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Abstract

Interpolating or predicting data is of utmost importance in ma-
chine learning, and Gaussian Process Regression is one of the numer-
ous techniques that is often used in practice. This paper considers
the case of multi-input and multi-output data. It proposes a simple
Joint Kriging model where common combination weights are applied
to all output variables at the same time. This dramatically reduces
the number of hyperparameters to be optimized, while keeping nice
interpolating properties. An original constraint on predicted values is
also introduced, useful for considering external information or adverse
scenarios. Finally, it is shown that applied to membership degrees, the
model is especially helpful for fuzzy classification problems. In partic-
ular, the model allows for prescribed average percentages of each class
in predictions. Numerical illustrations are provided for both simulated
and real data, and show the importance of the constraint on predicted
values. The method also competes with state-of-the-art techniques on
an open real world data set.

Keywords—Multi-output Kriging, Cokriging, Constrained classification,
Spatial Prediction, multi-task Gaussian Process regression.

1 Introduction

Interpolating data is widely used in many fields of computer experiments,
it is especially useful to predict values of one or several variables of inter-
est, in the context of time-consuming or costly computer experiments. One
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considers here a Kriging interpolation problem on several output variables,
with specific constraints on predicted values, and with possible applications
to classification. Let us detail the need to deal with such problem.

Kriging on several outputs. Kriging or Gaussian Process Regression
is a method of interpolation, especially suited when there are only few ob-
servations that have to be interpolated. It is widely used in many fields of
Machine Learning, originally for geostatistical studies and spatial interpola-
tion, but also for computer experiments in many domains (finance, industry,
environment, etc.). The most basic Kriging theory aims a predicting a single
real-valued quantity of interest, the output (for instance gold concentration
in the ground), depending on some explanatory variables that are referred
to as input values or locations (for instance latitude, longitude and depth).
From a statistical point of view, the Kriging method is based on a best linear
unbiased combination of observed outputs, with an assumption that observa-
tions are random variables whose correlation depends on locations. From a
Gaussian random field point of view, in a Gaussian setting, the interpolation
is the mean of a conditional Gaussian random field, with confidence bands
derived from the variance of the conditional random field (see e.g. Williams
and Rasmussen, 2006, for an in-depth review).

The method has several advantages. First, the interpretability of the
method (the prediction is a weighted average of observations, with quite log-
ical behavior of weights). Second, the method fully interpolates the data,
that is, predicts exactly an observed output if one uses the same input val-
ues. And third, the method not only gives a prediction, but also confidence
intervals for this prediction. Among limitations of the method, and proposed
extensions in the literature, one can cite the difficulty to handle a large num-
ber of observations (see e.g. Cressie and Johannesson, 2008; Banerjee et al.,
2013; Rullière et al., 2018, and references therein), the difficulty to specify
the covariance model and to estimate its hyperparameters (see e.g. Bachoc,
2013), the difficulty to treat multi-valued output (see Furrer and Genton
(2011)).

In the present paper, we mainly consider this latter multi-valued out-
put problem, which is clearly of practical interest. Co-Kriging techniques
are built to treat several outputs, but there is usually one main output and
others are used to improve the prediction of the main considered output. Fur-
thermore, all cross-covariances between outputs at different locations have to
be modelled, which creates O(p2) covariance models, where p is the number
of outputs.

While highly parametrized models are useful in many situations, the
prediction quality rely on the proper specification of the model and on the
estimation of its parameters. A fine model with wrong parameters can some-
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times be less efficient than a simpler model with more control on few param-
eters (see Rasmussen and Ghahramani, 2000). In this paper, one considers
a model where Kriging is applied to multi-valued outputs in Rp, but with
a specific simplification leading to a single covariance function to tune in-
stead of O(p2). This way, the prediction is feasible with a limited number of
hyperparameters, interpretable and easy to explain.

One originality of the paper is that this kind of multi-valued interpola-
tion is also applied to membership degrees in a classification setting. This
allows to benefit from Kriging advantages (interpretation/explainability, in-
terpolation, confidence intervals). Moreover, the proposed simplification of
the model is especially useful since it keeps the property of membership
degrees summing to one. At last, another novelty is to consider a specific
constraint on predicted values. As detailed below, it will allow for proportion
constraints in a classification setting.

Constraints on predicted values. There is a well known joke on actu-
aries: How much is two plus two? An actuary will ask “What do you want
it to equal?”. At first glance, it seems dishonest to require constraints on
predicted values, especially if these constraints are very precise. But such
constraints can be useful in some situations, when having external informa-
tion, for adverse modelling or for homogenization needs, as illustrated below.
The constraint we consider in this paper focuses on the average of predicted
values.

It can be very helpful to prescribe a specific value for the average of
predicted values. Let us instantiate some examples: due to an industrial
accident, one wishes to measure the pollution in the soil for different chem-
ical products. Measures are done at some spatial places, but the number
of measures is limited. One would like to infer the quantity of all chemi-
cal product everywhere in the soil. Knowing stockpiles of products before
the accident, the total quantity of lost chemicals may be known for every
chemical products. While Gaussian Process Regression is especially suited
to predict one product dosage in the soil, it has difficulty to handle jointly
a lot of products, as it needs to model many cross-covariances. Furthermore
it cannot handle at all constraints like prescribing the average of predicted
values. Another example is the case where one needs to build a prediction
under an adverse scenario: even if the total quantity of lost chemical is un-
known, it can be useful to get an idea of the distribution of pollutants in
an adverse case of massive loss. Finally, in other investigations, there may
be external knowledge to consider: for example a regional study might want
to be in line with some given national statistics, if there is no reason that
the regional statistics differs in average. One can observe data due to an
exceptional situation (e.g. COVID), and one may want to use it knowing
that the situation has returned to normal. Or one might want predictions
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over different years or over different regions to coincide at least on average:
for instance one may want that some disease incidence prediction does not
differ, on average, over different medical centers. Another situation is the
following one: imagine that one knows, under arbitrage free setting, that
some predicted stock returns must be zero on average, or imagine that the
regulator wants to force a prediction under specific shock scenarios. Fairness
constraints can also be introduced to limit unfairness in algorithmic decision
making (see e.g. Zafar et al., 2019).

In a nutshell, prescribing the average value of predictions is useful in
many contexts, be it external information (known quantity of chemical, na-
tional statistic...), adverse modelling (regulation, simulation under specific
scenarios...), or need to homogenize results (over different regions, observed
years, fairness constraints...).

Constrained Kriging and classification. Once Kriging is adapted to
multi-output prediction, applying jointly Kriging on membership degrees
has several advantages for classification.

One advantage is that the interpolation property can be preserved, which
is not necessarily the case for other classification or clustering techniques like
kNN: even very near from one observation, if the chosen number of neigh-
bors is greater than one, kNN can propose another class than the observed
one. When applying Kriging, we will see that some constraints on predicted
values, or alternatively the use of a nugget effect, may break this interpo-
lation property. But Kriging still offers the choice between prescribing an
interpolation constraint, or prescribing more specific constraint on predicted
values. Another advantage of using a Joint Kriging model on membership
degrees is to get an estimation of the uncertainty relying on the prediction.
For instance, at a specific location one may predict 10 percent of chance that
the class is one, but one can also give a confidence interval for this quantity.

Applied to classification, a constraint on average predicted membership
degrees is also useful: imagine that one interpolates membership degrees of
different classes, depending on some explanatory variables. One may want
to predict the membership degrees for many possible values of explanatory
variables. But due to some external knowledge, to adverse scenarios mod-
elling or to homogenization needs, one may want to prescribe the proportion
in each class over all predicted values. Predicted class (or more precisely pre-
dicted membership degree) may differ depending on explanatory variables,
but one may want for sure that in average, the proportion in the different
considered classes is given.

Some works can be found in the literature about clustering or classifica-
tion under constraints: a survey on constrained classification can be found
in Gordon (1996), see references therein. Some researches are treating size
constraints for clustering Bradley et al. (2000); Höppner and Klawonn (2008);
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Ganganath et al. (2014), some are treating the problem of fuzzy clustering
with weights (membership degrees), as in the present paper, see for exam-
ple Benatti et al. (2022). Fairness constraints are also considered in Zafar
et al. (2019).

Regarding Kriging and classification, some works on classification using
Gaussian settings can be found in a dedicated Chapter 3 in the book Ras-
mussen et al. (2006). In particular, for binary classification, membership
probabilities can be approximated by a sigmoid-like transformations of some
latent Gaussian Process. The approach can be generalized to multiclass prob-
lems, and bayesian inference can be conducted using analytic approximations
of integrals, or solutions based on Monte Carlo sampling (see Williams and
Barber, 1998; Rasmussen et al., 2006, and references therein). Other recent
approaches involving Multi-task Gaussian process, using several latent Gaus-
sian processes and bayesian inference with approximations or sampling, can
be found in Dahl and Bonilla (2019); Panos et al. (2021).

Among works closer to what is proposed in the present paper, Indicator
Kriging (IK) aims at determining the cdf of an underlying random field at an
unknown location, as a weighted average of indicators. It uses as well linear
combinations of transformed observations, but relies on a direct link between
indicators and underlying random field, using thresholds. Hence, it seems
not directly suited to classification for non ordinal data, without any hier-
archy between classes. It also requires the observation of the latent process
that generates the indicators (see e.g. Journel, 1983; Meer, 1996; Goovaerts,
2009; Chiang et al., 2013, and references therein). Extensions like indicator
co-Kriging require a large number of cross-covariances (see Agarwal et al.,
2021). In the present paper, the proposed method can be applied to non
ordinal data, and does not require a specific model and thresholds between
indicators of membership and an underlying real random field; furthermore
in a simplified setting, the whole method can also rely on a single covariance
function.

Proposal. To the best of our knowledge, the use of Kriging on several out-
puts with application to classification under constraints on predicted values
has not been developed yet.

By itself, as previously detailed, Joint Kriging on several outputs has
advantages for interpretability, for its capacity to interpolate data, for the
uncertainty measurement associated to each prediction, for the limited num-
ber of hyperparameters and the simplicity of their estimation, while allowing
specific model characteristics as periodicity for example. The present ap-
proach yields directly closed form formulas, without the need of conditional
density approximations or sampling. With constraints on predicted values,
Kriging is useful for using external information, for adverse modelling, for
the need to homogenize results or to introduce fairness constraints. Such
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original constraints are not typically addressed by Kriging or Gaussian Pro-
cess regression, but we show that with suitable adaptations, Kriging is an
excellent choice for this task.

Applied to classification, the very same advantages hold: it allows for
capacity constraints, as well as model uncertainty, interpretability, simple
covariance modelling, and sometimes interpolation. Contrarily to Bayesian
inference methods relying on integral approximations or Monte-Carlo sam-
pling, this provides directly closed-form formulas for the predictor, using
only basic linear algebra. It does not require creating a model where classes
are derived from underlying Gaussian Processes and thresholds, so that it is
also suited for non ordinal classes. It seems to us that using multi-outputs
Kriging on classification offers many modelling perspectives, as well as prac-
tical results and performance: we will see that the proposed model compete
with best available methods on an open data set.

