classes

A
ct

u
al

C
la

ss
es A B C D Sum

A 52.3 37 20.5 10.2 120
B 23.6 65.4 44.9 16.1 150
C 37 38.4 72.9 21.7 170
D 7.1 9.2 31.7 42 90

Sum 120 150 170 90 530

Table 1: A Constrained Confusion Matrix: the sum of predicted classes, i.e., the sum
of predicted membership degrees, is, here, equal to the sum of actual classes. For example,
knowing that one must predict 120 labels A (higher-scale constraint), the sum of predicted
membership degrees for the actual class A is forced to be exactly 120.

3.2 Application of the Joint Kriging Model

We have considered specific constraints, such as higher-scale constraints. We show here
that other predictors are usually not suited to satisfy such constraints, but that the Joint
Kriging model naturally satisfies them.

Predictors of the literature may be unsuited to deal with considered constraints: at an
unobserved location x⋆, for a predictor L(x⋆) ∈ {1, . . . , p} of a label ℓ(x⋆), the reader may
convince himself that, for given probabilities pj , j ∈ {1, . . . , p}, constraints on predicted
classification such as

P [L(X⋆) = j | observed labels] = pj ,

are not so easy to handle, even if X⋆ is a uniformly distributed random variable over
prediction points x⋆1, . . . , x

⋆
q . This is because such constraints usually act in a non-linear

way on the predictor L(X⋆), and the predictor L(.) itself can be some complicated function
of observed labels. Existing predictors, such as Indicator Kriging, may be unable to deal
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with such constraints. Furthermore, they may not be appropriate in cases where the
considered labels do not correspond to ordinal classes.

Now, let us adapt the classification problem to the Joint Kriging model. In a classifi-
cation problem, each label ℓ ∈ {1, . . . , p} can be converted into a p× 1 vector of indicator
functions, namely

Y :=
(
1{j=ℓ}

)
j=1,...,p

.

This transformation is well known in the machine learning community as label binarisation
(see also dummy variables or one-hot encoding), and is implemented in many languages.
It also appears in some contexts of multiple outputs (Alvarez et al., 2012, Section 3.1).
With this representation, the equality 1p

⊤Y = 1 is verified.
In practice, it is common to observe true label values depending on some explanatory

variables x ∈ χ. But it may also happen that one observes uncertain labels: multiple
and distinct observed labels for the same x ∈ χ, uncertainty in the value of x, etc. To
handle this problem, one generalises slightly the previous label binarisation: one assumes
here that observations consist in a distribution of possible labels, so that one observes
n vectors Y(x1), . . . ,Y(xn), such that the components of each vector are summing to
one: 1p⊤Y(xi) = 1, i = 1, . . . , n. In other words, the p components of Y(xi) represent the
membership degrees of the p possible classes at an observed location xi, i = 1, . . . , n. Using
the previous notation, recall that Y := [Y(x1), . . . ,Y(xn)], so that observed membership
degrees satisfy

1p
⊤Y = 1n

⊤. (16)

Finally, using a Joint Kriging model, one can infer the membership degree of an unob-
served location x⋆ using the predictor of Equation (1):

M(x⋆) :=
n∑

i=1

αi(x
⋆)Y(xi) (17)

The next remark details the impact of both constraints, weights summing to one (prob-
abilistic constraint) and prescribed average predicted values (higher-scale constraint), in
the particular setting of membership degrees that are summing to one. It shows that the
Joint Kriging model naturally satisfies the considered system of constraints in the fuzzy
classification setting.

Remark 5 (Constraints’ impact). Consider the membership degree assumption given in
Equation (16), 1p

⊤Y = 1q
⊤. Consider also the two previous constraints on weights and

predicted values, namely the constraints of Equation (6) and Equation (7). Then the Joint
Kriging model implies that:

• Predicted membership degrees are summing to one:

1p
⊤M(x⋆) = 1,

for all prediction points x⋆ ∈ χ. In particular, 1p⊤M = 1q
⊤.

• The average membership degree over prediction points can be chosen:

E [M(X⋆) |Y] = m,

where m is a prescribed average of predicted membership degrees of each class, with
1p

⊤m = 1, and X⋆ a random variable over all prediction points.

Proof. The proof is postponed to Appendix. A.9, page 44.
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3.3 Positivity Requirement

As noticed before, although predicted membership degrees are summing to one, there is
no guarantee of positivity for the predicted values yet. We discuss here how to deal with
this problem.

For hard clustering, it should be noted that, even without a positive weights require-
ment, predictions can still be used, as they can be interpreted as more general membership
scores. It is quite natural to predict a class by selecting the one with the highest mem-
bership score. As an example, in a two-class problem, this leads to choosing one class or
another if the associated prediction is greater than 0.5 or not, and even more so when the
prediction is below 0 or greater than 1.

For fuzzy clustering, it is, of course, highly desirable to force the positivity of the Kriging
weights. This way, when summing to one, the weights belong to a simplex, ensuring that
predictions can be seen as probabilistic membership degrees. In practice, as is the case
with numerous machine learning methods, a post-treatment of results may be required
in specific cases involving negative membership degrees (see, e.g., the use of the softmax
function with neural networks). With such a positivity requirement, the prediction falls
within the framework of compositional data analysis, often treated by transformations
of the observations and the predictions (Chiles & Delfiner, 2012, Section 5.7.4). Recent
papers on this topic are (Clarotto et al., 2022; Martínez-Minaya & Rue, 2023). Some usual
transformations require the strict positivity of values and are thus unsuited to the one-hot
encoding that is used here. Hence, the set of usable transformations is restricted to the
very recent literature on the topic.

A more prominent difficulty in our setting is that applying a transformation on weights
in order to keep them in the [0, 1] interval would alter the prescription of the predictions’
expectation, so that it is not so straightforward to prescribe m and to ensure the weights to
be positive and summing to one, as higher-scale constraints of Section 3.1. Furthermore,
the distance to be minimised would also be altered, and the predictor would lose some
minimal variance properties. Another approach would be to do an optimisation with such
a positivity constraint, leading to quadratic programming (Chiles & Delfiner, 2012, Section
3.9.1), but losing the closed-form expressions that are presented here.

In the numerical illustrations presented in Section 5, we have chosen another approach:
we found empirically that adding a small nugget effect (i.e., adding a constant to the di-
agonal of the covariance matrix K) was sufficient to ensure the positivity of weights when
needed. Indeed, this empirical finding is supported by the following Proposition 7. Fur-
thermore, in our investigations of the numerical Section 5, the added nugget effects were
small enough, so that prediction accuracies were not significantly altered.

Proposition 7 (Nugget ensuring positive weights). Assume that K is replaced by Knug :=
K+ ηIn in Proposition 2 and Proposition 3, where η > 0 is a nugget parameter and In is
the identity matrix of size n. Assume furthermore that the prescribed vector m = 1

nY1n in
the latter Proposition 3, so that m contains the proportion of each label in the observations.
Then, for the predictors given by both Propositions 2 and 3, there exists a nugget η large
enough ensuring that all weights in A are positive and summing to one.

Proof. The proof is postponed to Appendix. A.10, page 44.

In practice for the classification problem, it means that adding a sufficient nugget effect
ensures the positivity of weights so that the predictions can be considered as membership
degrees, summing to one and positive.
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This approach was sufficient for the tested numerical illustrations. Otherwise, optimisation
under the positivity constraint would still be possible, but would require either the use of
quadratic programming or the extension of recent methods to higher-scale constraints.

4 Filling Cross-Covariances

In the previous sections, we have seen the Joint Kriging model and its applications to con-
strained classification. The assumptions on the underlying random fields were very general:
dependent components of Y(.), with the existence of the first two cross-moments, without
any Gaussian assumption. The obtained results were derived from specific covariances, in
particular in matrices K and H. In the present section, we discuss practical strategies that
can be used to fill the needed covariance matrices.

The main result of previous sections is the expression of optimal weights, with weights
summing to one and a constraint on average predicted values, with an affine extension.
However, despite a rather general model, the predictor is simplified, with weights applying
jointly to all components in Equation (1). The application to constrained classification is
justifying this simplifying assumption: indeed, applying different weights to components
of Y(.) would make it far more difficult to preserve classification higher-scale constraints,
as presented in Section 3.1 and Table 1. To the authors knowledge, existing more general
multi-output models are not conceived to handle such higher-scale constraints.

