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Abstract

We present the implementation of quadratic response theory based upon the rela-

tivistic equation-of-motion coupled cluster method. We showcase our implementation,

whose generality allows us to consider both time-dependent and time-independent elec-

tric and magnetic perturbations, by considering the static and frequency-dependent

hyperpolarizability of hydrogen halides (HX, X = F-At), providing a comprehen-

sive insight into their electronic response characteristics. Additionally, we evaluated

the Verdet constant for noble gases Xe and Rn, and discussed the relative impor-

tance of relativistic and electron correlation effects for these magneto-optical prop-

erties. Finally, we calculate the two-photon absorption cross-sections of transition

(ns1S0 → (n + 1)s1S0) of Ga+, and I:n+, which are suggested as candidates for new
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ion clocks. As our implementation allows for the use of non-relativistic Hamiltonians

as well, we have compared our EOM-QRCC results to the QR-CC implementation in

the DALTON code, and show that the differences between CC and EOMCC response

are in general smaller than 5% for the properties considered. Collectively, the results

underscore the versatility of our implementation and its potential as a benchmark

tool for other approximated models such as density functional theory for higher-order

properties.

Introduction

Nonlinear optical properties (NLO) of matter provide a wealth of information on intra-

and inter-molecular interactions and are therefore widely studied in science and engineer-

ing.1–3 NLO properties are also central to materials and device design, with numerous impor-

tant applications such as optical devices for data transfer and storage. Among the materials

being considered, there is a growing interest in NLO properties of molecules containing heav-

ier elements, particularly in Lanthanide4–9 and Actinide10–12 complexes, as they can offer a

superior performance compared to molecules that contain only light elements.

In order to compute and analyze molecular properties in the linear and non-linear regime,

one typically resorts to response theory.13–16 Within this theory, the first-order nonlinear re-

sponse is characterized by the quadratic response function. Quadratic response functions

have been implemented for Hartree-Fock (HF) wave-functions17,18 as well as at the electron

correlated level employing second-order Møller–Plesset perturbation (MP2),19 multiconfigu-

rational self-consistent field (MCSCF),20,21 coupled cluster (CC),22–24 and density functional

theory (DFT)25,26 reference states. The common starting point of these developments has

been the non-relativistic molecular Hamiltonian.

For property calculations, the spin-orbit coupling operator can be added as one of the

perturbing properties. That will provide accurate results for lighter elements, at the expense

of needing to go one order higher in the responses that are considered. As we move down
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the periodic table, we reach a point where relativistic effects are too strong to be reliably

treated as perturbations. In this domain, it is therefore necessary to refine these methods,

ensuring relativistic effects are intrinsically accounted for by employing a variationally stable

relativistic Hamiltonian.

In the domain of relativistic quantum chemistry, to date, quadratic response function

derivations and implementations are primarily based on mean-field models, such as HF27 and

DFT.28 To improve precision and establish benchmarks for other models, in this manuscript

we discuss the development of quadratic response theory based on a relativistic equation-of-

motion (EOM) coupled cluster formulation (EOM-QRCC).

We showcase the generality and versatility of our implementation by examining two

molecular properties. First, we study the frequency-(in)dependent electric first hyperpolar-

izability (β) as it can describe the nonlinear response of a molecule to an applied electric

field, which is significant for second-harmonic generation29 associated with the design of op-

toelectronic devices and can provide valuable insights into the intermolecular interaction.30

For instance, as discussed by Datta and Pati 31 β is related to the weak intermolecular forces

such as dipolar interactions and hydrogen-bonding, thus it is possible to control β by mod-

ifying the interactions and accurate calculations would be instrumental to provide insight

into designing NLO materials like π-conjugated molecular assemblies.