The paper is structured as follows. In Section 2, one defines a simplified
Kriging model that is suited for multi-valued outputs. The model is detailed
in different cases: without specific constraint, similarly to Simple Kriging;
with weights summing to 1, similarly to Ordinary Kriging; with constraints
on weights summing to 1 and on average predicted values. In each case
we derive optimal weights together with prediction mean and variance. An
extension using an affine prediction is also developed. In Section 3, the pro-
posed interpolation technique is applied to membership degrees, and it is
shown that it preserves useful basic properties for the prediction. In Sec-
tion 4, numerical applications of the proposed interpolation technique are
given. One considers in particular a minimal application on a toy example,
an illustration on a multi-valued time series on a real data set, and a more de-
tailed real-world application on a classification problem. A conclusion closes
the paper.

Appendix and supplementary material. For more readability, all
proofs are gathered in a Section A provided in Appendix. A list of notations
is given in a dedicated section B. All illustrations in the paper are generated
with notebooks that are available as supplementary material at https://
gitlab.emse.fr/marc.grossouvre/jointkrigingsupplementary/, in mod-
ifiable and executable format .Rmd and in already executed directly readable
.html format (see Grossouvre and Rullière, 2023). Hence the results are fully
reproducible, and all specifications for drawing figures are easy to retrieve.

2 Joint Kriging model

Let us consider a multi-valued random field Y(x) := (Y1(x), . . . , Yp(x))
⊤ ∈

Rp, x ∈ X where X is a metric set of input points, typically X = Rd.
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For the sake of clarity and using analogy with geostatistics, we will refer
to x as locations, but of course X may contain any explanatory variable. The
components Y1(.), . . . , Yp(.) will be referred to as the p considered targets.

Components of the random field Y(x) can be dependent. Furthermore Y
or its components are not necessarily Gaussian. However one assumes that
first and second order moments exists. One considers here that Y(x) ∈ Rp

and X = Rd, but other metric spaces would be possible, as soon as expecta-
tion and covariances between Y(x) and Y(x′) can be derived.

Given n observations of Y(x1), . . . ,Y(xn), we aim at predicting the
values of the random field at some unobserved locations x⋆1, . . . , x

⋆
q , i.e.

we aim at giving a predictor of Y(x⋆1), . . . ,Y(x⋆q). At an unobserved lo-
cation x⋆, we define the Joint Kriging predictor as a predictor M(x) =
(M1(x), . . . ,Mp(x))

⊤ depending linearly on observations, where real coeffi-
cients apply jointly to all components of the observations:

M(x⋆) :=
n∑

i=1

αi(x
⋆)Y(xi) , (1)

where each αi(x
⋆) ∈ R. These weights α(x⋆) := (α1(x

⋆), . . . , αn(x
⋆))⊤

are optimized in order to minimize some error that we will detail later
on, under various possible constraints. Now, defining the p × n matrix
Y := [Y(x1), . . . ,Y(xp)], Equation (1) also writes in a compact way

M(x⋆) = Yα(x⋆) . (2)

The main assumption behind this Joint Kriging predictor is that the
weights are impacting all components the same way: the first component
M1(x

⋆) is a linear combination of the observed first components, namely
Y1(x1), . . . , Y1(xn), the second component M2(x

⋆) is the same linear combi-
nation of the observed second components Y2(x1), . . . , Y2(xn), etc. In other
words, the weights affect jointly (or simultaneously) all the components of
observed Y(xi), i = 1, . . . , n, hence the chosen name of Joint Kriging model.
This assumption can be quite logical, and easier to explain, to a decision
maker: all targets are interpolated given observed targets, and the interpo-
lation weights do not depend on the considered target. We will see in Section
3 that this key assumption is very useful, especially for classification under
constraints. It would be technically possible to release this assumption, e.g.
replacing weights αi(x) by some p× p matrix for i = 1, . . . , n: one would get
closer to some general co-Kriging model with O(p2) covariance models, but
it is not the purpose of the present paper.
Let us define the prediction error associated to a vector of weights α(x⋆), at
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a prediction location x⋆. This loss is defined as the scalar value

∆(x⋆) := E
[
∥M(x⋆)−Y(x⋆)∥2W

]
. (3)

where ∥v∥2W := v⊤Wv is a squared norm with W a given symmetrical
positive-definite matrix of real weights. For instance, if one changes the
unit of the first target, say multiply it by 100, then it sounds logical that
the resulting norm is unchanged. Thus, some weights matrix may seem rea-
sonable: an inverse covariance matrix as in the Mahalanobis distance, or
a diagonal matrix of inverse variances, etc. For simplicity, the reader may
imagine that all p targets are already scaled and that W is the p×p identity
matrix.

The main difficulty is to derive the optimal weights α(x⋆) under the
various constraints one would like to consider. At all prediction locations
x⋆1, . . . , x

⋆
q one thus aims at determining the optimal weights, gathered in a

n× q matrix
A :=

[
α(x⋆1), . . . ,α(x⋆q)

]
.

This is performed in the three following subsections, under different con-
straints.

2.1 Optimal weights without constraints

In this subsection, one defines optimal weights minimizing the prediction
error, without supplementary constraints.

The following Proposition expresses the weights such that M(x⋆) is a
best linear unbiased predictor (BLUP) of Y(x⋆), in the sense of minimizing
the loss (3). The result looks exactly the same as in the simple Kriging
model, but the components in the symmetric positive semidefinite matrix K
and in the vector h(x⋆) here aggregate the values of all p observed targets.
One retrieves usual Simple Kriging equations in the case where p = 1 and
W is the identity matrix.

Proposition 1 (Simple Joint Kriging weights). The optimal weights α(x⋆)
minizing the loss of Equation (3) are given by the n× 1 vector:

α(x⋆) = K−1h(x⋆) , (4)

or equivalently, using a matrix expression,

A = K−1H , (5)

where the n×n matrix K := E
[
Y⊤WY

]
is assumed to be invertible, the n×1

vector h(x⋆) := E
[
Y⊤WY(x⋆)

]
, and the n×q matrix H :=

[
h(x⋆1), . . . ,h(x

⋆
q)
]
.

If furthermore for any target j = 1, . . . , p, for any location x ∈ X , E [Yj(x)] =
0, then M(x⋆) is unbiased.
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Proof. The proof is postponed to Appendix.

Note that the matrix K is necessarily a covariance matrix, since it is
symmetric positive semidefinite. In particular, this appears clearly when
E [Yj(x)] = 0 for any target j = 1, . . . , p and any location x ∈ X .

2.2 Optimal weights summing to one

In this section, one considers an additional constraint. This constraint raises
naturally when Yi(x) are not centered, and leads to weights summing to one,
as in Ordinary Kriging, see Cressie (1988), namely for all x⋆,

α⊤(x⋆)1n = 1 . (6)

Where 1n is a n × 1 vector of ones. It is clear that if for any x ∈ X ,
E [Y(x)] = µ then constraint (6) will imply that E [M(x⋆)] = µ, where
µ = (µ1, . . . , µp)

⊤, so that E [M(x⋆)] = E [Y(x⋆)]. The reverse implication is
also true if all µi are distinct from zero. Hence constraint (6) is a very natural
constraint. It does not imply however that M(x⋆) is a convex combination
of all Y(xi), because some weights can still be negative.

Under this constraint of weights summing to one, the following propo-
sition gives the optimal weights. One retrieves exactly the same formulae
as in ordinary Kriging, but the involved elements in matrices K and H are
different: they are computed taking into account all p targets over all obser-
vations.

Proposition 2 (Ordinary Joint Kriging weights). Under the constraint of
Equation (6), the optimal weights α(x⋆) minimizing the loss of Equation (2)
are given by the n× 1 vector α(x⋆), together with the scalar λ(x⋆):{

α(x⋆) = K−1 (h(x⋆) + λ(x⋆)1n)

λ(x⋆) = 1
δ

(
1− 1n

⊤K−1h(x⋆)
) (7)

Equivalently, using matrix expressions, one gets{
A = K−1

(
H+ 1nλ

⊤)
λ⊤ = 1

δ

(
1q

⊤ − 1n
⊤K−1H

) (8)

where K := E
[
Y⊤WY

]
, h(x⋆) := E

[
Y⊤WY(x⋆)

]
, and with scalar δ :=

1n
⊤K−11n. For matrix expressions, λ := (λ(x⋆1), . . . , λ(x

⋆
q))

⊤, and the n× q
covariance matrix H :=

[
h(x⋆1), . . . ,h(x

⋆
q)
]
.

If furthermore, for all targets i = 1, . . . , p, for all locations x ∈ X , E [Yi(x)] =
µi, then M(x⋆) is unbiased.

Proof. The proof is postponed to Appendix.
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An originality of the presentation of the result is that matrices can be
expressed indifferently with compact expressions (using K and h(x⋆)) or with
more classical covariances (using K̃ and h̃(x⋆)), as stated in the next remark.

Remark 1 (Covariance matrices). Let us define the true unknown values of
Y at all prediction points by Y⋆ :=

[
Y(x⋆1), . . . ,Y(x⋆q)

]
. Assume E [Y(x)] =

µ for all x ∈ X . Furthermore, assume that either weights sum to one that is
to say α(x⋆)⊤1n = 1, or µ = 0p.

Then the matrices K, H and the vector h(x⋆) can be replaced by
K̃ = E

[
Y⊤WY

]
− E

[
Y⊤]WE [Y]

H̃ = E
[
Y⊤WY⋆

]
− E

[
Y⊤]WE [Y⋆]

h̃(x⋆) = E
[
Y⊤WY(x⋆)

]
− E

[
Y⊤]WE [Y(x⋆)]

(9)

everywhere in Proposition 2, without changing the optimal weights α(x⋆).

The next remark shows that the model can be built from a single covari-
ance function k(x, x′) between an implicitly weighted sum of all targets.

Remark 2 (Using correlation functions). Assume that there exists a positive
definite matrix W, such that the covariances

k(x, x′) := E
[
Y(x)⊤WY(x′)

]
− E

[
Y(x)⊤

]
WE

[
Y(x′)

]
depend only on some distance between x and x′.

Then the components of the covariances matrices K̃ and H̃ can be derived
from the covariance function k : X × X → R by setting:{

K̃ij = k(xi, xj)

H̃ik = k(xi, x
⋆
k)

(10)

In practice, with one hyperparameter for the variance σ2 > 0, and d positive
hyperparameters θ1, . . . , θd, usually referred to as characteristic length-scales
(see Rasmussen et al., 2006, bottom of p.14), one can set for example

k(x, x′) = σ2r0
(
∥x− x′∥θ

)
, (11)

where r0 a unit correlation function and ∥x− x′∥2θ =
∑d

i=1

(
xi−x′

i
θi

)2
corre-

sponds to a rescaled Euclidean norm. Notice that this expression does not
depend on W any more, so that when using the above assumption we do not
have to estimate W.

In Remark 2, k(x, x) = σ2 for all x ∈ X . It would be possible to consider
a non homogeneous variance, this is not treated here for the sake of simplicity.

As a consequence of previous Remark 2, for a given matrix W (e.g. once
the components variance is set to one, say), a noticeable advantage of the
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Joint Kriging method is the limited number of hyperparameters to optimize.
Despite the multivariate output of the p × 1 response vector Y(x), x ∈ X ,
there is only a few hyperparameters to choose for defining the covariances:
for instance σ2, θ, and the covariance family. This is quite different from
co-Kriging techniques where all cross-covariances between components Yi(x)
and Yj(x

′) should be defined, i, j ∈ {1, . . . , p}, x, x′ ∈ X , which ends up in an
order of O(p2) covariance functions, and many associated hyperparameters.