It is worth mentioning that, once the Joint Kriging simplifying assumption is accepted,
there is no obstacle to using the cross-covariance function of any multi-output process Y(.),
even a non-stationary one. In particular, the reader may refer to the books (Wackernagel,
2003, Chapter 20) and (Chiles & Delfiner, 2012, Chapter 5) for general considerations about
cross-covariances for multivariate models. Important articles on the topic are (Alvarez et
al., 2012) and (Genton & Kleiber, 2015), where the estimation is also discussed.

In order to fill the matrices K̃ and H̃, for a given positive definite matrix W, we need
a function k(., .) that gives:

k(x, x′) := E
[
Y(x)⊤WY(x′)

]
− E

[
Y(x)⊤

]
WE

[
Y(x′)

]
. (18)

Then the elements of the covariance matrices K̃ and H̃ can be derived from the covariance
function k : χ× χ → R by setting:

K̃ij = k(xi, xj) (19)

H̃ik = k(xi, x
⋆
k) (20)

Denoting
ci,j(x, x

′) := Cov
[
Yi(x), Yj(x

′)
]
,

one can derive:

k(x, x′) =

p∑
i=1

p∑
j=1

ci,j(x, x
′)Wi,j .

By gathering covariances in a matrix, we denote:

C(x, x′) = [ci,j(x, x
′)]i∈{1,...,p}

i∈{1,...,p}
∈ S+

p (R).

One can also check that the covariance function k(x, x′) is equal to the trace of the trans-
formed process W1/2Y (.) cross-covariances:

k(x, x′) = Tr
[
W1/2C(x, x′)W1/2⊤

]
.
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If all ci,j(., .) are known, then the latter quantity can be used to fill all needed covariance
matrices. It can however rely on many parameters, as each ci,j can come with its own
hyperparameters, namely O

(
p2
)

hyperparameters.
Through the following examples, we investigate the link with several classical cross-

covariance models.

Example 1 (Separable cross-covariances). Let us consider the simplifying assumption of
multi-output separable kernel functions (Alvarez et al., 2012, Section 4), for which there
exists a covariance function c(x, x′) and a p× p real matrix S = [Si,j ]i∈{1,...,p}

j∈{1,...,p}
, such that:

ci,j(x, x
′) = Si,jc(x, x

′), (i, j) ∈ {1, . . . , p}2.

Then

k(x, x′) = c(x, x′)

p∑
i=1

p∑
j=1

Si,jWi,j .

One sees that the role played by the matrix W is quite similar to the one played by the
separability matrix S, and that, in this simplified setting, k(x, x′) is also proportional to the
driving covariance function c(x, x′).

Example 2 (Linear model of coregionalisation). The Linear Model of Coregionalisation
(LMC) is a classical approach for combining several univariate covariances, see (Chiles
& Delfiner, 2012, Section 5.6.4) and (Genton & Kleiber, 2015, Sections 2.1 and 4). Let
R(x, x′) = diag[ρ1(x, x

′), . . . , ρr(x, x
′)] be a diagonal matrix of r univariate correlation

functions. Assuming that the output variables are generated by a linear combination of
r independent univariate random fields with correlation functions ρi, i ∈ {1, . . . , r}, the
LMC combines the univariate covariances in R by setting:

C(x, x′) = BR(x, x′)B⊤, (21)

where B is a p× r full rank matrix. As a consequence, we get:

k(x, x′) = Tr
[
W1/2BR(x, x′)B⊤W1/2⊤

]
.

One sees that the role played by the matrix W1/2 is quite similar to the one played by the
LMC matrix B, especially in the case where r = p.

Whatever the underlying model of cross-covariances ci,j(x, x
′), the model uses a single

covariance function k(x, x′), which can be seen as the covariance function of a weighted
sum of all output variables. This is due to the simplifying assumption and the optimisation
of a single scalar error. The next example shows that in some cases, the latter covariance
function depends on fewer parameters than the whole set of cross-covariance functions
{ci,j(x, x′) : 1 ≤ i, j ≤ p}.

Example 3 (Isotropic k). Let us recall Equation (18):

k(x, x′) := E
[
Y(x)⊤WY(x′)

]
− E

[
Y(x)⊤

]
WE

[
Y(x′)

]
.
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Let us assume that there exists a positive definite matrix W such that the covariance func-
tion k(., .) is isotropic. That is to say, k(x, x′) depends only on some distance between x
and x′. Then k can be written in a simplified form, so one does not need to estimate W.

In this case, with one variance hyperparameter σ2 > 0 and d positive hyperparame-
ters θ1, . . . , θd, usually referred to as characteristic length scales (see C. E. Rasmussen &
Williams, 2006, page 14), one can set, for example:

k(x, x′) = σ2r0
(
∥x− x′∥θ

)
,

where r0 is a correlation function and ∥x− x′∥2θ =
∑d

i=1

(
xi−x′

i
θi

)2
is a rescaled Euclidean

norm. Notice that this expression does not depend on W any more, so that when using the
above assumption, we do not have to estimate W.

As a consequence of the previous Example 3, for a given matrix W, a noticeable ad-
vantage of the Joint Kriging method is the possibility to use a limited number of hyper-
parameters that need to be optimised. In that case, despite the multivariate output of
the p × 1 response vector Y(x), x ∈ χ, there are only a few hyperparameters required
for defining the covariances: for instance, σ2, θ, and the covariance family. This is quite
different from co-Kriging techniques where all cross-covariances between components Yi(x)
and Yj(x

′) should be defined for all i, j ∈ {1, . . . , p}, and x, x′ ∈ χ, which ends up in an
order of O(p2) covariance functions and many associated hyperparameters. Furthermore,
the method satisfies all prescribed constraints.

The relaxation of the simplifying assumption of Equation (1) would surely exploit more
precisely the cross-covariance structure of output variables and increase the generality and
accuracy of the model. However, the preservation of higher-scale constraints makes the
use of other existing models in the literature difficult.

5 Numerical Illustrations

In this section, one considers different numerical illustrations for both prediction and classi-
fication. The first illustration focuses on the impact of constraints with one output, and the
second one on the behaviour of the predictor with multiple outputs. The third illustration
gives an application to classification and a benchmark with numerous competitors. All the
illustrations are created in R markdown notebooks, one per subsection, available as online
supplementary material at https://gitlab.com/urbs-imope/rdscripts/jointkrigingsupplementary
(Grossouvre & Rullière, 2023). Notebooks are given in both an executable format and an
executed html format. The presented figures are directly extracted from the notebooks,
and the results are fully reproducible.

5.1 A Simplified Toy Example

One considers here the very simple case where there is a single output variable: the output
Y(x) is belonging to Rp, with p = 1. The interest of testing the Joint Kriging with one
single output variable is to discuss the impact of the constraint on predicted values and
the impact of the affine prediction. For p = 1, Simple Joint Kriging and Ordinary Joint
Kriging are identical to common Simple Kriging and Ordinary Kriging, but the constraint
on predicted values leads to a new original predictor. We keep here the vector bold font
for vectors Y(x) ∈ Rp and m ∈ Rp, even though p = 1, in order to keep the very same
notation as in the rest of the paper.
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Let us consider that the process Y(x) aims at approximating a hidden function, with
say a = 1 and b = 4,

f(x) := a+ sin(x/b).

The observed locations x1, . . . , xn are randomly chosen with a uniform distribution over
the interval [−10, 5], and q prediction locations x⋆1, . . . , x⋆q are chosen regularly spaced over
the interval [−3, 10]. Both intervals are purposely shifted so that some prediction points
are far from observations, and vice versa. It also seeks to illustrate how the constraint
on average predictions is affected by the prediction sites. Observed responses in Rp, with
p = 1, are Y(xi) = f(xi), i = 1, . . . , n, with n = 10. Prediction is made over a set
of q = 100 points. One defines X⋆ as a discrete and uniform random variable over all
prediction points. The purpose here is not to interpolate as precisely as possible the
hidden function f given a few observations, but only to illustrate the differences between
various possible interpolators and the impact of requiring a prescribed average values for
predicted values.

The prescribed value for m ∈ Rp, with p = 1, is the scalar m = 1.5. The covariances
between Y(.) are modelled as prescribed in Example 3, from a single covariance function,
using a squared exponential kernel. One could also pick a kernel that reflects f periodicity.
However, the purpose is not to make the best possible prediction but, rather, to understand
the impact of various constraints.