We consider magnetic circular birefringence, also known as the Faraday effect, as the

second property. One example of the interest in studying the Faraday effect can be found

in the observation by Savukov et al. 32 of the inverse Faraday effect in the nuclear magnetic

resonance (NMR) sample of liquid water and liquid 129Xe , which has led to the suggestion

that the nuclear spin-induced optical rotation (NSOR) can provide a viable and potentially

more informative analog to the NMR chemical shift of traditional NMR detection. There

have been only a handful of theoretical investigations of this property, however. For 129Xe,

Ikäläinen et al. 33 performed non-relativistic (NR) time-dependent Hartree-Fock (TDHF),

time-dependent Density Functional Theory (TDDFT), coupled cluster response, and rela-
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tivistic TDHF, TDDFT calculations on the Verdet constant and NSOR. In subsequent work,

Cadène et al. 34 investigated the Verdet constant of 129Xe in both gas-phase experiments and

calculations derived from non-relativistic coupled cluster quadratic response calculations

(QR-CC), in which the relativistic effects were approximately accounted for by employing

relativistic effective core potentials (ECPs). With our implementation, we shall complement

these studies and in particular investigate the relative importance of relativistic (scalar and

spin-orbit coupling) effects and electron correlation to these properties.

The characterization of Two-Photon Absorption (TPA) cross-sections, which can be re-

lated to quadratic response theory, has also gained considerable attention in different domains

and is the third focus of our applications. TPA was first predicted, using perturbation theory,

by Göppert-Mayer 35 in 1931, but not observed in experiments until the advent of the lasers

that are capable of delivering sufficiently high intensity. The main feature of TPA is that

it occurs with a probability depending quadratically on the incident light intensity, which

results in the TPA-based techniques offering better spatial resolution than those based on

one-photon absorption (OPA). In materials science, materials with large TPA cross-sections

enable applications including drug delivery, photodynamic therapy, high-resolution, and opti-

cal storage.36 Moreover, TPA spectroscopy is also very useful as a research tool. Concerning

the different selection rules of TPA compared to OPA, TPA can characterize the excited

state in the spectrum in the case of OPA spectrum has been large dispersions, particularly

for the complex molecules, which contain f electrons.37,38

TPA is proportional to the imaginary part of the second-order hyperpolarizability γ,

which requires evaluation of the cubic response function. However, under resonant con-

ditions, it becomes possible to express the TPA cross-sections in terms of the two-photon

matrix,39 which can be obtained from the quadratic response of the reference state wave func-

tion. With this strategy, the TPA cross-sections have been evaluated in various standard

models in quantum chemistry including Hartree-Fock,21 MCSCF,21 DFT,40–42 and CC.43–45

Moreover, in the last decades, the resonant inelastic X-ray Scattering (RIXS),46,47 a two-
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photon scattering process in core excitation region, received considerable attention because

of the corresponding improvements in sensitivity and energy resolution,48–51 which provides

valuable information on the electronic structure of both occupied and virtual states that

are not easily accessible by the traditional spectroscopies. Several approaches aimed at the

description of RIXS spectra for molecular systems based on non-relativistic or approximate

relativistic Hamiltonians have been proposed including algebraic diagrammatic construction

(ADC),52 MCSCF,53 DFT,54 and EOM-CC.55–60 However, in the relativistic quantum chem-

istry field, the implementations of TPA cross-sections are still scarce, owing to the additional

complexity. An implementation in the DIRAC program by Henriksson et al. 61 enabled pio-

neering calculations of TPA cross-sections from the four-component Hartree-Fock quadratic

response theory. In this manuscript, we will focus on TPA for valence processes and will

investigate processes involving core electrons such as RIXS in a subsequent publication.

Finally, we pay attention to methods that can lower computational costs. This is of

practical importance here since we utilize uncontracted basis sets with adding many diffuse

functions, which generate a large virtual orbital space in CC calculations. The simplest and

most often used method is the utilization of the MP2 frozen natural orbitals (FNOs).62–64

While some authors have pointed out the shortcomings of MP2FNOs for the calculation

of linear response properties,64,65 Surjuse et al. 66 recently suggested using MP2FNOs in

EOM-CC calculations can bring about reduce computational cost while retaining sufficient

accuracy for ionization energies. On the other hand, to the best of our knowledge, there is

no reference yet reporting the performance of MP2FNOs on TPA calculations.

This manuscript is organized as follows: In Sec. 2, the EOM-CC quadratic response

theory and the corresponding two-photon absorption matrix formulation are summarized.

Section 3 is devoted to the details of the computations we used to test the implementation.