2.3 Optimal weights with constraint on predictions

The constraint we consider here is more original than the previous one: we
would like that, given observations Y, the average of predicted values has
some prescribed value. Formally

E [M(X⋆) |Y] = m . (12)

where X⋆ is a random variable taking values in prediction locations {x⋆1, . . . , x⋆q},
and where m is a given p × 1 vector. This constraint is quite original at it
relies on predicted values for a given set of observations. The idea is to force
the optimal weights to take into account this a posteriori constraint.

Notice the importance of the conditioning by Y, otherwise if all Yi(x)
are centered, say, then the constraint would not be possible to satisfy in
general, since all M(x⋆) would be centered. We will see that this kind of
constraint is particularly useful for classification, when one wishes to force
classes proportions whatever the observed values.

Gathering all predictors in a p × q matrix M =
[
M(x⋆1), . . . ,M(x⋆q)

]
,

one can write M = YA. By conditioning on the value of X⋆, denoting
πx⋆ = P [X⋆ = x⋆], x⋆ ∈ {x⋆1, . . . , x⋆q}, Equation(12) simply writes

YAπ = m . (13)

where π is the q × 1 column vector π = (πx⋆
1
, . . . , πx⋆

q
), and where the n× q

matrix A gather all vectors of weights: A :=
[
α(x⋆1), . . . ,α(x⋆q)

]
. One speci-

ficity is that the resulting weights in matrix A will have to be solved all at
once, for all q prediction locations. This is quite different from usual Kriging
settings where prediction locations can be treated separately, if desired.

In the following proposition, we give the optimal weights matrix A when
both constraints are considered at the same time: the constraint (12) on
predicted values, and the constraint (6) on weights summing to one.

Proposition 3 (Joint Kriging weights under predicted values constraint).
The Joint Kriging weights minizing the loss of Equation (3) under the con-
straint of weights summing to one of Equation (6), and prescribed average
predicted values of Equation (12) write:

A = K−1
(
H+ 1nλ

⊤ + Y⊤λ′π⊤
)

(14)

11



with Lagrange multipliers, provided that
(
1
δuu

⊤ − YK−1Y⊤) is invertible,

λ′ = γ−1

(
1

δ
uu⊤ − YK−1Y⊤

)−1(
YK−1Hπ +

1

δ
u
(
1− 1n

⊤K−1Hπ
)
−m

)
λ = δ−1

(
1q −H⊤K−11n − πλ′⊤u

)
where u := YK−11n, γ := π⊤π ∈ R and δ := 1n

⊤K−11n ∈ R, and
H :=

[
h(x⋆1), ...,h(x

⋆
q)
]
.

Proof. The proof is postponed to Appendix.

Note that it is also possible to compute a model with the only con-
straint YAπ = m, without requiring weights summing to one. In view of
further classification applications, we do not develop it here and keep both
constraints.

Again, an originality is that the previous result can be expressed using
compact expressions for K and H or more classical covariances, as stated in
the following remark. As a result, under suitable assumptions, all these co-
variance matrices can be filled using a covariance function k(., .), as detailed
in Remark 2.

Remark 3 (Covariance matrices with two constraints). Under the assump-
tions of Remark 1 and using the same notations, the matrices K and H can
be replaced by K̃ and H̃ everywhere in Proposition 3, without changing the
optimal weights A.

Proof. The proof is postponed to Appendix.

2.4 Optimal weights with affine extension

Up to this point, one has only considered linear predictors, where a predic-
tor is a linear combination of observed responses Y(x1), . . . ,Y(xn), under
various constraints. In this subsection, one considers the case where the pre-
diction involves one supplementary term.

Remind the requirement on predicted values: they should be m in aver-
age. The hidden idea behind the knowledge of vector m is that there is some
external information giving an hint on the prediction. This information may
come for instance from some known overall statistics on the territory, some
expert knowledge or from an expectancy estimator. Let us denote by Z the
p× 1 random vector containing this external source of information.

With this in mind, it is quite natural to define an affine prediction:

M+(x⋆) := α0(x
⋆)Z+

n∑
i=1

αi(x
⋆)Y(xi) , (15)
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Given Z = m, a constant term is included in the sum, hence the name affine
prediction.

The sum of weights constraint on the new vector α+ = (α0(x
⋆), . . . , αn(x

⋆))
can be written

1n+1
⊤α+(x⋆) = 1 . (16)

This way, if the p components of m and Y(xi), i = 1, . . . , n are percentages
summing to one, then the p components of the predictor M(x⋆) will also
sum to one.

For the second constraint on average predicted values, previously detailed
in Equation (12), there is an implicit conditioning by Z = m. this constraint
may write, with X⋆ a r.v. defined on {x⋆1, . . . , x⋆q}:

E
[
M+(X⋆)

∣∣Z = m, Y
]
= m . (17)

Finally, provided covariances between Z and Y(x) are given, x ∈ χ,
then the setting is absolutely the same as in previous Propositions 1, 2
and 3, excepts one observation Z = m is added in the vectors of observa-
tions Y(x1), . . . ,Y(xn). The covariance matrices are also updated. This is
detailed in the following Proposition.

Proposition 4 (Affine version of predictors). Assume that the following
covariance vectors are given

P⊤ := E
[
Z⊤WY

]
− E

[
Z⊤]WE [Y]

Q⊤ := E
[
Z⊤WY⋆

]
− E

[
Z⊤]WE [Y⋆]

σ2
Z := E

[
Z⊤WZ

]
− E

[
Z⊤]WE [Z]

(18)

Then affine predictors corresponding to the simple unconstrained case, to the
ordinary case with one constraint, to the case with two constraints can be
obtained by replacing Y, K, H by

Y+ =
[
m Y

]
, K+ =

[
σ2
Z P⊤

P K

]
, H+ =

[
Q⊤

H

]
, (19)

in Propositions 1, 2 and 3 respectively.

Proof. The proof is straightforward, hence not appearing in the Appendix.

Notice that the previous Proposition 4 can be easily extended to several
sources of information Z1,Z2, . . .. For the sake of simplicity, this is not
developed here.

Recall that, from Remark 2, that matrices K,H can be derived from
simple correlation functions. Now it remains to derive one expression for P
and Q.

13



Remark 4 (Extra covariances for affine prediction). Let P = (P1, . . . , Pn),
Q = (Q1, . . . , Qq) and Z = (Z1, . . . , Zp). To fix ideas, in the case where W
is the identity matrix, then for i = 1, . . . , n, j = 1, . . . , q{

Pi =
∑p

k=1Cov [Zk, Yk(xi)]

Qj =
∑p

k=1Cov
[
Zk, Yk(x

⋆
j )
]

This is easy to adapt when W is not the identity matrix, by considering the
components of W1/2Z and W1/2Y(x), x ∈ X .

Assuming that the above covariance does not depend on xi nor on x⋆j (i.e.
the general source of information gives hints on the whole process, not on a
particular location), then one can propose{

Pi = ρσσZ , i = 1, . . . n

Qj = ρσσZ , j = 1, . . . q
(20)

This corresponds for example to a model where Yk(x)
σ = ρZk

σZ
+ Gk(x), k =

1, . . . , p, where all Gk(x) are independent from all Zk.
Other assumptions can be chosen, leading to different vectors P and Q.

In the previous remark 4, the parameter ρ ∈ [−1, 1] measures how re-
dundant is the information provided by Z, and can even be set to 0 if one
considers that the external information source is completely independent
from observations. The parameter σZ measures how certain is the external
information: when σZ is high, the added information cannot be trusted and
one retrieves the linear predictor, when σZ is low, the added information is
trustable, so that far from observed locations, M(x) gets nearer to m. In
practice one can set 0 < σZ ≪ σ to see the maximal difference with the lin-
ear predictor. One can even optimize this parameter σZ to smoothly switch
from a linear to an affine model.

2.5 Joint Kriging Mean and Variance

In this subsection we derive the mean predictor and the prediction error,
assuming the optimal weights have been calculated with chosen constraints,
as detailed in previous subsections.

Consider M(x⋆) and α(x⋆) a Joint Kriging predictor and the associated
weights with or without constraints. In the following, we call Joint Kriging
mean the value of the the predictor M(x⋆) and Joint Kriging variance the
value of the quadratic error ∆(x⋆). Let us recall that:{

M(x⋆) := Yα(x⋆) ,

∆(x⋆) := E
[
∥M(x⋆)−Y(x⋆)∥2W

]
,

14



where Y = [Y(x1), . . . ,Y(xp)] is the p × n matrix of observations. If
p = 1 and if W is the identity matrix, Joint Kriging mean and Joint Krig-
ing variance are exactly the Kriging mean and the Kriging variance usually
known in Kriging.

The following Proposition gives a closed formula to compute the Joint
Kriging variance.

Proposition 5 (Joint Kriging variance with arbitrary weights). Let α(x⋆)
be any vector of weights, possibly satisfying supplementary constraints.

The associated Joint Kriging variance writes:

∆(x⋆) = α(x⋆)⊤Kα(x⋆)− 2α(x⋆)⊤h(x⋆) + v(x⋆) , (21)

or using a matrix expression, denoting ∆ := (∆(x⋆1), . . . ,∆(x⋆1))
⊤, we get

∆ = diag
[
A⊤KA

]
− 2 diag

[
A⊤H

]
+ diag[K⋆] ,

where the n×n matrix K := E
[
Y⊤WY

]
, the q×q matrix K⋆ := E

[
Y⋆⊤WY⋆

]
,

the n×1 vector h(x⋆) := E
[
Y⊤WY(x⋆)

]
, and the scalar v(x⋆) := E

[
Y(x⋆)⊤WY(x⋆)

]
are assumed to be known. diag[.] is the vector whose entries are the diagonal
of the considered matrix.

Proof. The proof is postponed to Appendix.

Note that the above Proposition 5 can be directly adapted to the affine
case of Proposition 4, by replacing Y,K,H by Y+,K+,H+, v being un-
changed: one can interpret the predictor to be a linear predictor with one
more observation, with correct covariances.

As previously stated in Remarks 1 and 3, and using the same notations,
one can replace K,H,h with K̃, H̃, h̃, provided that the following new quan-
tities are defined: K̃⋆ = E

[
Y⋆⊤WY⋆

]
− E

[
Y⋆⊤

]
WE [Y⋆]

ṽ(x⋆) = E
[
Y(x⋆)⊤WY(x⋆)

]
− E

[
Y(x⋆)⊤

]
WE [Y(x⋆)] .

The result is stated in Remark 5 below. Hence, in practice all these
covariances can be filled using a given covariance function k(x, x′), under
suitable assumptions, as detailed in Remark 2.

Remark 5 (Covariance matrices in Joint Kriging mean and variance). Un-
der the assumptions of Remark 1 and using the same notations, the matrices
K, H, K⋆, the vector h(x⋆) and the scalar v(x⋆) can be replaced by K̃, H̃,
K̃, h̃(x⋆) and ṽ(x⋆) everywhere in Proposition 5, without changing the Joint
Kriging mean and variance.
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Proof. The proof is postponed to Appendix.

Now, remark that Proposition 5 gives only an overall error

∆(x⋆) := E
[
∥M(x⋆)−Y(x⋆)∥2W

]
which is a weighted sum of errors over all components of M(x⋆).

This is a strength of the method, since the quantity to optimize is real-
valued, which allows using standard covariance functions as detailed in Re-
mark 2. This is also an important limitation, because in practice, one surely
needs prediction errors for each component of M(x):

δi(x
⋆) := E

[
∥Mi(x

⋆)− Yi(x
⋆)∥2

]
, i = 1, . . . , p .