Cov
[
Y(x),Y(x′)

]
= k(x, x′) = σ2 exp

(
−(x− x′)2

2θ2

)
.

We set σ2 = 0.6 mainly for the visibility of the confidence band in the presented figures,
and θ = 1.2.

In Figure 1, one exclusively considers the constraint of sum of weights, which is assumed
to be one: 1n

⊤α = 1. The predictor M(x) appears in a thick red line, together with
confidence intervals built from the variance ∆(x).
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(a) One constraint, linear
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Figure 1: Prediction with one constraint: weights summing to one. Left: linear predictor,
and right: affine predictor. In both cases, the average of the predicted values is distinct
from the prescribed value m = 1.5 (horizontal dashed line). The observations are the black
dots. The thin, dotted, blue line is the underlying function. In the right panel, one applies
the assumption in Remark 3 with ρ = 0 and σZ = σ/10.

Figure 1a presents the result of ordinary Kriging exposed in Proposition 2. As is well
known, when the location x is large (and far from observed locations), the ordinary Kriging
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Figure 2: Prediction with two constraints: weights summing to one and the average of
predicted values set to m = 1.5 (horizontal dashed line). The average of predictions is
equal to this value m = 1.5 in both cases. The observations are the black dots. The thin,
dotted blue line is the underlying function. In the right panel, one applies the assumption
in Remark 3 with ρ = 0 and σZ = σ/10.

mean tends to return to the estimated mean of the observations. The average value of the
Kriging mean E [M(X⋆) |Y] ≃ 1.12 is different from the value m = 1.5 (horizontal dashed
line), which is natural as this constraint has not been taken into account yet.

Figure 1b uses the Proposition 4 to add a supplementary affine term to the linear
combination, while preserving the sum of weights equal to one. The affine term is derived
from a random variable Z, and we choose σZ = σ/10 so that this external information is
assumed to be trustworthy (small variance). Given Z = m, the consequence is that, far
from observed locations, the prediction tends to put all weight on this external source of
information, so that the prediction gets closer to m, as one can see at the extreme right
of Figure 1b. This also makes the average E [M(X⋆) |Y] ≃ 1.37 closer to m = 1.5, but
the values of those two quantities remain distinct. Another consequence of the affine term
is the reduction of the confidence band width, as a new source of information has been
added.

In Figure 2, one considers both the constraint of sum of weights, which is assumed to be
one: 1n

⊤α = 1, together with the prescribed average of predicted values E [M(X⋆) |Y] =
m. The predictor M(x) appears in a thick blue line, together with confidence intervals
built from the variance ∆(x).

Figure 2a presents the result of ordinary Kriging exposed in Proposition 3. The average
value of the Kriging mean E [M(X⋆) |Y] = 1.5 is exactly the prescribed one m = 1.5
(horizontal dashed line), which is natural as this constraint has been taken into account
during the joint optimisation of all α(x⋆j ), j = 1, . . . , q. However, the predictor is no longer
interpolating. This is logical: if q = 1, one has one only prediction point x⋆1, and the
constraint E [M(X⋆) |Y] = m becomes M(x⋆1) = m, which is distinct from an observation
Y(xn), even if x⋆1 gets closer to xn. Another example: if on the one hand observation points
and prediction points are the same, if on the other hand m is not the average value of
observations, then at least one prediction must be different from the associated observation
to satisfy the constraint.

Figure 2b uses Proposition 4 to add a supplementary affine term to the previous linear
predictor of Figure 2a while preserving the sum of weights being equal to one. The affine
term is derived from a random variable Z, and we choose, as previously, σZ = σ/10, so
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that this external information is assumed to be trustworthy. As above, the average of
predicted values is exactly the prescribed one, by construction. Again, given Z = m, the
consequence is that, far from observed locations, the prediction tends to put all weights on
this external source of information, so that the prediction gets closer to m, as one can see
at the extreme right of Figure 2b. Another consequence of the affine term is the reduction
of the confidence band width, as a new source of information has been added. With the
prescribed average of the predicted value, the predictor is not interpolating, but adding
the affine term helps the prediction get closer to observations.

Notice that the constraint m is purposely set to an arbitrary value, so that adding this
constraint does not necessarily improve the prediction in this toy example: it is not the
aim of such a constraint. The reader may imagine the case of an adverse scenario, which
can worsen the prediction, or the case of external useful information, which can improve
it.

In this simple toy example, one can check numerically that each prediction satisfies
the constraints that it should. One can also clearly visualise the impact of the specific
constraint on average predicted values and the behaviour of the predictor when adding an
affine term.

The illustrations that have been presented in this subsection are available in the note-
book Application1D of the online supplementary material.

5.2 A Multi-Output Time Series Example

In the previous example, we illustrated the impact of constraints on the prediction of a
one-dimensional output. Hence, the joint aspect of the estimation was not discussed. In
the present example, one considers multi-output data so as to illustrate the specificity of
the single hyperparameter estimation with multiple outputs. We choose one-dimensional
inputs in R to facilitate the interpolation representation, but considering more general
inputs in Rd, d > 1, would be easy. It would only change the number of hyperparameters
to estimate, d instead of 1.

Imagine the following situation: a city wants to infer the history of the concentration
of some pollutants at a particular crossroad based on a small series of measurements. This
simple problem requires a model that takes time as input and multiple concentrations as
output. Obviously, the end purpose would be to have a model with space and time as
input, but this is outside this illustration’s framework.

Using the data air quality (Vito, 2016), one tries to infer the concentration of several
pollutants from only a few values. The studied pollutants in the data were chosen arbi-
trarily: CO, C6H6, NOx and NO2. The time range of learning data has been selected so
that visually there is not too much missing data in the period (sensor stuck to an inferior
bound or missing). It corresponds to hourly measurements from 23/04/2004 18.00.00 to
28/04/2004 17.00.00. Missing values are tagged with the value −200 in this data. They
were all filtered before the study, as if they were not informative at all. The challenge is
to predict all hourly measurements in the selected period from only n = 10 values.

The purpose here is not to give specific conclusions about the measured pollution but
only to illustrate the capacity of the Joint Kriging model to handle complex multivalued
data with very few hyperparameters to optimise. The idea is to create a joint model that
is as simple as possible. Many refinements of the model could be suggested, but this is not
the purpose of this example.

Let us model the covariances between components of Y(.) using Example 3. The pro-
posed method does not require the definition of each cross-correlation between a pollutant
concentration at one location and a different pollutant concentration at a different loca-
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Figure 3: optimisation of the single correlation hyperparameter θ for the four selected
pollutants, data extracted from Air quality data set.

tion. It just takes one covariance function k(x, x′) between an implicitly weighted sum of
all output variables. We use the multiplication of two covariance kernels (hence it is posi-
tive semi-definite): a periodic kernel with a period of one day and a kernel of the Matérn
3/2 family (see C. E. Rasmussen & Williams, 2006, Chapter 4 and Equation (4.31)):

k(x, x′) = σ2 exp
(
− sin2(π|x− x′|)

)(
1 +

|x− x′|
θ

)
exp

(
−|x− x′|

θ

)
. (22)

The parametrisation has been simplified, e.g. factors
√
3 in Matérn covariance expres-

sions are not used here because they have the same effect as a rescaling of the characteristic
length-scale θ. Notice that despite the p dimensional output where p = 4 is the number of
studied pollutants, the kernel k(x, x′) in Equation (22) depends only on two hyperparam-
eters θ and σ2. Since σ2 impacts the uncertainty in the prediction but not the prediction
itself, it is set to σ2 = 1.

Let us first consider one single constraint: the sum of weights should be one. It corre-
sponds to the Joint Ordinary Kriging predictor.

Figure 3 shows the optimisation of the single length-scale hyperparameter θ. As this
study does not aim at comparing the prediction accuracy with other methods, we did not
use a separate test sample but only a validation sample, keeping in mind that it may lead
to overfitting. The validation data used for this single hyperparameter estimation is set to
all hourly measurements in the selected period. For the hyperparameter optimisation, a
specific error has been chosen, where one optimises the worst standardised mean absolute
error over all p = 4 series: The errors have been standardised in order to make them unitless
and scale-invariant. The best estimation is θ̂ ≃ 1.4. It is kept for all other illustrations in
the subsection.