The calculations are presented and discussed in Secs. 4. Finally, a brief summary of our

findings is given in Sec. 5.
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Theory

We base the theory on the time-averaged quasi-energy formalism, which has been summa-

rized in the landmark paper by Christiansen et al. 13 . As the significant part of the formalism

to obtain the quadratic response functions is common to that of linear response functions,

and we have recently provided an extensive discussion of the implementation details for lin-

ear response properties,67 in the current manuscript, we only focus on the equations related

to quadratic response.

The EOM-CC quadratic response function is expressed below:

EOM⟨⟨X;Y, Z⟩⟩ωY ,ωZ
=

1

2
CωPX,Y,Z

[−t̄X(ωX)tY (ωY )t̄0ξZ

+ t̄X(ωX)EOMAY tZ(ωZ)

− t̄0tY (ωY )t̄Z(ωZ)ξX ]

(1)

in terms of the EOM-CC property Jacobian matrix EOMAX ,

EOMAX
µν = ⟨µ|

[
X̄, |ν⟩ ⟨HF |

]
|HF ⟩ (2)

and similarity-transformed one-body property operators

X̄ = e−T̂ X̂eT̂ (3)

where µ and ν indicate excited Slater determinants (comprising single and double excitations

for the CCSD model).

The similarity-transformed CC Hamiltonian H̄ is not Hermitian, which makes the left

response amplitudes not just the complex conjugate of their right counterparts. According to

the 2n+1 and 2n+2 rules in perturbation theory,13 for obtaining the quadratic response, it

is necessary to solve both the left and right first-order response equations, given respectively
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by:

(H̄− ωXI)t
X = −ξX (4)

and

EOM t̄X(H̄ + ωXI) = −ηX − t̄0Dξ
X
S + (t̄0ξX)t̄0. (5)

The detailed working equations for the matrix elements of the different terms in Eqs. 4

and 5 are given in our previous linear response work,67 including those for σ vectors and

property gradients ξX . The working equations for new terms appearing in the quadratic

response functions, such as the EOMAX matrix are presented in the supplementary informa-

tion.

To define the TPA cross-section, we start from the sum-over states expression for the

two-photon transition matrix elements between the reference state |0⟩ and the target excited

state |f⟩:52,55

T f0
XY (ω) =

∑

n

[
⟨f | X̂ |n⟩ ⟨n| Ŷ |0⟩
ωn − (ω + iγ)

+
⟨f | Ŷ |n⟩ ⟨n| X̂ |0⟩
ωn − (ω′ + iγ)

]
(6)

where γ is the damping factor representing the inverse lifetime. The frequencies ω and ω′

represent the two external photons, while ωf corresponds to the excitation energy between

reference state |0⟩ and the final excited state |f⟩. For TPA the relation:

ω + ω′ + ωf = 0 (7)

should be satisfied which means that for a given final state there is only one independent

variable. Within a response formulation, the EOM-CC right and left frequency-dependent
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transition moments can be written as55

Right: EOMT f0
XY (ω) = − Lf [EOMAXtY (ω + iγ) +EOM AY tX(ω′ − iγ)

− (t̄0ξ
X)tY (ω + iγ) − (t̄0ξY )tX(ω′ − iγ)

− (t̄0tY (ω + iγ))ξX − (t̄0tX(ω′ − iγ))]

(8)

Left: EOMT 0f
XY (ω) = − [EOM t̄X(−ω′ − iγ)EOMAY +EOM t̄Y (−ω + iγ)EOMAX

− (t̄0ξX)EOM t̄Y (−ω + iγ) − (t̄0ξ
Y )EOM t̄X(−ω′ − iγ)]Rf

+ (t̄0Rf )[EOM t̄Y (−ω + iγ)ξX +EOM t̄(−ω′ − iγ)ξY ]

(9)

where Rf and Lf are right and left target excited states, respectively, obtained by solving

EOM excitation energy (EOM-EE) equations. With these left and right transition moments

available, the total scattering amplitudes can then be evaluated by the equation:13,55

SXY,ZU = T 0f
XY (ω)T f0

ZU(ω) =
1

2
[T 0f

XY (ω)T f0
ZU(ω) + (T 0f

ZU(ω)T f0
XY (ω))∗] (10)