The following Proposition 6 shows that one can get this error δi(x
⋆) for

each component i = 1, . . . , p. It relies on a supplementary assumption on the
matrix W, but this assumption is only useful for determining the confidence
bands for each component of the predictor M(x), not for computing M(x)
itself.

Proposition 6 (Variance sharing). Assume that transformed observations
Ỹ(x) := W1/2Y(x) are such that components of Ỹ are uncorrelated and bear
the same share of the covariance function k, that is to say:

Cov
[
Ỹi(x), Ỹj(x

′)
]
=

1

p
k(x, x′)1{i=j} , i, j ∈ {1, . . . , p}, x, x′ ∈ X , (22)

Assume also that E [Y(x)] = µ for all x ∈ X . Furthermore, assume that
either the weights sum to one, or µ = 0p. Then the local errors write

δi(x
⋆) =

σ2
i

σ2
∆(x⋆) , i = 1, . . . , p . (23)

where σ2
i := Var [Yi(x)] is the variance of the component Yi(x), assumed to

be constant over x.

Proof. The proof is postponed to Appendix.

The result of Proposition 6 is quite logical, it simply states that for a
well chosen matrix W, the error δi(x

⋆) is proportional to the unit global
error σ−2∆(x⋆): one simply has to apply the variance σ2

i of the component
instead of the variance σ2 of the aggregated weighted components.
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3 Application to constrained classification

In this section, we now apply multi-output prediction to membership
degrees for fuzzy classification. We show that the Joint Kriging predictor,
together with constraints on weights and predicted values, is especially
suited to this task since it remains very simple, and constraints are very
logical in a classification setting.

Consider a classification problem with p possible labels. Labels are de-
pending on some explanatory variables x ∈ X , so that one may observe
labels ℓ(x1), . . . , ℓ(xn) taking values in {1, . . . , p}.

At an unobserved location x⋆, for a predictor L(x⋆) ∈ {1, . . . , p} of
ℓ(x⋆), the reader may convince himself that, for given probabilities pj ,
j ∈ {1, . . . , p}, constraints on predicted classification such as

P [L(X⋆) = j | observed labels] = pj , (24)

are not so easy to handle, even if X⋆ is a uniformly distributed random
variable over prediction points x⋆1, . . . , x

⋆
q . This is because such constraints

usually act in a non-linear way on the predictor L(X⋆), and the predictor
L(.) itself can be some complicated function of observed labels. Existing
predictors, such as Indicator Kriging, may be unable to deal with such
constraints. Furthermore, they may not be appropriate in cases where the
considered labels do not correspond to ordinal classes.

The originality here is to use Joint Kriging to propose a fuzzy classifi-
cation under both constraints: membership degrees summing to one, and
prescribed average of predicted degrees. Indeed, in a practical context, it is
natural to require that over all predictions, predicted values are distributed
like the observed ones, for instance. Or the sampling bias of observations is
known so that the expected label percentages are known. Or sometimes an
external source of information gives the expected label percentages. It can
be the case for a regional study, knowing some statistics at a national level.
At last, it can be used for modelling adverse scenarios.

Technically, in a classification problem, each label ℓ ∈ {1, . . . , p} can be
converted into a p× 1 vector of indicator functions, namely

Y :=
(
1{j=ℓ}

)
j=1,...,p

.

This transformation is well known in the machine learning community as
label binarization (see also dummy variables or one-hot encoding), and is
implemented in many languages. Obviously using this simple representation,
1p

⊤Y = 1.
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In practice, it is common to observe true label values depending on some
explanatory variables x ∈ X . But it may also happen that one observes
uncertain labels: multiple and distinct observed labels for a same x ∈ X ,
uncertainty relying on the value of x, etc. To handle this problem, one
generalizes slightly the previous label binarization: one assumes here that
observations consist in a distribution of possible labels, so that one observes
n vectors Y(x1), . . . ,Y(xn), such that the components of each vector are
summing to one: 1p

⊤Y(xi) = 1, i = 1, . . . , n. In other words, the p compo-
nents of Y(xi) represent the membership degrees of the p possible classes, at
an observed location xi, i = 1, . . . , n. Using previous notations, recall that
Y = [Y(x1), . . . ,Y(xn)], so that observed membership degrees satisfy

1p
⊤Y = 1n

⊤ . (25)

Now, using a Joint Kriging model, one can infer the membership degree
of an unobserved location x⋆, using the predictor of Equation (1):

M(x⋆) :=
n∑

i=1

αi(x
⋆)Y(xi) (26)

The next remark details the impact of both constraints, weights sum-
ming to one and prescribed average predicted values, in the particular set-
ting of membership degrees that are summing to one. Despite being very
straightforward, it aims in particular at recalling the previous results in the
classification context.

Remark 6 (Constraints impact). Consider the two previous constraints on
weights and predicted values, namely constraint of Equation (6) and Equa-
tion (12) . Consider also the membership degree assumption given in Equa-
tion (25), 1p⊤Y = 1q

⊤. Then the Joint Kriging model imply that

• Predicted membership degrees are summing to one:

1p
⊤M(x⋆) = 1 ,

for any prediction point x⋆ ∈ X . In particular 1p
⊤M = 1q

⊤.

• Average membership degree over prediction points can be chosen:

E [M(X⋆) |Y] = m ,

where m is a prescribed average of predicted membership degrees of each
class, with 1p

⊤m = 1, and X⋆ a random variable over all prediction
points.

Proof. The proof is postponed to Appendix.
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As noticed before, although predicted membership degrees are summing
to one, no guarantee of positivity is forced for the predicted values. In
practice, as it is the case with numerous machine learning methods, a post-
treatment of results may be required in specific cases involving negative
membership degrees (see e.g. the use of softmax function with neural net-
works).

Recall that, computing the Joint Kriging predictor requires the knowl-
edge of cross moments of Y(x) and Y(x′), namely E

[
Y(x)⊤WY(x′)

]
for all

observed and predicted locations, i.e. for x, x′ ∈ {x1, . . . , xn} ∪ {x⋆1, . . . , x⋆q},
where W is a given definite-positive matrix. In practice, the Remark 2 can
be used to build all covariance matrices from a single covariance function:
it is enough to choose a covariance function k(x, x′) with few associated
hyperparameters to get all needed covariance matrices.

Other techniques could be used for deriving covariances. Ordinal labels
may derive from, say, an underlying 1D Gaussian Process U(x), x ∈ X , by
setting Y(x) =

(
1{g(U(x))=j}

)
j=1,...,p

, where g : R → {1, . . . , p} is a given
function. The derivation of all covariances from the ones of U(.) is feasible,
as with Indicator Kriging, but out of the scope of the present paper. And
finally, it also ends up in the choice of a covariance function k(x, x′).

4 Numerical illustrations

In this section one considers different numerical illustrations, for both pre-
diction and classification. The first illustration focuses on the impact of
constraints with one output, the second one on the behavior of the predic-
tor with multiple outputs. The third illustration gives an application to
classification and a benchmark with numerous competitors. All the illustra-
tions are created in R markdown notebooks, one per subsection, available as
a supplementary material at https://gitlab.emse.fr/marc.grossouvre/
jointkrigingsupplementary/ (Grossouvre and Rullière, 2023). Notebooks
are given in both an executable format and an executed html format. The
presented figures are directly created from the notebooks and results are
fully reproducible.

4.1 A simplified toy example

One considers here the very simple case where there is a single target: the
output Y(x) is belonging to Rp, with p = 1. The interest for testing the
Joint Kriging with one single target is to discuss the impact of the constraint
on predicted values, and the impact of the affine prediction.

For p = 1, Simple Joint Kriging and Ordinary Joint Kriging are identical
to common Simple Kriging and Ordinary Kriging, but the constraint on
predicted values leads to a new original predictor. We keep here the vector
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bold font for vectors Y(x) ∈ Rp and m ∈ Rp, even though p = 1, in order
to keep the very same notations as in the rest of the paper.

Let us consider that the process Y(x) aims at approximating an hidden
function, with say a = 1 and b = 4,

f(x) := a+ sin(x/b) .

Observed locations x1, . . . , xn are randomly chosen with a uniform dis-
tribution over the interval [−10, 5], and q prediction locations x⋆1, . . . , x

⋆
q are

chosen regularly spaced over the interval [−3, 10]. Both intervals are pur-
posely shifted so that some prediction points are far from observations, and
vice-versa.

Observed responses in Rp, with p = 1, are Y(xi) = f(xi), i = 1, . . . , n
with n = 10. Prediction is made over a set of q = 100 points. One defines
X⋆ a discrete uniform random variable over all prediction points.

The purpose here is not to interpolate as precisely as possible the hidden
function f given few observations, but only to illustrate the differences be-
tween various possible interpolators, and the impact of requiring a prescribed
average values for predicted values.

The prescribed value for m ∈ Rp, with p = 1, is the scalar m = 1.5. The
covariances between Y(.) are modelled as prescribed in Remark 2, from a
single covariance function, using a squared exponential kernel. One could
also pick a kernel that reflects f periodicity. However, the purpose is not
to do the best possible prediction but, rather, to understand the impact of
various constraints.

Cov
[
Y(x),Y(x′)

]
= k(x, x′) = σ2 exp

(
−(x− x′)2

2θ2

)
.

We set σ2 = 0.6 mainly for the visibility of the confidence band in presented
figures, and θ = 1.2.

In the Figure 1, one exclusively considers the constraint of sum of weights,
which is assumed to be one: 1n

⊤α = 1. The predictor M(x) appears in red
thick line, together with confidence intervals built from the variance ∆(x).

The Panel 1a presents the result of ordinary Kriging exposed in Propo-
sition 2. As is well known, when the location x is large (and far from
observed locations), the ordinary Kriging mean tends to return to the es-
timated mean of the observations. The average value of the Kriging mean
E [M(X⋆) |Y] ≃ 1.12 is quite different from the value m = 1.5 (horizontal
dashed line), which is natural as this constraint has not been taken into
account yet.

The Panel 1b uses the Proposition 4 to add a supplementary affine
term to the linear combination, while preserving the sum of weights being
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Figure 1: Prediction with one constraint: weights summing to one. Left:
linear predictor, and right: affine predictor. In both cases, the average of
predicted value is distinct from the prescribed value m = 1.5 (horizontal
dashed line). Observations are black dots, the thin dotted blue line is the
underlying function. In the right panel, one applies the assumption in Re-
mark 4 with ρ = 0 and σZ = σ/10.

one. The affine term is derived from a random variable Z, and we choose
σZ = σ/10, so that this external information is assumed trustable (small
variance). Given Z = m, the consequence is that, far from observed
locations, the prediction tends to put all weight on this external source
of information, so that the prediction gets closer to m, as one can see
at the extreme right of this Figure 1b. This also makes the average
E [M(X⋆) |Y] ≃ 1.37 closer to m = 1.5, but the values of those two quanti-
ties remain distinct. Another consequence of the affine term is the reduction
of the confidence band width, as a new source of information has been added.

In Figure 2, one considers both the constraint of sum of weights, which
is assumed to be one: 1n

⊤α = 1, together with the prescribed average of
predicted values E [M(X⋆) |Y] = m. The predictor M(x) appears in thick
blue line, together with confidence intervals built from the variance ∆(x).