The optimisation here depends quite heavily on the chosen observation locations, so
that in practice, an averaged error on several training and validation datasets would proba-
bly be more stable. In many situations on real data, the error function is monotonic, either
increasing and leading to extremely small optimised hyperparameter θ (the prediction then
tends to return quickly to an average value), or either decreasing, leading to a very large
value of θ (the prediction then tends to smooth data a lot). Classical co-Kriging strategies
that define a large number of cross-covariance hyperparameters would probably worsen the
situation, highlighting the utility of a small number of hyperparameters.

Figure 4 presents the simultaneous predictions of the four pollutant concentrations
with Joint Kriging, the only constraint being that weights sum to 1. The confidence
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Figure 4: Joint Kriging interpolation: using the joint ordinary model with weights sum-
ming to one, with very few data points (black dots) and a single optimised length-scale
hyperparameter obtained in Figure 3. Upper left: CO, upper right: C6H6, lower left:
NOx, lower right: NO2. Predictions are in thick solid lines, and true values are in thin
black solid lines.
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Figure 5: Adverse scenarios: interpolation using the joint affine model with two constraints
(weights summing to one, prescribed average predictions), with very few data points (black
dots), and a single optimised length-scale hyperparameter obtained in Figure 3. Upper left:
CO, upper right: C6H6, lower left: NOx, lower right: NO2. Predictions are in thick, solid
lines, and true values are in thin, black, solid lines. Left panels are adverse scenarios where
the average of predictions (thick dark green horizontal dashed line) is set to 130% of the
true average (thin black horizontal dashed line). Right panels are scenarios where the
average of predictions is set to 100% of the true average.

band associated with a given pollutant is proportional to the standard deviation of this
pollutant’s concentration, as detailed in Proposition 6. Pollutant concentrations have very
different orders of magnitude, but when applying Proposition 6, the obtained confidence
bands look quite comparable between series, as desired.

With very few hyperparameters and a rough covariance model, the result has a lot
of room for improvement. Nevertheless, despite the single model hyperparameter θ and,
considering the limited number of observations n = 10, the predictions of the p = 4
concentrations seem quite reasonable. By construction, each prediction is a combination
of observed values of the considered pollutant, with weights summing to one. In Figure 4,
no other constraint is added, so that the average of predictions does not correspond at all
to a specific prescribed value.

Figure 5 presents the simultaneous predictions of the four pollutant concentrations with
Joint Kriging, on which both constraints on the weights and on the predicted values are
imposed using the affine model of Remark 4. The left panels show an adverse scenario
where the average of predictions is set to 130% of the true average. The right panels show
a normal scenario where the average of predictions is set to 100% of the true average.
Using this setting, the interpolation property is lost, as seen in the previous example of
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Section 5.1, but the n = 10 observations still have a large influence, and the global shape
of the prediction is preserved. By construction, the average of predicted values (thick solid
line) is exactly the prescribed one (horizontal thick dashed dark green line).

Considering this single hyperparameter model with a basic covariance model, the results
also seem reasonable when using two constraints. In the left panels, the average of predicted
values is exactly set to 30% more than the observed average of pollutant concentration,
which is a lot. However, the visual differences between true and predicted sequences look
surprisingly moderate, even in this adverse scenario. Despite satisfying all constraints, the
model still offers a good fit with observations.

The goal of this numerical experiment is to demonstrate the Joint Kriging model’s
ability to handle complex multivalued data. It also illustrates the advantage of having a
limited number of hyperparameters. One sees here that with a quite simple model, in a
difficult problem (predicting four quite erratic time series from 10 observations), the model
performs reasonably well. Furthermore, it allows for introducing some constraints, like
setting an adverse scenario of a 30% increase in the pollutant concentration.

The illustrations that have been presented in this subsection are available in the note-
book ApplicationAirQuality of the online supplementary material.

5.3 A Constrained Classification Example

We present in this subsection the specific case of multi-dimensional outputs derived from
a classification problem. As presented in Section 3, Joint Kriging can be implemented for
fuzzy classification. Different modalities of a classification variable are regarded as multiple
output variables with values in [0, 1].

Imagine the case of an event with measurable intensity that may occur at a given
location in a territory. We are interested in classifying the intensity of this event, if it
occurs, into multiple classes, depending on some thresholds. In the following, this event is
an earthquake, and its intensity is its Richter magnitude.

The Quake data set given in (Simonoff, 1996), visualised in Figure 6, describes 2 178
earthquakes with their latitude, longitude, focal depth, and magnitude. A given location
x has three coordinates: latitude, longitude, and focal depth. For a single observation
at a location x, the target Y(x) = (Y1(x), Y2(x))

⊤ is equal to (1, 0)⊤ if an earthquake is
occurring here with a magnitude above the data set average magnitude, or (0, 1)⊤ oth-
erwise. If a location x is observed repeatedly, the membership degrees at x are averaged
out over observations. It makes sense to impose that membership degrees are summing
to one, so that 1p

⊤Y(x) = 1. Extensions with more thresholds are easy to conduct, as
in Figure 11. We keep here p = 2 for comparison to existing benchmarks. The binarised
data is available at www.openml.org/search?type=data&id=772, on the openML website
(Bischl et al., 2021).

The purpose here is to compare the performance of Joint Kriging with a set of 69 other
models’ performances. The study available at www.openml.org/search?type=task&id=
4516 (data retrieved on the 28th of June 2024) compares models, called flows in openML,
performing 10 times a 10-fold cross-validation and computing the predictive accuracy as a
performance indicator (see tab Analysis, measure predictive_accuracy).

Remember from Example 3 that although we are constructing a bivariate model, we
need a single covariance kernel. The latter should be periodic with respect to latitude and
longitude, not with respect to focal depth. A simple way to define an admissible kernel is
to multiply the three kernels associated with the three dimensions (see C. E. Rasmussen
& Williams, 2006):
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Figure 6: Earthquakes observations. An earthquake is a point with latitude, longitude,
and focal depth (given by the colour) as its coordinates. Triangles represent earthquakes
whose magnitude is above average. Circles represent earthquakes whose magnitude is
below average.

k(x, x′) = σ2 exp
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θ21
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sin2((x2 − x′2)/2)

θ22
− 2

(x3 − x′3)
2

θ23

)
The hyperparameters estimation has been treated separately on other train/test splits

to avoid overfitting the data. The resulting values for θ are 2.3 for latitude, 0.9 for longi-
tude, and 196.8 for focal depth.

In order to visualise the algorithm’s behaviour, we predict on a grid of latitude, longi-
tude, and focal depth values. In addition to imposing the sum of membership degrees to
be 1, we set the output mean expectation to be the same as in the data set. Predictions on
a grid of latitude, longitude, and focal depth are presented in Figure 7. One can observe
that maps representing membership degrees (first two rows) can be deduced from each
other by y = 1 − x. The third row shows a segmentation of the plane into areas where
the membership degree for “P: magnitude is greater than average” is greater than 0.5, and
areas where the converse is true. This segmentation depends on the focal depth: a small
focal depth on the top row (21 km, first quartile) and a greater one on the bottom row
(68 km, third quartile). For instance, looking at the bottom left corner of the map, which
is around the Fiji archipelago, one can predict that earthquakes with small focal depths
are more likely to be of large magnitude than deep earthquakes. However, the converse is
true in the South Atlantic area (bottom-centre part of the map). Moreover, the predictor
achieves circular coherence along longitude due to the periodicity of covariance. Periodicity
along latitude is more difficult to observe because it covers only 180◦.

Performances are evaluated using Predictive Accuracy which is the percentage of in-
stances that are classified correctly. It is measured on binarised predicted membership
degrees, on a ten times 10-fold cross-validation, as in the OpenML benchmark, in order to
get comparable results. Prior to that, the hyperparameters optimisation has been treated
separately on other train/test splits in order not to overfit the data. Figure 9 presents,
from top to bottom, two results found in openML, i.e., the best recorded model, which is
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the Kernel Logistic Regression with Radial Basis Function Kernel and Random Forest for
reference. Below are the results of the Joint Kriging models: the simple model without
constraint, the model with weights summing to 1, the model with constraint on the pre-
diction and weights summing to 1, the affine model with weights summing to 1, and the
affine model with constrained output.

For the ten runs, each diagram shows the Predictive Accuracy of each run (coloured
points), the minimum, first quartile, median, 3rd quartile, and maximum, as well as the
mean value materialised by a cross. Although the runs’ performances stay in the range
of those observed for Random Forest and Kernel Logistic Regression, the average values
obtained with Joint Kriging are greater: the average is 0.558 ± 0.002 for the best model
in the OpenML benchmark and 0.5660 ± 0.0038 for the best Joint Kriging model. The
latter was even slightly greater, 0.5669, during hyperparameter optimisation, due to a
slight overfit that has been reduced when using different train/test splits. Benchmark
being based on this average value, it means that Joint Kriging has a better performance
than the 69 models tested in the OpenML benchmark.