Finally, the TPA cross-section, δTPA, is determined by the components of scattering

amplitudes matrix S:68

δTPA =
1

15
{F

∑

X,Y

SXX,Y Y + G
∑

X,Y

SXY,XY + H
∑

X,Y

SXY,Y X} (11)

The constants F , G, and H depend on the polarization of the incident light. In this

work, F = G = H = 1 is selected to represent parallel linearly polarized light. Moreover, we

set up the frequency of the external field as half of the excitation energy of the target state

(ω′ = ω = −ωf/2).
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Computational details

All EOM-CC quadratic response and two-photon absorption calculations were carried out

with development versions (revisions 0923e70dd0, fe4351caf9 and 380df6b) of the DIRAC

code,69,70 employing the uncontracted triply-augmented valence triple zeta Dyall basis set

(defined as t-aug-dyall.v3z in inputs) for heavy elements (In, I, At, Xe, Rn),71,72 and an

equivalent triply-augmented uncontracted Dunning basis set (defined as t-aug-cc-pVTZ in

inputs) for light elements (H, F, Cl, Ga, Br).73–75 We utilized the exact two-component

(X2C)76 relativistic Hamiltonian, and in some cases, to show the effect of relativity ex-

plicitly, we also provide results using the non-relativistic Hamiltonian77,78(as activated by

the .Levy-Leblond keyword). To study the effect of electron correlation, we performed

quadratic-response and two-photon absorption calculations based on mean-field methods

such as Hartree-Fock (HF) and density-functional theory (employing the B3LYP79 density

functional approximation). The relativistic and non-relativistic calculations have been car-

ried out with the Gaussian type80 and point charge nucleus model, respectively.

In what follows, we shall use the term orbital as shorthand for both spinors and spin-

orbitals, depending on the Hamiltonian used in the calculation.

In our calculations for heavy elements (HI, HAt, Xe, and Rn), we have profited from

the components of an ongoing implementation in ExaCorr of the Cholesky-decomposition

approach81–83 to reduce the memory footprint of our calculations in the step to transform

two-electron integrals from AO to MO basis, with thresholds of 10−9 (Xe and Rn), and

10−4 (HI and HAt), the latter is looser than the one employed in our previous work; we

have carried out benchmark calculations on selected systems to verify this change did not

significantly alter our results.

The molecular structures employed in all calculations have been taken from the literature:

from Huber 84 for HX (X=F, Cl, Br, I), and from Gomes and Visscher 85 for HAt. The

internuclear distances employed are thus H-F (0.91680 Å), H-Cl (1.27455 Å), H-Br (1.41443

Å), H-I (1.60916 Å), and H–At (1.722 Å).

9



In the calculations, the size of the correlated virtual spaces in the coupled cluster is

truncated by discarding orbitals with energies above 5 a.u. For the occupied orbitals, we

correlate only valence electrons.

Results and discussion

First hyperpolarizability of HX(X=F, Cl, Br, I, At)

To demonstrate our implementation we first apply it to calculate the parallel component

of the static first hyperpolarizability (β||)30 of the hydrogen halide molecules.

β|| =
1

5

∑

i=x,y,z

(βiiz + βizi + βzii) (12)

Each component is defined by the equation:16

βijk(−ωσ;ω1, ω2) =
∑

P−σ,1,2

∑

n,m

⟨0| µ̂i |n⟩ ⟨n| µ̂j |m⟩ ⟨m| µ̂k |0⟩
(ωn0 − ωσ)(ωm0 − ω2)

(13)

where µ̂i are Cartesian components of the electric dipole operators, and
∑

P−σ,1,2 indicates

the sum of six terms by permuting the pairs (i,−ωσ), (j, ω1), (k, ω2).

Before proceeding with the calculation, it’s crucial to select an appropriate basis set and

establish the correlation space. Our study evaluates the impact of the basis set and corre-

lation space on the hyperpolarizability of HF molecules. The results are presented in Table

1 where they are compared with results from the DALTON program23,86 and experimental

data.