The Panel 2a presents the result of ordinary Kriging exposed in Proposi-
tion 3. The average value of the Kriging mean E [M(X⋆) |Y] = 1.5 is exactly
the prescribed one m = 1.5 (horizontal dashed line), which is natural as this
constraint has been taken into account during the joint optimization of all
α(x⋆j ), j = 1, . . . , q. However, the predictor is no more interpolating. This
is logical: if q = 1, one has one only prediction point x⋆1, the constraint
E [M(X⋆) |Y] = m becomes M(x⋆1) = m, which is distinct to an observation
Y(xn), even if x⋆1 gets closer to xn. Another example: if on the one hand
observation points and prediction points are the same, if on the other hand
m is not the average value of observations, then at least one prediction must
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Figure 2: Prediction with two constraints: weights summing to one, and
average of predicted values set to m = 1.5 (horizontal dashed line). The
average of predictions is equal to this value m = 1.5 in both cases. Obser-
vations are black dots, the thin dotted blue line is the underlying function.
In the right panel, one applies the assumption in Remark 4 with ρ = 0 and
σZ = σ/10.

be different from the associated observation to satisfy the constraint.
The Panel 2b uses Proposition 4 to add a supplementary affine term

to the previous linear predictor of Panel 2a, while preserving the sum of
weights being equal to one. The affine term is derived from a random
variable Z, and we choose as previously σZ = σ/10, so that this external
information is assumed trustable. As above, the average of predicted values
is exactly the prescribed one, by construction. Again, given Z = m, the
consequence is that, far from observed locations, the prediction tends to
put all weights on this external source of information, so that the prediction
gets closer to m, as one can see at the extreme right of this Figure 2b.
Another consequence of the affine term is the reduction of the confidence
band width, as a new source of information has been added. With the
prescribed average of predicted value, the predictor is not interpolating, but
adding the affine term helps the prediction to get closer to observations.

In this simple toy example, one can check numerically that each
prediction satisfies the constraints that it should. One can also clearly
visualize the impact of the specific constraint on average predicted values,
and the behavior of the predictor when adding an affine term.

The illustrations that have been presented in this subsection are available
in the supplementary material notebook Application1D.
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4.2 A multi-output time series example

In the previous example, we have illustrated the impact of constraints on
the prediction of a one-dimensional output. Hence, the joint aspect of the
estimation was not discussed. In the present example, one considers a multi-
output data, so as to illustrate the specificity of the single hyperparameter
estimation with multiple outputs. We choose one dimensional inputs in R
to facilitate the interpolation representation, but considering more general
inputs in Rd, d > 1, would be easy. It would only change the number of
hyperparameters to estimate, d instead of 1.

Imagine the following situation: a city wants to infer the history of some
pollutants concentration at a particular crossroad based on a small series
of measurements. This simple problem requires a model that takes time as
input and multiple concentrations as output. Obviously, the end purpose
would be to have a model with space and time as input but this is out of
this illustration’s framework.

Using the data air quality (see Vito, 2016), one tries to infer the concen-
tration of several pollutants, from only few values. Studied pollutants in the
data where chosen arbitrarily: CO, C6H6, NOx and NO2. The time range of
learning data has been selected so that visually there is not too much missing
data in the period (sensor stuck to an inferior bound or missing), it corre-
sponds to hourly measurements from 23/04/2004 18.00.00 to 28/04/2004
17.00.00. Missing values are tagged with -200 values in this data, they have
been all filtered before the study, as if they were not informative at all. The
challenge is to predict all hourly measurements in the selected period from
only n = 10 values.

The purpose here is not to give specific conclusions about the measured
pollution, but only to illustrate the capacity of the Joint Kriging model
to handle complex multi-valued data, with very few hyperparameters to
optimize. The idea is to create a joint model that would be as simple as
possible. Many refinements of the model could be suggested, but this is not
the purpose of this example.

Let us model the covariances between components of Y(.) using Re-
mark 2. The proposed method does not require the definition of each cross-
correlation between a pollutant concentration at one location and a different
pollutant concentration at a different location. It just takes one covariance
function k(x, x′) between an implicitly weighted sum of all targets. We
use the multiplication of two covariance kernels (hence it is positive semi-
definite): a periodic kernel with period of one day, and a kernel of the Matérn
3/2 family (see Chapter 4 and Equation (4.31) in Rasmussen et al., 2006).
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Figure 3: Optimization of the single correlation hyperparameter θ for the
four selected pollutants, data extracted from Air quality data set.

k(x, x′) = σ2 exp
(
− sin2(π|x− x′|)

)(
1 +

|x− x′|
θ

)
exp

(
−|x− x′|

θ

)
.

(27)
The parameterization has been simplified, e.g. factors

√
3 in Matérn

covariance expressions are not used here: they have the same effect as a
rescaling of the characteristic length-scale θ. Notice that despite the p
dimensional output where p = 4 is the number of studied pollutants, the
kernel k(x, x′) in Equation (27) depends only on two hyperparameters θ and
σ2. Since σ2 impacts the uncertainty measurement but not the prediction
itself, it is set to σ2 = 1.

Let us consider first one single constraint: the sum of weights should be
one. It corresponds to the Joint Ordinary Kriging predictor.

Figure 3 shows the optimization of the single length-scale hyperparame-
ter θ. As this study does not aim at comparing the prediction accuracy with
other methods, we did not use a separate test sample, but only a valida-
tion sample, keeping in mind that it may lead to an overfit. The validation
data used for this single hyperparameter estimation is set to all hourly mea-
surements in the selected period. For the hyperparameter optimization, a
specific error has been chosen, where one optimizes the worst standardized
mean absolute error over all p = 4 series: the errors have been standardized
in order to make them unitless and scale invariant. The best estimation is
θ̂ ≃ 1.4, it is kept for all other illustrations of the subsection.

The optimization here depends quite heavily on the chosen observation
locations, so that in practice, an averaged error on several training and
validation data would probably be more stable: in many situations on
real data, the error function is monotonic, either increasing and leading
to extremely small optimized hyperparameter θ (the prediction then tends
to return quickly to an average value), or either decreasing, leading to a
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Figure 4: Joint Kriging interpolation: using the joint ordinary model with
weights summing to one, with very few data points (black dots) and a single
optimized length-scale hyperparameter obtained in Figure 3. Upper left:
CO, upper right: C6H6, lower left: NOx, lower right: NO2. Predictions are
in thick solid lines, true values are in thin black solid lines.

very large value of θ (the prediction then tends to smooth data a lot).
Classical co-Kriging strategies that define a large number of cross-covariance
hyperparameters would probably worsen the situation, highlighting the
utility of a small number of hyperparameters.

Figure 4 presents the simultaneous predictions of the four pollutant con-
centrations with Joint Kriging, the only constraint being that weights sum to
1. Confidence band associated with a given pollutant is represented propor-
tional to the standard deviation of this pollutant’s concentration as detailed
in Proposition 6. Pollutant concentrations have very different orders of mag-
nitude but when applying Proposition 6, the obtained confidence bands looks
quite comparable between series, as desired.

With very few hyperparameters and with a rough covariance model,
the result has a lot of room for improvement. Nevertheless, despite the
single model hyperparameter θ, and considering the limited number of
observations n = 10, the predictions of the p = 4 concentrations seem quite
reasonable. By construction each prediction is a combination of observed
values of the considered pollutant, with weights summing to one. No other
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Figure 5: Adverse scenarios: interpolation using the joint affine model with
two constraints (weights summing to one, prescribed average predictions),
with very few data points (black dots) and a single optimized length-scale
hyperparameter obtained in Figure 3. Upper left: CO, upper right: C6H6,
lower left: NOx, lower right: NO2. Predictions are in thick solid lines, true
values are in thin black solid lines. Left panels are adverse scenarios where
the average of predictions (thick dark green horizontal dashed line) is set to
130% of the true average (thin black horizontal dashed line), right panels are
scenarios where the average of predictions is set to 100% of the true average.

constraint is added on Figure 4, so that the average of predictions does not
correspond at all to a specific prescribed value.

Figure 5 presents the simultaneous predictions of the four pollutant con-
centrations with Joint Kriging on which both constraints on the weights and
on the predicted values are imposed using the affine model of Remark 4.
Left panels show an adverse scenarios where the average of predictions is
set to 130% of the true average, right panels are normal scenarios where the
average of predictions is set to 100% of the true average. Using this setting,
the interpolation property is lost, as seen in the previous example of Sec-
tion 4.1, but the n = 10 observations still have a large influence, and the
global shape of the prediction is preserved. By construction, the average of
predicted values (thick solid line) is exactly the prescribed one (horizontal
thick dashed dark green line).
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Considering this single hyperparameter model, with a basic covariance
model, the results also seem reasonable when using two constraints. In the
left panels, the average of predicted values is exactly set to 30% more than
the observed average of pollutant concentration, which is a lot. However the
visual differences between true and predicted sequences looks surprisingly
moderate, even in this adverse scenario: despite satisfying all constraints,
the model still offers a good fit with observations.

The goal of this numerical experiment is to demonstrate the Joint Krig-
ing model’s ability to handle complex multi-valued data. It also illustrates
the advantage of having a limited number of hyperparameters. One sees here
that with a quite simple model, in a difficult problem (predicting four quite
erratic time series from 10 observations), the model performs reasonably
well. Furthermore, it allows for introducing some constraints, like setting
an adverse scenario of 30% increase of the pollutant concentration.

The illustrations that have been presented in this subsection are available
in the supplementary material notebook ApplicationAirQuality.

4.3 A constrained classification example

We present in this subsection the specific case of multi-dimensional outputs
derived from a classification problem. As presented in section 3, Joint Krig-
ing can be implemented for fuzzy classification. Different modalities of a
classification variable are regarded as multiple output variables with values
in [0, 1].

Imagine the case of an event that may occur at a given location of a
territory, with a measurable intensity. We are interested in classifying the
intensity of this event, if it occurs, into multiple classes, depending on some
thresholds. In the following, this event is an earthquake and its intensity is
its Richter magnitude.

The Quake data set given in Simonoff (1996), visualized in Figure 6,
describes 2 178 earthquakes with their latitude, longitude, focal depth and
magnitude. A given location x has coordinates latitude, longitude and
focal depth. For a single observation at location x, the target Y(x) =
(Y1(x), Y2(x))

⊤ is equal to (1, 0)⊤ if an earthquake is occurring here with
a magnitude above the data set average magnitude, or (0, 1)⊤ otherwise. If
a location x is observed repeatedly, the membership degrees at x are av-
eraged out over observations. It makes sense to impose that membership
degrees are summing to one, so that 1p

⊤Y(x) = 1. Extensions with more
thresholds would be easy to conduct, see Figure 10, we keep here p = 2
for comparison to existing benchmarks. The binarized data is available at
www.openml.org/search?type=data&id=772, on openML website (see Bis-
chl et al., 2021).
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Figure 6: Earthquakes observations. An earthquake is a point with coor-
dinates latitude, longitude and focal depth (given by the color). Triangles
represent earthquakes which magnitude is above average. Circles represent
earthquakes which magnitude is below average.

The purpose here is to compare the performance of Joint Kriging with
a set of 69 other models’ performances. The study available at www.
openml.org/search?type=task&id=4516 compares models, called flows in
openML, performing 10 times a 10-fold cross-validation and computing the
predictive accuracy as performance indicator (see tab Analysis, measure
predictive_accuracy, the user must click on “fetch next 100 runs” several
times in order to see all benchmarked models).