One can expect the multiplication of constraints to have an adverse effect on perfor-
mance, as a constrained optimisation has less degree of freedom than an unconstrained
one. On the other hand, injecting useful information through constraints may improve the
performance. Figure 9 shows that overall, the performance is improved, especially when
adding the constraint on the output. Figure 10 shows the distribution of the mean predic-
tive accuracies for the 69 models tested in the OpenML website. None of them is above
0.56, while all Joint Kriging models are.

In Figure 8, one uses the affine version of Joint Kriging with two constraints: weights
summing to one and prescribed average prediction. In the left panels, an adverse scenario
forces the average predicted membership degrees of the first class (large magnitude events)
to be equal to 65%. In the right panels, this percentage is set to the observed percentage of
large-magnitude events, 55%. This illustrates the usefulness of the constraint for adverse
modelling.

In order to compare the results with existing benchmarks, we studied above the p = 2
binary classification problem. But the method can handle more classes as well. As an
example, in Figure 11, we give a prediction for p = 4 classes. Observations have been
converted into four classes using three Richter magnitude thresholds: 5.85, 5.95 and 6.15.
Specific thresholds have been chosen for this illustration in order to get enough observations
in each class (at least 17% observations), but a seismology study might focus on other
thresholds. Once again, the predictor achieves a circular coherence along longitude, and one
can observe complex patterns that would be difficult to catch with classification trees. The
presented classification task was constructed from indicators deriving from an underlying
real value, the Richter magnitude, and from thresholds, thus creating ordinal classes. But
the prediction can also be derived from observations of non ordinal class labels without
any underlying process or thresholds.
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Figure 7: Joint Kriging with 2 constraints, earthquakes’ magnitude prediction into 2
classes. From top to bottom: membership degree of “P: magnitude is above average”,
membership degree of “N: magnitude is below average”, binarised prediction (1 if member-
ship degree of P is greater than 0.5). Left: focal depth of 21 km. Right: focal depth of
68 km.
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Figure 8: Adverse scenario: predicted membership degrees of earthquakes’ magnitude using
Joint Kriging with two constraints. Top panels: adverse scenario, first-class output average
constrained to be 65%. Bottom panels: regular scenario, output average constrained to
55.5%. Left: focal depth of 21 km. Right: focal depth of 68 km.
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Benchmark are omitted here. Data were extracted on June 28th, 2024.
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Figure 10: Distribution of the mean predictive accuracies for the 69 models tested on the
Quake dataset, in the OpenML framework. Note that some models have been run multiple
times, in which case we select only the best run. The graphic is a bar plot of the predictive
accuracies rounded to the nearest third digit. Data were extracted on June 28th, 2024.
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Figure 11: Affine Joint Kriging with 2 constraints. Earthquakes’ magnitude is divided
into 4 classes. From top to bottom: membership degrees of “1: magnitude is smaller than
5.85”, “2: magnitude is between 5.85 and 5.95”, “3: magnitude is between 5.95 and 6.15”,
“4: magnitude is greater than 6.15” and class of greatest membership degree in the 5th row
coloured by increasing magnitude from dark to light blue. From left to right: focal depth
of 21 km, focal depth of 68 km.
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In this classification example, we used a direct implementation of the model with a
single covariance family. Nevertheless, the average performance is the best one among the
whole OpenML benchmark. Fine tuning of the model would surely lead to performance
improvements. The illustration above aims at demonstrating that, with very basic assump-
tions, the method is competitive with an open benchmark that has numerous competitors,
as shown in Figure 9. It also aims at showing that it can model adverse scenarios, as in
Figure 8, or multiple classes, as in Figure 11.

The illustrations that have been presented in this subsection are available in the note-
book ApplicationQKmain of the online supplementary material.

6 Conclusion

A Joint Kriging model on multiple outputs has been presented, where at each prediction
location, the same weights apply to all outputs. This simplification was necessary to handle
all the considered constraints. It also allows for easy covariance modelling with very few
hyperparameters even though the number of outputs p is large. Still, the model benefits
from Kriging advantages: interpretability, ability to interpolate data, prediction of the un-
certainty in each prediction, and specific covariance modelling. As with any simplification,
the model can surely be improved and may have some limitations compared to heav-
ily parametrised models. For instance, co-Kriging with many cross-covariance functions
might be more flexible for dealing with time series with different regularities, or models
with parametrised distortions of locations might be more convenient for dealing with non-
stationarities. However, the limited number of hyperparameters and the simplicity of their
estimation are an asset of the model, while allowing specific model characteristics such as
periodicity. Furthermore, the model is not limited to Gaussian Processes, as it only relies
on the existence of moments of order one and two.

An original constraint on predicted values was also introduced. It appears to be use-
ful for using external information, for adverse modelling, for homogenising results, or for
considering fairness constraints. To handle this constraint, all weights of predicted points
need to be computed at the same time, unlike usual Kriging techniques. But the resulting
predictor itself is quite simple to derive since it is given by a closed formula. Some ex-
tensions using an affine term were also proposed to account for external information and
provide more control over the behaviour of the predictor far from observations.

Ultimately, an application to classification was developed. Applying a multi-output
Kriging model on classification is feasible through the prediction of membership degrees.
Even without constraints, it is in itself interesting: it allows for interpretability, modelling
uncertainty’s estimation, and interpolating data. Using Joint Kriging with the proposed
constraints easily ensures that membership degrees sum to one and allows for prescribed
percentages of each predicted class. The simplified covariance model greatly eases the
hyperparameters’ estimation. At the same time, with Joint Kriging, classification tasks
benefit from the diversity of covariance kernels, including periodicity. The resulting clas-
sification performs especially well in the investigated practical case: in the earthquake
numerical example, the model competes with the best-provided approaches on an open
data set with numerous competitors.

Multiple extensions to the model can be imagined. For instance, the model with con-
strained predicted values does not guarantee continuous interpolation, so that further work
may fix this problem. A specific estimation procedure for the underlying joint covariance
structure could also be of interest. Moreover, once applied to classification, membership
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degrees summing to one do not imply the combinations to be convex. Some weights can
still be negative or greater than 1 so that an adjustment of the nugget effect may be re-
quired. Ensuring the combinations to be convex without any nugget effect adjustment
could also be an improvement. Eventually, one may be interested in searching for a way
to relax the simplifying assumption while keeping the constraints.
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A Proofs

A.1 Proof of Proposition 1 Simple Joint Kriging weights

Proof of Proposition 1. The proof is very similar to the geo-statistical proof of Simple
Kriging model. It does not rely on any Gaussian assumption, but just on existing moments
of order two. Recall that W is a symmetrical positive definite matrix, so that W = W⊤.
Let us calculate the gradient of ∆(x⋆) with respect to α(x⋆):

∇α(x⋆) E
[
∥M(x⋆)−Y(x⋆)∥2W

]
= ∇α(x⋆) E

[
(M(x⋆)−Y(x⋆))⊤W (M(x⋆)−Y(x⋆))

]
= ∇α(x⋆) E

[
(Yα(x⋆)−Y(x⋆))⊤W (Yα(x⋆)−Y(x⋆))

]
= ∇α(x⋆) E

[
α(x⋆)⊤Y⊤WYα(x⋆)− 2α(x⋆)⊤Y⊤WY(x⋆) +Y(x⋆)⊤WY(x⋆)

]
= 2E

[
Y⊤WY

]
α(x⋆)− 2E

[
Y⊤WY(x⋆)

]
.

Thus,
∇α(x⋆)∆(x∗) = 2Kα(x⋆)− 2h(x⋆). (23)

Where K := E
[
Y⊤WY

]
is a n×n matrix and h(x⋆) := E

[
Y⊤WY(x⋆)

]
is a n×1 vector, thus

leading to a n× 1 gradient. Hence α(x⋆) = K−1h(x⋆) in Equation (4) when the gradient
is zero. The matrix expression A = K−1H of Equation (5) is obtained by binding column
vectors of Equation (4), for all prediction locations. Remark that, under assumption that
E [Y(x)] = 0p for all x ∈ χ, it is clear that E [M(x⋆)] = E [Y(x⋆)] = 0, so that the predictor
is unbiased.