An analysis of the first three rows reveals that both diffuse functions and polarization

functions significantly influence the calculation of hyperpolarizability, as is well-known in the

literature.23,87 For example, when utilizing the doubly-augmented d-aug-cc-pVDZ basis set,

the result is only 58% of the value obtained with the augmented s-aug-cc-pVDZ basis set.
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Conversely, the effect of the correlation space is relatively minor. By comparing the results

of the third and fourth rows, it’s evident that correlating all virtual orbitals enhances the

value by merely around 1%.

In the fourth row, we observe that our calculation, when using the non-relativistic Hamil-

tonian, matches the DALTON value (-7.3385 a.u.) precisely and this serves as a validation

of our implementation. Furthermore, based on the DALTON results, the disparity between

EOM-QRCC and QR-CC is approximately 4.5%. This deviation stems from the absence of

size extensivity in the transition moments of the EOM model. This inconsistency between

EOM and CC was previously highlighted in research on linear response properties (see Yuan

et al. 67 and references therein), and we plan to delve deeper into this topic by studying a

wider array of molecules for both linear and quadratic response properties in follow-up work.

The DALTON QR-CC results reveal a discrepancy of 3 a.u. between the calculated (-7.94

a.u.) and the experimental value (-10.88 a.u.). Beyond the limitations of the basis set, which

might benefit from the inclusion of more diffuse and polarization functions, it is essential

not to overlook the vibrational effects. These effects, amounting to 1.2 a.u., were discussed

at the Hartree-Fock level by Bishop and Norman 88 .

Comparison between the fourth, fifth, and sixth rows of the QR-CC calculations reveals

that adding more diffuse functions (from d-aug-cc-pVTZ to t-aug-cc-pVTZ) improves ac-

curacy more significantly than incorporating additional polarization functions (from d-aug-

cc-pVTZ to d-aug-cc-pVQZ). Given that the QZ calculations are notably more resource-

intensive than TZ ones, we will employ the t-aug-cc-pVTZ basis set for the subsequent

calculations on heavier elements.
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Table 1: Benchmark of basis sets and correlation virtual orbital space for QR-CC calcula-
tions of the static β|| (a.u.) of the HF molecule

Basis NR-EOM NR-EOMa NR-QR-CCa Exp89

s-aug-ccpVDZb -9.4232
d-aug-ccpVDZb -5.5463
d-aug-ccpVTZb -7.2677
d-aug-ccpVTZc -7.3385 -7.3385 -7.6718
d-aug-ccpVQZc -7.7521
t-aug-ccpVTZc -7.9385

-10.88
a Calculations were performed using the DALTON program
b Truncating the virtual orbital space at 5 a.u.
c Correlating all virtual orbitals

In Table 2, the static hyperpolarizability of hydrogen halides molecules (from F to At)

is displayed, in which we show the Hartree-Fock, B3LYP, and EOM-CC results for both the

non-relativistic and the X2C Hamiltonian.

At Hartree-Fock level, βzxx, βzzz, and β|| all generally exhibit an upward trend from HF

to HAt in both relativistic and non-relativistic calculations. This pattern is also discernible

in the correlated calculations, though the exact values vary slightly. Both CC and B3LYP

results indicate that electron correlation tends to decrease the value of βzxx for all species on

the series. Nevertheless, for the βzzz, CC results indicate an increase in value due to electron

correlation for all molecules except HF, whereas B3LYP shows the opposite pattern. This

divergence between CC and B3LYP leads to discrepancies in the final β|| value. For the

heavier molecules, B3LYP values deviate considerably from both the Hartree-Fock and the

CC ones.

Accounting for relativistic effects is, as expected, absolutely essential for systems contain-

ing heavier elements. For instance, both Hartree-Fock and CC models reveal that for HAt,

the non-relativistic outcomes are approximately half of their relativistic counterparts. With

the exception of HF, all three models consistently suggest that relativistic effects augment

the β|| values for all molecules. Furthermore, the effects of relativity on βzxx are much larger

than that of βzzz.
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To understand the different magnitude of relativistic correction for βzxx and βzzz, we can

look at equation 13. Through spin-orbit coupling (SOC), relativity modifies the response

function by shifting the location of the poles of the response functions and by introducing

additional transition channels. Without SOC, the ground state is in all cases of pure 1Σ+
0

symmetry. When introducing SOC, the 1Σ designation is no longer strictly valid, and al-

lowed transitions are only characterized by the remaining quantum numbers, thereby yielding

0+ → 0+, and 0+ → 1 transitions. The former is evidently connected to the z-component

of the transition dipole moment, while the latter corresponds to the x and y-components.