Remember from Remark 2 that although we are constructing a bivariate
model, we need a single covariance kernel. The latter should be periodic
with respect to the latitude and longitude, not with respect to focal depth.
A simple way to define an admissible kernel is to multiply 3 kernels associated
with the 3 dimensions (see Williams and Rasmussen, 2006):

k(x, x′) = σ2 exp

(
−2

sin2((x1 − x′1)/2)

θ21
− 2

sin2((x2 − x′2)/2)

θ22
− 2

(x3 − x′3)
2

θ23

)
The hyperparameters estimation has been treated separately on other

train/test splits to avoid overfitting the data. The resulting values for θ are
2.3 for latitude, 0.9 for longitude and 196.8 for focal depth.

In order to visualize the algorithm’s behaviour, we predict on a grid of
latitude, longitude and focal depth values. In addition to imposing the sum
of membership degrees to be 1, we set the output mean expectation to be
the same as in the data set. Predictions on a grid of latitude, longitude
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and focal depth are presented on Figure 7. One can observe that maps
representing membership degrees (first two rows) can be deduced from
each other by y = 1 − x. The third row shows a segmentation of the
plane into areas where membership degree for “P: magnitude is greater
than average” is greater than 0.5, and areas where the converse is true.
This segmentation depends on the focal depth: small focal depth on the
top row (21m, first quartile) and greater one on the bottom row (68m,
third quartile). For instance, looking at the bottom left corner of the map,
which is around the Fiji archipelago, one can predict that earthquakes
with small focal depth are more likely to be of large magnitude than
deep earthquakes. However the converse is true in the south Atlantic
area (bottom center part of the map). Moreover, the predictor achieves a
circular coherence along longitude due to the periodicity of covariance. Peri-
odicity along latitude is more difficult to observe because is covers only 180◦.

Performances are evaluated using the Predictive Accuracy: it is the
percentage of instances that are classified correctly. It is measured on bina-
rized predicted membership degrees, on a 10 times 10-fold cross-validation,
as in the OpenML benchmark, in order to get comparable results. Prior
to that, the hyperparameters optimization has been treated separately on
other train/test splits in order not to overfit the data.

Figure 8 presents from top to bottom: two results found in openML
i.e. the best recorded model which is kernel logistic regression with RBFK
kernel and Random Forest for reference, below are presented results of Joint
Kriging models i.e. simple model without constraint, with weights summing
to 1, with constraint on the prediction and weights summing to 1, affine with
weights summing to 1 and affine with constrained output.

For the 10 runs, each diagram shows the Predictive Accuracy of each
run (colored points), the minimum, first quartile, median, 3rd quartile and
maximum, as well as the mean value materialized by a cross. Although the
runs’ performances stay in the range of those observed for Random Forest and
Kernel Logistic Regression, the average values obtained with Joint Kriging
are greater: the average is 0.556 ± 0.018 for the best model in OpenML
benchmark, and 0.5661 ± 0.0038 for the best Joint Kriging model. The
latter was even slightly greater, 0.5669, during hyperparameter optimisation,
due to a slight overfit that has been reduced when using different train/test
splits. Benchmark being based on this average value, it means that Joint
Kriging has a better performance than the 69 models tested in the OpenML
benchmark.

One can expect the multiplication of constraints to have an adverse effect
on performance as a constrained optimization has less degree of freedom
than an unconstrained one. On the other hand, injecting useful information
through constraints may improve the performance. Figure 8 shows that
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overall, the performance is improved, especially when adding the constraint
on the output. The whisker plots show that the Joint Kriging performance
is less dispersed than that of presented OpenML competitors. This is partly
due to the fact that lengthscales have been optimized separately, so that the
dispersion of their estimators is not taken into account: the variability rely
on different train/test splitting. This prior optimisation slightly reduces
the average measured performance of Joint Kriging models, due to different
train/test split, but it also reduces its dispersion.
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Figure 7: Joint Kriging with 2 constraints, earthquakes magnitude prediction
into 2 classes. From top to bottom: membership degree of “P: magnitude
is above average”, membership degree of “N: magnitude is below average”,
binarized prediction (1 if membership degree of P is greater than 0.5). Left:
focal depth of 21m. Right: focal depth of 68m.

In Figure 9, one uses the affine version of Joint Kriging with two con-
straints, weights summing to one and prescribed average prediction. In left
panels, an adverse scenario forces the average predicted membership degrees
of the first class (large magnitude events) to be equal to 65%. In the right
panels, this percentage is set to the observed percentage of large magnitude
events, 55%. This illustrates the usefulness of the constraint for adverse
modeling.

In order to compare the results with existing benchmarks, we studied
above the p = 2 binary classification problem. But the method can handle
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Figure 8: Distribution of performances for 10 runs of two OpenML models
which are kernel logistic regression (best model in benchmark) and Random
Forest, and the 5 different types of Joint Kriging model . The whisker plots
give minimum, first quartile, median, third quartile and maximum. The dark
red cross indicates the average predictive accuracy, the higher the better.
Average is 0.566 1 ± 0.003 8 for the best Joint Kriging model, 0.556 ± 0.018
for the best model in OpenML benchmark.

more classes as well. As an example, in Figure 10, we give a prediction
for p = 4 classes. Observations have been converted into four classes, us-
ing three Richter magnitude thresholds 5.85, 5.95, 6.15. Specific thresholds
have been chosen for this illustration, in order to get enough observations in
each classes (at least 17% observations), but a seismology study might focus
on other thresholds. Once again, the predictor achieves a circular coher-
ence along longitude, and one can observe complex patterns that would be
difficult to catch with classification trees. The presented classification task
was constructed from indicators deriving from an underlying real value, the
Richter magnitude, and from thresholds, thus creating ordinal classes. But
the prediction can be derived as well for observations of non ordinal class
labels, without any underlying process or thresholds.
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Figure 9: Adverse scenario: predicted membership degrees of earthquakes
magnitude using Joint Kriging with two constraints. Top panels: adverse
scenario, first class output average constrained to be 65%. Bottom panels:
regular scenario, output average constrained to 55.5%. Left: focal depth of
21m. Right: focal depth of 68m.
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Figure 10: Affine Joint Kriging with 2 constraints, earthquakes magnitude
prediction into 4 classes. From top to bottom: membership degrees of “1:
magnitude is smaller than 5.85”, “2: magnitude is between 5.85 and 5.95”,
“3: magnitude is between 5.95 and 6.15”, “4: magnitude is greater than 6.15”
and class of greatest membership degree in the 5th row colored by increasing
magnitude from dark to light blue. From left to right: focal depth of 21m,
focal depth of 68m.
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In this classification example, we used a direct implementation of the
model with a single covariance family. Nevertheless the average performance
is the best one among the whole OpenML benchmark, fine tuning of the
model would surely lead to performance improvements. The illustration
above aims at demonstrating that with very basic assumptions, the method
is competitive with an open benchmark that has numerous competitors,
as shown in Figure 8. It also aims at showing that it can model adverse
scenarios, as in Figure 9, or multiple classes, as in Figure 10.

The illustrations that have been presented in this subsection are available
in the supplementary material ApplicationClassificationQuake.

5 Conclusion

A Joint Kriging model on multiple outputs has been presented, where at each
prediction location, the same weights apply to all outputs. This simplifica-
tion allows for an easy covariance modelling, with very few hyperparameters
even though the number of outputs p is large. Still, the model benefits from
Kriging advantages: interpretability, ability to interpolate data, uncertainty
measurement associated to each prediction, specific covariance modelling.
As any simplification, the model can surely be improved and may have some
limitations compared to heavily parameterized models: e.g. coKriging with
many cross-covariance functions might be more flexible for dealing with time
series with different regularities, or models with parameterized distortions of
locations might be convenient for dealing with non-stationarities. However,
the limited number of hyperparameters and the simplicity of their estima-
tion is an asset of the model, while allowing specific model characteristics as
periodicity. Furthermore the model is not limited to Gaussian Processes as
it only relies on the existence of moments of order one and two.

An original constraint on predicted values was also introduced. It ap-
pears to be useful for using external information, for adverse modelling, for
homogenizing results or for considering fairness constraints. To handle this
constraint, all weights of predicted points need to be computed at the same
time, unlike usual Kriging techniques. But the resulting predictor itself is
quite simple to derive since it is given by a closed formula. Some extensions
using an affine term were also proposed, allowing to account for an external
information, and providing more control on the behavior of the predictor far
from observations.

Ultimately, an application to classification was developed. Applying a
multi-outputs Kriging model on classification is feasible through the predic-
tion of membership degrees. Even without constraints, it is in itself inter-
esting: it allows for interpretability, modelling uncertainty estimation and
interpolating data. Using Joint Kriging with the proposed constraints eas-
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ily ensures that membership degrees sum to one, and allows for prescribed
percentages of each predicted class. The simplified covariance model eases a
lot the hyperparameters estimation. At the same time, with Joint Kriging,
classification tasks benefit from the diversity of covariance kernels includ-
ing periodicity. The resulting classification performs especially well in the
investigated practical case: in the quake numerical example, the model com-
petes with the best provided approaches on an open data set with numerous
competitors.

Multiple extensions to the model can be imagined. For instance, the
model with constrained predicted values does not guarantee continuous in-
terpolation so that further work may fix this problem. A specific estimation
procedure of the underlying joint covariance structure could also be of inter-
est. Moreover, once applied to classification, membership degrees summing
to one do not imply the combinations to be convex: some weights can still
be negative or greater than 1. Ensuring the combinations to be convex could
also be an improvement.
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A Proofs

Proof of Proposition 1 Simple Joint Kriging weights. The proof is very sim-
ilar to the geo-statistical proof of Simple Kriging model. It does not rely on
any Gaussian assumption, but just on existing moments of order two. Recall
that W is a symmetrical positive definite matrix, so that W = W⊤. Let us
calculate the gradient of ∆(x⋆) with respect to α(x⋆):

∇α(x⋆) E
[
∥M(x⋆)−Y(x⋆)∥2W

]
= ∇α(x⋆) E

[
(M(x⋆)−Y(x⋆))⊤W (M(x⋆)−Y(x⋆))

]
= ∇α(x⋆) E

[
(Yα(x⋆)−Y(x⋆))⊤W (Yα(x⋆)−Y(x⋆))

]
= ∇α(x⋆) E

[
α(x⋆)⊤Y⊤WYα(x⋆)− 2α(x⋆)⊤Y⊤WY(x⋆) +Y(x⋆)⊤WY(x⋆)

]
= 2E

[
Y⊤WY

]
α(x⋆)− 2E

[
Y⊤WY(x⋆)

]
.

Thus,
∇α(x⋆)∆(x∗) = 2Kα(x⋆)− 2h(x⋆) . (28)

Where K := E
[
Y⊤WY

]
is a n× n matrix and h(x⋆) := E

[
Y⊤WY(x⋆)

]
is a

n× 1 vector, thus leading to a n× 1 gradient. Hence α(x⋆) = K−1h(x⋆) in
Equation (4) when the gradient is zero. The matrix expression A = K−1H of
Equation (5) is obtained by binding column vectors of Equation (4), for all
prediction locations. Remark that, under assumption that E [Y(x)] = 0p for
all x ∈ X , it is clear that E [M(x⋆)] = E [Y(x⋆)] = 0, so that the predictor
is unbiased.

In that case, the (i, j) component of the matrix Y⊤Y is

(E
[
Y⊤Y

]
)ij =

n∑
k=1

E [Yi(xk)Yj(xk)] =
n∑

k=1

Cov [Yi(xk), Yj(xk)] .