In that case, the (i, j) component of the matrix Y⊤Y is

(
E
[
Y⊤Y

])
ij
=

n∑
k=1

E [Yi(xk)Yj(xk)] =
n∑

k=1

Cov [Yi(xk), Yj(xk)] .

Hence Y⊤Y is a symmetric positive semi-definite matrix. The same holds for K: writing
K =

(
W1/2Y

)⊤ (
W1/2Y

)
, it is clear that for any vector v, v⊤Kv = ṽ⊤ṽ ≥ 0, where the

vector ṽ := W1/2Yv. Thus K is a symmetric semi-definite positive matrix, i.e. a covariance
matrix.

A.2 Proof of Proposition 2 Ordinary Joint Kriging weights

Proof of Proposition 2. Under the constraint (6), and using a Lagrange multiplier λ ∈ R,
the loss to minimise is

∆1(x
⋆) := ∆(x⋆)− 2λ(x⋆)

(
α(x⋆)⊤1n − 1

)
Using Equation (23), the gradient of ∆1(x

⋆) with respect to α(x⋆) is

∇α(x⋆)∆1(x
⋆) = 2E

[
Y⊤WY

]
α(x⋆)− 2E

[
Y⊤WY(x⋆)

]
− 2λ(x⋆)1n (24)

Setting this ∇α(x⋆)∆1(x
⋆) to be zero for all of its p components, we get

E
[
Y⊤WY

]
α(x⋆) = E

[
Y⊤WY(x⋆)

]
+ λ(x⋆)1n.
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and finally,
Kα(x⋆) = h(x⋆) + λ(x⋆)1n.

Once α(x⋆) is written as a function of λ(x⋆), one easily gets the value of λ(x⋆) by setting
1n

⊤α(x⋆) = 1. Hence the result. Matrix expressions are obtained by binding column
vectors for all x⋆ in {x⋆1, . . . , x⋆q}

A.3 Proof of Remark 1 Covariance matrices

Proof of Remark 1. Recall that K = E
[
Y⊤WY

]
and h(x⋆) = E

[
Y⊤WY(x⋆)

]
. Under the

chosen mean assumption, both E [Y(x⋆)] = µ and E [Y] = µ1n
⊤. Thus, under the given

constraint α(x⋆)⊤1n = 1, or when µ = 0p,

E
[
Y⊤

]
WE [Y]α(x⋆) = E

[
Y⊤

]
WE [Y(x⋆)] = 1nµ

⊤Wµ.

Hence the gradient of ∆(x⋆) in Equation (23) also writes

∇α(x⋆)∆(x∗) = 2Kα(x⋆)− 2h(x⋆) = 2K̃α(x⋆)− 2h̃(x⋆).

As a consequence, the gradient of ∆1(x
⋆) in Equation (24) is unchanged when replacing

both (K, h) by (K̃, h̃). Thus, one can freely replace both (K, h) by (K̃, h̃) in the rest of
the proof of Proposition 2, without changing the result.

A.4 Proof of Proposition 3 Joint Kriging weights under a predicted
values constraint

Let us first study the rank of the system of constraints (9):{
A⊤1n = 1q

YAπ = m
(25)

We denote aij := αi(x
⋆
j ), yij := Yj(xi), πi := πx⋆

i
, mithe i-th component of m. The

system of constraints rewrites:



1 . . . 1 0 . . . 0 . . . 0 . . . 0
0 . . . 0 1 . . . 1 . . . 0 . . . 0
...

...
...

...
...

0 . . . 0 0 . . . 0 . . . 1 . . . 1
π1y11 . . . π1y1n π2y11 . . . π2y1n . . . πqy11 . . . πqy1n

...
...

...
...

...
π1yp1 . . . π1ypn π2yp1 . . . π2ypn . . . πqyp1 . . . πqypn





a11
...

an1
a12
...

an2
...

a1q
...

anq



=



1
...
...
1
m1
...

mp



Now we have to study the matrix of constraints. The reader can recognise that the last
p rows are an aggregation of q times the matrix Y, each time multiplied by a different
factor.

• It is clear that the first q rows are linearly independent.
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• If the p last rows are linearly dependent then, taking into account that π is strictly
positive, it means that there exists at least one vector ω ∈ Rp \ {0p} such that:

Y⊤ω = 0n = 01n

• If the p last rows are linearly dependent with the q first one, it means that there
exists at least one vector ω ∈ Rp and one scalar ω0 such that:

Y⊤ω = ω01n

Therefore, the system is not of full rank if and only if there exists ω and ω0 such that:

Y⊤ω = ω01n

Depending on the situation, the matrix of constraints can be of rank ranging from q+1
up to q+ p. In the following, we are interested in two important cases, when the matrix of
constraints is of full rank q+p and when it is of rank q+p−1. The second case is useful for
fuzzy classification. Other cases are of no interest for our study although they could also
be treated removing a sufficient number of constraints in the system. Note that a system
of rank lower than q + p − 1 corresponds to the cases where Y carries little information
and a variable selection should be implemented.

Proof of Proposition 3 when the system of Equations (9) is of full rank q + p.

∆2(x
⋆) := ∆(x⋆)− 2λ(x⋆)

(
α(x⋆)⊤1n − 1

)
− 2λ′⊤ (YAπ −m) ,

where λ′ is a p × 1 vector of Lagrange multipliers. The gradient of the last term, with
respect to α(x⋆) is

∇α(x⋆)2λ
′⊤ (E [M(X⋆) |Y]−m)

= ∇α(x⋆)2λ
′⊤ (P [X⋆ = x⋆] E [M(x⋆) |Y] + P [X⋆ ̸= x⋆] E [M(X⋆) |X⋆ ̸= x⋆,Y]−m)

= ∇α(x⋆)2λ
′⊤ (P [X⋆ = x⋆] E [M(x⋆) |Y]−m) + 0

= ∇α(x⋆)2λ
′⊤ P [X⋆ = x⋆] E [Yα(x⋆)−m |Y]

= ∇α(x⋆)2λ
′⊤ (πx⋆Yα(x⋆)−m)

= 2πx⋆Y⊤λ′

Hence using the gradient of ∆(x⋆) in Equation (23), one gets

∇α(x⋆)∆2(x
⋆) = 2Kα(x⋆)− 2h(x⋆)− 2λ(x⋆)1n − 2πx⋆Y⊤λ′ (26)

Setting the gradient to be equal to a n × 1 vector of zeros, we get for all prediction
locations x⋆ ∈ {x⋆1, . . . , x⋆q}

Kα(x⋆) = h(x⋆) + λ(x⋆)1n + πx⋆Y⊤λ′

1n
⊤α(x⋆) = 1

YAπ = m

38



As optimal weights are gathered in the n× q matrix A :=
[
α(x⋆1), ...,α(x⋆q)

]
, if one defines

the n × q matrix H :=
[
h(x⋆1), ...,h(x

⋆
q)
]
, then the previous system can be written, by

binding columns for all x⋆ ∈ {x⋆1, . . . , x⋆q}:
KA = H+ 1nλ

⊤ + Y⊤λ′π⊤

1n
⊤A = 1q

⊤

YAπ = m

(27)

with q × 1 Lagrange multiplier λ, and p× 1 Lagrange multiplier λ′.
If K is invertible, then the first equation writes

A = K−1H+K−11nλ
⊤ +K−1Y⊤λ′π⊤

Injecting this value of A into the first constraint 1n
⊤A = 1q

⊤, denoting γ := π⊤π ∈ R
and δ := 1n

⊤K−11n ∈ R one gets:

1q
⊤ = 1n

⊤K−1H+ 1n
⊤K−11nλ

⊤ + 1n
⊤K−1Y⊤λ′π⊤

1q
⊤π = 1n

⊤K−1Hπ + 1n
⊤K−11nλ

⊤π + 1n
⊤K−1Y⊤λ′π⊤π

1 = 1n
⊤K−1Hπ + δλ⊤π + γ1n

⊤K−1Y⊤λ′

δλ⊤π = 1− 1n
⊤K−1Hπ − γ1n

⊤K−1Y⊤λ′

Now injecting the value of A into the second constraint YAπ = m, and using the last
equation, denoting the p× 1 vector u := YK−11n, one gets

m = YK−1Hπ + YK−11nλ
⊤π + YK−1Y⊤λ′π⊤π

= YK−1Hπ + YK−11n
1

δ

(
1− 1n

⊤K−1Hπ − γ1n
⊤K−1Y⊤λ′

)
+ γYK−1Y⊤λ′

= YK−1Hπ +
1

δ
u
(
1− 1n

⊤K−1Hπ
)
− γ

1

δ
uu⊤λ′ + γYK−1Y⊤λ′

and finally, the vector λ′ must satisfies

γ

(
1

δ
uu⊤ − YK−1Y⊤

)
λ′ = YK−1Hπ +

1

δ
u
(
1− 1n

⊤K−1Hπ
)
−m.