Hence Y⊤Y is a symmetric positive semi-definite matrix. The same holds
for K: writing K =

(
W1/2Y

)⊤(W1/2Y
)
, it is clear that for any vector v,

v⊤Kv = ṽ⊤ṽ ≥ 0, where the vector ṽ := W1/2Yv. Thus K is a symmetric
semi-definite positive matrix, i.e. a covariance matrix.

Proof of Proposition 2 Ordinary Joint Kriging weights. Under the con-
straint (6), and using a Lagrange multiplier λ ∈ R, the loss to minimize
is

∆1(x
⋆) := ∆(x⋆)− 2λ(x⋆)

(
α(x⋆)⊤1n − 1

)
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Using Equation (28), the gradient of ∆1(x
⋆) with respect to α(x⋆) is

∇α(x⋆)∆1(x
⋆) = 2E

[
Y⊤WY

]
α(x⋆)− 2E

[
Y⊤WY(x⋆)

]
− 2λ(x⋆)1n (29)

Setting this ∇α(x⋆)∆1(x
⋆) to be zero for all of its p components, we get

E
[
Y⊤WY

]
α(x⋆) = E

[
Y⊤WY(x⋆)

]
+ λ(x⋆)1n .

and finally,
Kα(x⋆) = h(x⋆) + λ(x⋆)1n .

Once α(x⋆) is written as a function of λ(x⋆), one easily gets the value of
λ(x⋆) by setting 1n

⊤α(x⋆) = 1. Hence the result. Matrix expressions are
obtained by binding column vectors for all x⋆ in {x⋆1, . . . , x⋆q}

Proof of Remark 1 Covariance matrices. Recall that K = E
[
Y⊤WY

]
and

h(x⋆) = E
[
Y⊤WY(x⋆)

]
. Under the chosen mean assumption, both

E [Y(x⋆)] = µ and E [Y] = µ1n
⊤. Thus, under the given constraint

α(x⋆)⊤1n = 1, or when µ = 0p,

E
[
Y⊤

]
WE [Y]α(x⋆) = E

[
Y⊤

]
WE [Y(x⋆)] = 1nµ

⊤Wµ .

Hence the gradient of ∆(x⋆) in Equation (28) also writes

∇α(x⋆)∆(x∗) = 2Kα(x⋆)− 2h(x⋆) = 2K̃α(x⋆)− 2h̃(x⋆) .

As a consequence, the gradient of ∆1(x
⋆) in Equation (29) is unchanged

when replacing both (K, h) by (K̃, h̃). Thus, one can freely replace both
(K, h) by (K̃, h̃) in the rest of the proof of Proposition 2, without changing
the result.

Proof of Proposition 3 Joint Kriging weights under predicted values constraint.
Under both constraints, the quantity to minimize is

∆2(x
⋆) := ∆(x⋆)− 2λ(x⋆)

(
α(x⋆)⊤1n − 1

)
− 2λ′⊤ (YAπ −m) ,

where λ′ is a p× 1 vector of Lagrange multipliers. The gradient of the last
term, with respect to α(x⋆) is

∇α(x⋆)2λ
′⊤ (E [M(X⋆) |Y]−m)

= ∇α(x⋆)2λ
′⊤ (P [X⋆ = x⋆] E [M(x⋆) |Y] + P [X⋆ ̸= x⋆] E [M(X⋆) |X⋆ ̸= x⋆,Y]−m)

= ∇α(x⋆)2λ
′⊤ (P [X⋆ = x⋆] E [M(x⋆) |Y]−m) + 0

= ∇α(x⋆)2λ
′⊤ (P [X⋆ = x⋆] E [Yα(x⋆)−m) |Y]

= ∇α(x⋆)2λ
′⊤ (πx⋆Yα(x⋆)−m)

= 2πx⋆Y⊤λ′
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Hence using the gradient of ∆(x⋆) in Equation (28), one gets

∇α(x⋆)∆2(x
⋆) = 2Kα(x⋆)− 2h(x⋆)− 2λ(x⋆)1n − 2πx⋆Y⊤λ′ (30)

Setting the gradient to be equal to a n× 1 vector of zeros, we get for all
prediction locations x⋆ ∈ {x⋆1, . . . , x⋆q}

Kα(x⋆) = h(x⋆) + λ(x⋆)1n + πx⋆Y⊤λ′

1n
⊤α(x⋆) = 1

YAπ = m

As optimal weights are gathered in the n× q matrix A :=
[
α(x⋆1), ...,α(x⋆q)

]
,

if one defines the n × q matrix H :=
[
h(x⋆1), ...,h(x

⋆
q)
]
, then the previous

system can be written, by binding columns for all x⋆ ∈ {x⋆1, . . . , x⋆q}:
KA = H+ 1nλ

⊤ + Y⊤λ′π⊤

1n
⊤A = 1q

⊤

YAπ = m

with q × 1 Lagrange multiplier λ, and p× 1 Lagrange multiplier λ′.
If K is invertible, then the first equation writes

A = K−1H+K−11nλ
⊤ +K−1Y⊤λ′π⊤

Injecting this value of A into the first constraint 1n
⊤A = 1q

⊤, denoting
γ := π⊤π ∈ R and δ := 1n

⊤K−11n ∈ R one gets:

1q
⊤ = 1n

⊤K−1H+ 1n
⊤K−11nλ

⊤ + 1n
⊤K−1Y⊤λ′π⊤

1q
⊤π = 1n

⊤K−1Hπ + 1n
⊤K−11nλ

⊤π + 1n
⊤K−1Y⊤λ′π⊤π

1 = 1n
⊤K−1Hπ + δλ⊤π + γ1n

⊤K−1Y⊤λ′

δλ⊤π = 1− 1n
⊤K−1Hπ − γ1n

⊤K−1Y⊤λ′

Now injecting the value of A into the second constraint YAπ = m, and using
the last equation, denoting the p× 1 vector u := YK−11n, one gets

m = YK−1Hπ + YK−11nλ
⊤π + YK−1Y⊤λ′π⊤π

= YK−1Hπ + YK−11n
1

δ

(
1− 1n

⊤K−1Hπ − γ1n
⊤K−1Y⊤λ′

)
+ γYK−1Y⊤λ′

= YK−1Hπ +
1

δ
u
(
1− 1n

⊤K−1Hπ
)
− γ

1

δ
uu⊤λ′ + γYK−1Y⊤λ′

and finally, the vector λ′ must satisfies

γ

(
1

δ
uu⊤ − YK−1Y⊤

)
λ′ = YK−1Hπ +

1

δ
u
(
1− 1n

⊤K−1Hπ
)
−m .
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Hence, provided the matrix factor is invertible,

λ′ = γ−1

(
1

δ
uu⊤ − YK−1Y⊤

)−1(
YK−1Hπ +

1

δ
u
(
1− 1n

⊤K−1Hπ
)
−m

)
Once λ′ computed, one gets for λ

1q
⊤ = 1n

⊤K−1H+ δλ⊤ + 1n
⊤K−1Y⊤λ′π⊤

δλ⊤ = −1n
⊤K−1H− 1n

⊤K−1Y⊤λ′π⊤ + 1q
⊤

And finally, using u = YK−11n,

λ = δ−1
(
1q −H⊤K−11n − πλ′⊤u

)

Proof of Remark 3 Covariance matrices with two constraints. The proof is
similar to the one of Remark 1 and uses the fact that, under chosen as-
sumptions and for any prediction point x⋆,

Kα(x⋆)− h(x⋆) = K̃α(x⋆)− h̃(x⋆) .

Hence the gradient of ∆2(x
⋆) in Equation (30) is unchanged when replacing

K and h(x⋆) by K̃ and h̃(x⋆), and all further expressions follows the same
way in the proof of Proposition 3.

Proof of Proposition 5 Joint Kriging variance with arbitrary weights. The
first equation is a simple vector rewriting of Equation (1). For the prediction
error, one simply write, whatever the weights α(x⋆),

∆(x⋆) = E
[
∥M(x⋆)−Y(x⋆)∥2W

]
= E

[
(M(x⋆)−Y(x⋆))⊤W (M(x⋆)−Y(x⋆))

]
= E

[
(Yα(x⋆)−Y(x⋆))⊤W (Yα(x⋆)−Y(x⋆))

]
= E

[
α(x⋆)⊤Y⊤WYα(x⋆)− 2α(x⋆)⊤Y⊤WY(x⋆) +Y(x⋆)⊤WY(x⋆)

]
.

Hence the result.
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Proof of Remark 5 Covariance matrices in Joint Kriging mean and variance.
The case where µ = 0p is straightforward, as in that case K̃ = K,
h̃(x⋆) = h(x⋆) and ṽ(x⋆) = v(x⋆), whatever the weights α(x⋆). It remains
the case where weights are summing to one. As in previous remarks, under
chosen assumptions one gets

Kα(x⋆)− h(x⋆) = K̃α(x⋆)− h̃(x⋆) ,

and moreover one can show that

−α(x⋆)⊤h(x⋆) + v(x⋆) = −α(x⋆)⊤h̃(x⋆) + ṽ(x⋆) .

Hence the result.

Proof of Proposition 6 Variance sharing. The difficulty here is to derive
the cross-covariance kij(x, x

′) = Cov [Yi(x), Yj(x
′)] from the expression of

k(x, x′) that is detailed in Remark 2

k(x, x′) := E
[
Y(x)⊤WY(x′)

]
− E

[
Y(x)⊤

]
WE

[
Y(x′)

]
Denoting Ỹ(x) := W1/2Y(x), x ∈ X , this scalar covariance writes

k(x, x′) = E
[
Ỹ(x)

⊤
Ỹ(x′)

]
− E

[
Ỹ(x)

⊤]
E
[
Ỹ(x′)

]
(31)

One would like to compute the p × p cross-covariance matrix between
Y(x) and Y(x′), using Y(x) = W−1/2Ỹ(x), x ∈ X :

KY (x, x
′) := E

[
Y(x)Y(x′)

⊤
]
− E [Y(x)] E

[
Y(x′)

⊤
]

= W−1/2
(
E
[
Ỹ(x)Ỹ(x′)

⊤]
− E

[
Ỹ(x)

]
E
[
Ỹ(x′)

⊤])
W−1/2⊤

= W−1/2K
Ỹ
(x, x′)W−1/2⊤ (32)

where one defines K
Ỹ
(x, x′) := E

[
Ỹ(x)Ỹ(x′)

⊤]
− E

[
Ỹ(x)

]
E
[
Ỹ(x′)

⊤]
.

Now assume that:

Cov
[
Ỹi(x), Ỹj(x

′)
]
= 0 whenever i ̸= j, x, x′ ∈ X .

This implies that W1/2 is proportional to a whitening transformation, so
that all components of Ỹ1(x), . . . , Ỹp(x) are uncorrelated.

Assume furthermore that:

Cov
[
Ỹ1(x), Ỹ1(x

′)
]
= . . . = Cov

[
Ỹp(x), Ỹp(x

′)
]
, x, x′ ∈ X .
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Then one easily sees from Equation (31) that the scalar k(x, x′) satisfies

k(x, x′) =

p∑
i=1

Cov
[
Ỹi(x), Ỹi(x

′)
]
= pCov

[
Ỹj(x), Ỹj(x

′)
]
, j = 1, . . . , p

Hence under these assumptions, denoting Ip the p× p identity matrix,

K
Ỹ
(x, x′) =

1

p
k(x, x′)Ip .

As a consequence, from Equation (32),

KY (x, x
′) := E

[
Y(x)Y(x′)

⊤
]
− E [Y(x)] E

[
Y(x′)

⊤
]
=

1

p
k(x, x′)W−1 (33)

Cov
[
Yi(x), Yj(x

′)
]
=

1

p
k(x, x′)(W−1)ij (34)

Now from this, one can derive the local cross errors

δij(x, x
′) := E

[
(Mi(x)− Yi(x))

(
Mj(x

′)− Yj(x
′)
)]

Let us denote by Yi. the ith row vector of the matrix Y. We get

δij(x, x
′) = E

[
(Yi.α(x)− Yi(x))

(
Yj.α(x′)− Yj(x

′)
)]

= α(x)⊤ E
[
Yi.

⊤Yj.

]
α(x′)−α(x)⊤ E

[
Yi.

⊤Yj(x
′)
]

−E
[
Yi(x)

⊤Yj.

]
α(x′) + E

[
Yi(x)Yj(x

′)
]

Now assume E [Y(x)] = µ for all x ∈ X . Then from Equation (34),

E
[
Yi(x)

⊤Yj(x
′)
]
− µiµj =

1

p
k(x, x′)(W−1)ij

which implies, using the matrix K̃ defined in Equation (10):

E
[
Yi.

⊤Yj.

]
−µiµj1n1n

⊤ =
1

p
(W−1)ijK̃ and E

[
Yi.

⊤Yj(x
′)
]
−µiµj1n =

1

p
(W−1)ijh̃(x

′) .

Furthermore, assume that either weights sum to one or µ = 0p, then terms
in µiµj vanish and one gets:

δij(x, x
′) =

1

p
(W−1)ij

(
α(x)⊤K̃α(x′)−α(x)⊤h̃(x′)− h̃⊤(x)α(x′) + k(x, x′)

)
.

In particular from Proposition 5, using Remark 2 and Remark 5,

δi(x
⋆) =

1

p
(W−1)ii∆(x⋆) . (35)
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From Equation (33), when k(x, x) = σ2 for all x, one can write

KY (x, x) =
1

p
σ2W−1 .

Using σ2
i := Var [Yi(x)], assumed to be constant over x,

1

p
(W−1)ii =

(KY (x, x))ii
σ2

=
σ2
i

σ2
.

Hence from Equation (35),

δi(x
⋆) =

σ2
i

σ2
∆(x⋆) .

Proof of Remark 6 Constraints impact. The result is a very straightforward
rewriting and interpretation of constraints (6) and (12). From YAπ = m
one derives 1p

⊤m = 1p
⊤YAπ = 1n

⊤Aπ = 1q
⊤π = 1, hence the natural

constraint on prescribed average membership degrees in m, that must sum
to one.
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B Notations
locations
X set of locations (inputs/design points).
n, q number of observed locations, of prediction locations.
x any location. x1, . . . , xn are all observed locations.
x⋆ any prediction location. x⋆1, . . . , x

⋆
q are all prediction locations.

X⋆ a random variable over prediction locations.
π = (πx⋆

1
, . . . , πx⋆

q
) the q × 1 distribution of X⋆ over prediction locations.

γ = π⊤π an intermediate real value used in calculations.

targets
p number of targets (i.e. number of outputs).
Y(x) the p× 1 vector of targets at location x.
µ = E [Y(x)] the p× 1 mean of Y(x), when constant over x.
Y = [Y(x1), . . . ,Y(xn)] all the p× n values of observed targets.
Y⋆ =

[
Y(x⋆1), . . . ,Y(x⋆q)

]
all p× q unknown targets at prediction locations.

prediction
M(x⋆) a p× 1 predictor of Y(x)
M =

[
M(x⋆1), . . . ,M(x⋆q)

]
the p× q matrix of all predictions.

α(x⋆) the n× 1 linear weights for the prediction in x⋆.
A =

[
(α(x⋆1), . . . ,α(x⋆q)

]
the n× q matrix of weights for all predictions.

m a given constant p× 1 vector of prescribed mean predicted values.
∆(x⋆),∆1(x

⋆),∆2(x
⋆) losses to be minimized for finding M(x⋆).

λ a q × 1 vector of Lagrange multipliers (relative to sum of weights)
λ′ a p× 1 vector of Lagrange multipliers (relative to predicted values)
u = YK−11n an intermediate p× 1 vector in calculations.
Z an additional p× 1 factor for affine predictions.

covariances
W a given symmetric positive definite matrix for computing norms.
h(x⋆) = E

[
Y⊤WY(x⋆)

]
a n× 1 covariance vector.

H = (h(x⋆1, . . . ,h(x
⋆
q))) a n× q covariance matrix.

K = E
[
Y⊤WY

]
a n× n covariance matrix.

K̃, h̃(x⋆), H̃ other covariances using centred expressions.
δ = 1n

⊤K−11n an intermediate real value in calculations.
P additional n× 1 covariance vector between Z and Y(xi)
Q additional q × 1 covariance vector between Z and Y(x⋆j )

miscellaneous
v a generic vector for defining norm or checking psd characteristic.
1n,1p,1q a vector of ones of size n, p, q respectively.
0n,0p,0q a vector of zeros of size n, p, q respectively.

43



References

Agarwal, G., Sun, Y., and Wang, H. J. (2021). Copula-based multiple indi-
cator kriging for non-gaussian random fields. Spatial Statistics, 44:100524.

Bachoc, F. (2013). Cross validation and maximum likelihood estimations
of hyper-parameters of gaussian processes with model misspecification.
Computational Statistics & Data Analysis, 66:55–69.

Banerjee, A., Dunson, D. B., and Tokdar, S. T. (2013). Efficient gaussian
process regression for large datasets. Biometrika, 100(1):75–89.

Benatti, K. A., Pedroso, L. G., and Ribeiro, A. A. (2022). Theoretical
analysis of classic and capacity constrained fuzzy clustering. Information
Sciences, 616:127–140.

Bischl, B., Casalicchio, G., Feurer, M., Gijsbers, P., Hutter, F., Lang, M.,
Mantovani, R. G., van Rijn, J. N., and Vanschoren, J. (2021). OpenML
benchmarking suites. In Thirty-fifth Conference on Neural Information
Processing Systems Datasets and Benchmarks Track (Round 2).

Bradley, P. S., Bennett, K. P., and Demiriz, A. (2000). Constrained k-means
clustering. Microsoft Research, Redmond, 20(0):0.

Chiang, J.-L., Liou, J.-J., Wei, C., and Cheng, K.-S. (2013). A feature-space
indicator kriging approach for remote sensing image classification. IEEE
transactions on geoscience and remote sensing, 52(7):4046–4055.

Cressie, N. (1988). Spatial prediction and ordinary kriging. Mathematical
geology, 20:405–421.

Cressie, N. and Johannesson, G. (2008). Fixed Rank Kriging for Very Large
Spatial Data Sets. Journal of the Royal Statistical Society Series B: Sta-
tistical Methodology, 70(1):209–226.

Dahl, A. and Bonilla, E. V. (2019). Grouped gaussian processes for solar
power prediction. Machine Learning, 108(8-9):1287–1306.

Furrer, R. and Genton, M. G. (2011). Aggregation-cokriging for highly mul-
tivariate spatial data. Biometrika, 98(3):615–631.

Ganganath, N., Cheng, C.-T., and Tse, C. K. (2014). Data clustering with
cluster size constraints using a modified k-means algorithm. In 2014 Inter-
national Conference on Cyber-Enabled Distributed Computing and Knowl-
edge Discovery, pages 158–161.

44



Goovaerts, P. (2009). Auto-ik: A 2d indicator kriging program for the au-
tomated non-parametric modeling of local uncertainty in earth sciences.
Computers & Geosciences, 35(6):1255–1270.

Gordon, A. (1996). A survey of constrained classification. Computational
Statistics & Data Analysis, 21(1):17–29.

Grossouvre, M. and Rullière, D. (2023). Supplementary material to: A Joint
Kriging Model with Application to Constrained Classification. https:
//gitlab.emse.fr/marc.grossouvre/jointkrigingsupplementary/.

Höppner, F. and Klawonn, F. (2008). Clustering with size constraints. In
Jain, L. C., Sato-Ilic, M., Virvou, M., Tsihrintzis, G. A., Balas, V. E.,
and Abeynayake, C., editors, Computational Intelligence Paradigms: In-
novative Applications, pages 167–180. Springer Berlin Heidelberg, Berlin,
Heidelberg.

Journel, A. G. (1983). Nonparametric estimation of spatial distribu-
tions. Journal of the International Association for Mathematical Geology,
15:445–468.

Meer, F. V. D. (1996). Classification of remotely-sensed imagery using an
indicator kriging approach: application to the problem of calcite-dolomite
mineral mapping. International Journal of Remote Sensing, 17(6):1233–
1249.

Panos, A., Dellaportas, P., and Titsias, M. K. (2021). Large scale multi-label
learning using gaussian processes. Machine Learning, 110:965–987.

Rasmussen, C. and Ghahramani, Z. (2000). Occam’s razor. Advances in
neural information processing systems, 13.

Rasmussen, C. E., Williams, C. K., et al. (2006). Gaussian processes for
machine learning, volume 1. Springer.

Rullière, D., Durrande, N., Bachoc, F., and Chevalier, C. (2018). Nested krig-
ing predictions for datasets with a large number of observations. Statistics
and Computing, 28:849–867.

Simonoff, J. S. (1996). Smoothing Methods in Statistics. Springer-Verlag.

Vito, S. (2016). Air Quality. UCI Machine Learning Repository. DOI:
https://doi.org/10.24432/C59K5F.

Williams, C. K. and Barber, D. (1998). Bayesian classification with gaussian
processes. IEEE Transactions on pattern analysis and machine intelli-
gence, 20(12):1342–1351.

45

https://gitlab.emse.fr/marc.grossouvre/jointkrigingsupplementary/
https://gitlab.emse.fr/marc.grossouvre/jointkrigingsupplementary/


Williams, C. K. and Rasmussen, C. E. (2006). Gaussian processes for ma-
chine learning, volume 2(3). MIT press Cambridge, MA.

Zafar, M. B., Valera, I., Gomez-Rodriguez, M., and Gummadi, K. P. (2019).
Fairness constraints: A flexible approach for fair classification. The Jour-
nal of Machine Learning Research, 20(1):2737–2778.

Contents

1 Introduction 1

2 Joint Kriging model 6
2.1 Optimal weights without constraints . . . . . . . . . . . . . . 8
2.2 Optimal weights summing to one . . . . . . . . . . . . . . . . 9
2.3 Optimal weights with constraint on predictions . . . . . . . . 11
2.4 Optimal weights with affine extension . . . . . . . . . . . . . 12
2.5 Joint Kriging Mean and Variance . . . . . . . . . . . . . . . . 14

3 Application to constrained classification 17

4 Numerical illustrations 19
4.1 A simplified toy example . . . . . . . . . . . . . . . . . . . . . 19
4.2 A multi-output time series example . . . . . . . . . . . . . . . 23
4.3 A constrained classification example . . . . . . . . . . . . . . 27

5 Conclusion 34

A Proofs 36

B Notations 43

46


	Introduction
	Joint Kriging model
	Optimal weights without constraints
	Optimal weights summing to one
	Optimal weights with constraint on predictions
	Optimal weights with affine extension
	Joint Kriging Mean and Variance

	Application to constrained classification
	Numerical illustrations
	A simplified toy example
	A multi-output time series example
	A constrained classification example

	Conclusion
	Proofs
	Notations