Hence, provided the matrix factor is invertible,

λ′ = γ−1

(
1

δ
uu⊤ − YK−1Y⊤

)−1(
YK−1Hπ +

1

δ
u
(
1− 1n

⊤K−1Hπ
)
−m

)
Once λ′ computed, one gets for λ

1q
⊤ = 1n

⊤K−1H+ δλ⊤ + 1n
⊤K−1Y⊤λ′π⊤

δλ⊤ = −1n
⊤K−1H− 1n

⊤K−1Y⊤λ′π⊤ + 1q
⊤

And finally, using u = YK−11n,

λ = δ−1
(
1q −H⊤K−11n − πλ′⊤u

)
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The above proof of Proposition 3 in the case where all constraints are independent
relies on the invertibility of the p × p matrix S = 1

δuu
⊤ − YK−1Y⊤. Let us now discuss

this condition.
Let us assume take a vector ω, not null, such that Sω = 0p. It implies that ω⊤Sω = 0.

And rewriting S, we get:

0 = ω⊤
(

1

1n
⊤K−11n

YK−11n1n
⊤K−1Y⊤ − YK−1Y⊤

)
ω

We denote wn = Y⊤ω and get:(
wn

⊤K−11n
) (

1n
⊤K−1wn

)
1n

⊤K−11n
= wn

⊤K−1wn

And since K is a definite positive symmetric matrix, its inverse too and this inverse
can be seen as a scalar product denoted < ., . >. We get:

< wn,1n >2=< wn,wn >< 1n,1n >

Due to Cauchy-Schwartz inequality, this is possible if and only if we, wn = ω01n for
some scalar ω0. Which means that Y⊤ω = ω01n. But this case has been excluded because
it implies that the system of constraints is not of full rank (see Equation (A.4)). Therefore,
the matrix S is always invertible.

Proof of Proposition 3 when the system of Equations (9) is of rank q + p− 1. Theory of La-
grangian factors holds only in the case of regular constraints, meaning that constraints’
gradients should be independent. In particular, constraints are not regular if the con-
straints themselves are not regular. Let us show how to solve the optimisation problem,
removing one of the conditions on the optimal weights. For the sake of simplicity, we
remove the first one. Keeping the above notations, we denote:

λ0 = (0, λ2, . . . , λq)
⊤ ∈ Rq−1

λ1 = (λ2, . . . , λq)
⊤ ∈ Rq−1

π1 =
(
πx⋆

2,...,x
⋆
q

)⊤
∈ Rq−1

+

π1 = πx⋆
1

A1 =
[
αx⋆

2
, . . . ,αx⋆

q

]
∈ Rp×(q−1)

γ1 = π1
⊤π1 = γ − π2

1 ∈ R+

H1 =
[
h(x⋆2, . . . , x

⋆
q

]
The constraints (6) rewrite:

1n
⊤A1 = 1q

⊤

And the system of Equations (27) rewrites:
KA = H+ 1nλ0

⊤ + Y⊤λ′π⊤

1n
⊤A1 = 1q−1

⊤

YAπ = m

(28)
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The first equation implies:

A = K−1H+K−11nλ0
⊤ +K−1Y⊤λ′π⊤

therefore A1 = K−1H1 +K−11nλ1
⊤ +K−1Y⊤λ′π1

⊤

We replace A1 in the second equation:

1q−1
⊤ = 1n

⊤K−1H1 + 1n
⊤K−11nλ1

⊤ + 1n
⊤K−1Y⊤λ′π1

⊤

1q−1
⊤π1 = 1n

⊤K−1H1π1 + 1n
⊤K−11nλ1

⊤π1 + 1n
⊤K−1Y⊤λ′π1

⊤π1

1− π1 = 1n
⊤K−1H1π1 + δλ1

⊤π1 + γ1u
⊤λ′

δλ1
⊤π1 = 1− π1 − 1n

⊤K−1H1π1 − γ1u
⊤λ′

λ0
⊤π =

1

δ

(
1− π1 − 1n

⊤K−1H1π1 − γ1u
⊤λ′

)
We can also replace A in the third equation and replace λ0

⊤π with the last result:

m = YK−1Hπ + YK−11nλ0
⊤π + YK−1Y⊤λ′π⊤π

m = YK−1Hπ + uλ0
⊤π + γYK−1Y⊤λ′

m = YK−1Hπ +
1

δ
u
(
1− π1 − 1n

⊤K−1H1π1 − γ1u
⊤λ′

)
+ γYK−1Y⊤λ′

m = YK−1Hπ +
1− π1

δ
u− 1

δ
u1n

⊤K−1H1π1 −
γ1
δ
uu⊤λ′ + γYK−1Y⊤λ′

Which yields:(γ1
δ
uu⊤ − γYK−1Y⊤

)
λ′ = YK−1Hπ +

1− π1
δ

u− 1

δ
u1n

⊤K−1H1π1 −m

Assuming that γ1
δ uu

⊤ − γYK−1Y⊤ is invertible:

λ′ =
(γ1
δ
uu⊤ − γYK−1Y⊤

)−1
(
YK−1Hπ +

1− π1
δ

u− 1

δ
u1n

⊤K−1H1π1 −m

)
But we know that:

1q−1
⊤ = 1n

⊤K−1H1 + δλ1
⊤ + u⊤λ′π1

⊤

therefore λ1 =
1

δ

(
1q−1 −H1

⊤K−11n − π1λ
′⊤u

)
And A can finally be computed with the equation:

A = K−1H+K−11nλ0
⊤ +K−1Y⊤λ′π⊤

A.5 Proof of Remark 2 Covariance matrices with two constraints

Proof of Remark 2. - The proof is similar to the one of Remark 1 and uses the fact that,
under chosen assumptions and for any prediction point x⋆,

Kα(x⋆)− h(x⋆) = K̃α(x⋆)− h̃(x⋆).

Hence the gradient of ∆2(x
⋆) in Equation (26) is unchanged when replacing K and h(x⋆) by

K̃ and h̃(x⋆), and all further expressions follows the same way in the proof of Proposition 3.
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A.6 Proof of Proposition 5 Joint Kriging variance with arbitrary weights

Proof of Proposition 5. The first equation is a simple vector rewriting of Equation (1). For
the prediction error, one simply write, whatever the weights α(x⋆),

∆(x⋆) = E
[
∥M(x⋆)−Y(x⋆)∥2W

]
= E

[
(M(x⋆)−Y(x⋆))⊤W (M(x⋆)−Y(x⋆))

]
= E

[
(Yα(x⋆)−Y(x⋆))⊤W (Yα(x⋆)−Y(x⋆))

]
= E

[
α(x⋆)⊤Y⊤WYα(x⋆)− 2α(x⋆)⊤Y⊤WY(x⋆) +Y(x⋆)⊤WY(x⋆)

]
.

Hence the result.

A.7 Proof of Remark 4 Covariance matrices in Joint Kriging mean and
variance

Proof of Remark 4. The case where µ = 0p is straightforward, as in that case K̃ = K,
h̃(x⋆) = h(x⋆) and ṽ(x⋆) = v(x⋆), whatever the weights α(x⋆). It remains the case where
weights are summing to one. As in previous remarks, under chosen assumptions one gets

Kα(x⋆)− h(x⋆) = K̃α(x⋆)− h̃(x⋆),

and moreover one can show that

−α(x⋆)⊤h(x⋆) + v(x⋆) = −α(x⋆)⊤h̃(x⋆) + ṽ(x⋆).

Hence the result.

A.8 Proof of Proposition 6 Variance sharing

Proof of Proposition 6. The difficulty here is to derive the cross-covariance kij(x, x
′) =

Cov [Yi(x), Yj(x
′)] from the expression of k(x, x′) that is detailed in Remark 3

k(x, x′) := E
[
Y(x)⊤WY(x′)

]
− E

[
Y(x)⊤

]
WE

[
Y(x′)

]
Denoting Ỹ(x) := W1/2Y(x), x ∈ χ, this scalar covariance writes

k(x, x′) = E
[
Ỹ(x)

⊤
Ỹ(x′)

]
− E

[
Ỹ(x)

⊤]
E
[
Ỹ(x′)

]
(29)

One would like to compute the p× p cross-covariance matrix between Y(x) and Y(x′),
using Y(x) = W−1/2Ỹ(x), x ∈ χ:

KY (x, x
′) := E

[
Y(x)Y(x′)

⊤
]
− E [Y(x)] E

[
Y(x′)

⊤
]

= W−1/2
(
E
[
Ỹ(x)Ỹ(x′)

⊤]
− E

[
Ỹ(x)

]
E
[
Ỹ(x′)

⊤])
W−1/2⊤

= W−1/2K
Ỹ
(x, x′)W−1/2⊤ (30)

where one defines K
Ỹ
(x, x′) := E

[
Ỹ(x)Ỹ(x′)

⊤]
− E

[
Ỹ(x)

]
E
[
Ỹ(x′)

⊤]
.

Now assume that:

Cov
[
Ỹi(x), Ỹj(x

′)
]
= 0 whenever i ̸= j, x, x′ ∈ χ .
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This implies that W1/2 is proportional to a whitening transformation, so that all compo-
nents of Ỹ1(x), . . . , Ỹp(x) are uncorrelated.

Assume furthermore that:

Cov
[
Ỹ1(x), Ỹ1(x

′)
]
= . . . = Cov

[
Ỹp(x), Ỹp(x

′)
]
, x, x′ ∈ χ.

Then one easily sees from Equation (29) that the scalar k(x, x′) satisfies

k(x, x′) =

p∑
i=1

Cov
[
Ỹi(x), Ỹi(x

′)
]
= pCov

[
Ỹj(x), Ỹj(x

′)
]
, j = 1, . . . , p

Hence under these assumptions, denoting Ip the p× p identity matrix,

K
Ỹ
(x, x′) =

1

p
k(x, x′)Ip.

As a consequence, from Equation (30),

KY (x, x
′) := E

[
Y(x)Y(x′)

⊤
]
− E [Y(x)] E

[
Y(x′)

⊤
]
=

1

p
k(x, x′)W−1 (31)

Cov
[
Yi(x), Yj(x

′)
]
=

1

p
k(x, x′)(W−1)ij (32)

Now from this, one can derive the local cross errors

δij(x, x
′) := E

[
(Mi(x)− Yi(x))

(
Mj(x

′)− Yj(x
′)
)]

Let us denote by Yi. the ith row vector of the matrix Y. We get

δij(x, x
′) = E

[
(Yi.α(x)− Yi(x))

(
Yj.α(x′)− Yj(x

′)
)]

= α(x)⊤ E
[
Yi.

⊤Yj.

]
α(x′)−α(x)⊤ E

[
Yi.

⊤Yj(x
′)
]

− E
[
Yi(x)

⊤Yj.

]
α(x′) + E

[
Yi(x)Yj(x

′)
]

Now assume E [Y(x)] = µ for all x ∈ χ. Then from Equation (32),

E
[
Yi(x)

⊤Yj(x
′)
]
− µiµj =

1

p
k(x, x′)(W−1)ij

which implies, using the matrix K̃ defined in Equations (19), page 18:

E
[
Yi.

⊤Yj.

]
−µiµj1n1n

⊤ =
1

p
(W−1)ijK̃ and E

[
Yi.

⊤Yj(x
′)
]
−µiµj1n =

1

p
(W−1)ijh̃(x

′).

Furthermore, assume that either weights sum to one or µ = 0p, then terms in µiµj vanish
and one gets:

δij(x, x
′) =

1

p
(W−1)ij

(
α(x)⊤K̃α(x′)−α(x)⊤h̃(x′)− h̃⊤(x)α(x′) + k(x, x′)

)
.

In particular from Proposition 5, using Remark 3 and Remark 4,

δi(x
⋆) =

1

p
(W−1)ii∆(x⋆). (33)
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From Equation (31), when k(x, x) = σ2 for all x, one can write

KY (x, x) =
1

p
σ2W−1.

Using σ2
i := Var [Yi(x)], assumed to be constant over x,

1

p
(W−1)ii =

(KY (x, x))ii
σ2

=
σ2
i

σ2
.

Hence from Equation (33),

δi(x
⋆) =

σ2
i

σ2
∆(x⋆).

A.9 Proof of Remark 5 Constraints’ impact

Proof: Nugget for positive weights. [Proof of Remark 5] The result is a very straightforward
rewriting and interpretation of constraints (6) and (7). From YAπ = m one derives
1p

⊤m = 1p
⊤YAπ = 1n

⊤Aπ = 1q
⊤π = 1, hence the natural constraint on prescribed

average membership degrees in m, that must sum to one.

A.10 Proof of Proposition 7 Nugget ensuring positive weights

Proof of Proposition 7.

We have Knug := K+ ηIn .

We denote ε :=
1

η
.

therefore Knug = K+
1

ε
In ,

=
1

ε
(In + εK)

and K−1
nug = ε(In − εK+ o (ε))

= εIn + o (ε) .

Following notations of Proposition 2, we have:

δ = 1n
⊤K−1

nug1n

δ = nε+ o (ε)

δ = nε(1 + o (1))

δ−1 =
1

nε
(1 + o (1))

λ⊤ =
1

nε
(1 + o (1))

(
1q

⊤ − 1n
⊤ (εIn + o (ε))H

)
λ⊤ =

1

nε

(
1q

⊤ + o (1)
)
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And eventually:

A = (εIn + o (ε))

(
H+

1

nε
1n1q

⊤ +
1

nε
o (1)

)
A =

1

n
1n1q

⊤ + εH− o (1)

lim
ε→0

A =
1

n
1n1q

⊤

Which is the expected result.
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B Symbols and Notation
locations
X set of locations (inputs/design points).
n, q number of observed locations, of prediction locations.
x any location. x1, . . . , xn are all observed locations.
x⋆ any prediction location. x⋆1, . . . , x

⋆
q are all prediction locations.

X⋆ a random variable over prediction locations.
π = (πx⋆

1
, . . . , πx⋆

q
) the q × 1 distribution of X⋆ over prediction locations.

γ = π⊤π an intermediate real value used in calculations.

output variables
p number of output variables.
Y(x) the p× 1 vector of output variables at location x.
µ = E [Y(x)] the p× 1 mean of Y(x), when constant over x.
Y = [Y(x1), . . . ,Y(xn)] all the p× n values of observed output variables.
Y⋆ =

[
Y(x⋆1), . . . ,Y(x⋆q)

]
all p× q unknown output variables at prediction locations.

prediction
M(x⋆) a p× 1 predictor of Y(x)
M =

[
M(x⋆1), . . . ,M(x⋆q)

]
the p× q matrix of all predictions.

α(x⋆) the n× 1 linear weights for the prediction in x⋆.
A =

[
α(x⋆1), . . . ,α(x⋆q)

]
the n× q matrix of weights for all predictions.

m a given constant p× 1 vector of prescribed mean predicted values.
∆(x⋆),∆1(x

⋆),∆2(x
⋆) losses to be minimized for finding M(x⋆).

λ a q × 1 vector of Lagrange multipliers (relative to sum of weights)
λ′ a p× 1 vector of Lagrange multipliers (relative to predicted values)
u = YK−11n an intermediate p× 1 vector in calculations.
Z an additional p× 1 factor for affine predictions.

covariances
W a given symmetric positive definite matrix for computing norms.
h(x⋆) = E

[
Y⊤WY(x⋆)

]
a n× 1 covariance vector.

H =
[
h(x⋆1), . . . ,h(x

⋆
q)
]

a n× q covariance matrix.
K = E

[
Y⊤WY

]
a n× n covariance matrix.

K̃, h̃(x⋆), H̃ other covariances using centred expressions.
δ = 1n

⊤K−11n an intermediate real value in calculations.
P additional n× 1 covariance vector between Z and Y(xi)
Q additional q × 1 covariance vector between Z and Y(x⋆j )

miscellaneous
v a generic vector for defining norm or checking psd characteristic.
1n,1p,1q a vector of ones of size n, p, q respectively.
0n,0p,0q a vector of zeros of size n, p, q respectively.
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