Specifically, the βzzz component only permits contributions from transitions to 0+ states,

originating from 3Π0+, and 3Σ0+ states. On the other hand, for the βzxx component, tran-

sitions to the 1 state, potentially emerging from 3Π1,
3Σ1 and 1Π1 states, are also allowed,

with an enhanced contribution from the singlet states 1Π.

Table 2: Static hyperpolarizability (a.u.) of hydrogen halides HX(X=F, Cl, Br, I, At)

HFa HFb B3LYPa B3LYPb CCa CCb

βzxx

HF -0.5091 -0.5100 -1.4916 -1.5565 -1.5276 -1.5286
HCl 2.3017 2.3672 -0.1127 0.0117 -0.0858 -0.0157
HBr 5.2994 5.9155 2.8120 3.8513 2.6604 3.4213
HI 10.7728 13.6493 4.8719 10.2006 6.7316 9.8900
HAt 16.0854 38.3140 8.7719 42.5584 11.1347 32.2297

βzzz

HF -8.3950 -8.4157 -9.8253 -9.8476 -9.4973 -9.4983
HCl -11.4505 -11.4435 -13.1441 -13.0321 -10.2439 -10.1522
HBr -11.0481 -11.1427 -11.4062 -10.8785 -6.4784 -5.9790
HI -2.9448 -3.9634 -6.0444 -5.3245 5.1093 4.9752
HAt 5.3664 5.5476 1.3711 5.2236 16.9624 11.4539

β||
HF -5.6479 -5.6614 -7.6852 -7.7763 -7.5315 -7.5333
HCl -4.1082 -4.0255 -8.0218 -7.8052 -6.2493 -6.1101
HBr -0.2696 0.4130 -3.4693 -1.9055 -0.6946 0.5181
HI 11.1606 14.0011 2.2196 9.0460 11.1434 14.8531
HAt 22.5224 49.3054 11.3490 54.2043 23.5391 45.5480

a non-relativistic calculation using the Levy-Leblond Hamiltonian
b Relativistic calculation using the X2C Hamiltonian
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We now turn to the frequency-dependence of the hyperpolarizability, focusing on the

impacts of relativistic and electron correlation effects. Using both CC and Hartree-Fock

methods, we assess the hyperpolarizability of the single-frequency optical processes -the sec-

ond harmonic generation (SHG) of HI, in which we have ωσ = 2ω1 = 2ω2 = 2ω. Figure 1

displays the result of frequency ranging from 0.0 to 0.115 a.u. To further interpret these

curves, we also calculate the excitation energy for the lowest five electronic states by diago-

nalizing H̄. These results are summarized in Table 3.

Overall the dispersion curves for CC and HF are qualitatively similar for both non-

relativistic and relativistic calculations, though the values for CC values are larger than the

HF ones, which is due to larger excitation energy of the lowest lying dipole allowed states,

that can be observed in Table 3.

One can clearly find singularities in the relativistic results, located at 0.0958 a.u for HF,

and located at 0.1000 a.u. for CC. According to equation 13, in SHG, a singularity should

appear twice on the curve: the first pole corresponds to half of the excitation energy, while

the second aligns with the full excitation energy. Observing this pattern, we pinpoint the

singularities in our curves to the first pole associated with the a3Π0+ state (with excitation

energies for HF and CC being 0.1916 a.u. and 0.2001 a.u., respectively).

In the absence of SOC, the transition to a3Π0+ is spin-forbidden. This observation aligns

with the singularities appearing exclusively in the relativistic calculations. On the other

hand, the pole related to the transition to a3Π1, is not observed, despite its permissibility

with SOC. This is attributed to our focus on the βzxx and βzzz components. One can find

that in equation 13, the transition dipole moment ⟨0| µ̂z |n⟩ is zero for all |n⟩=|1⟩ states.
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Figure 1: Frequency-dependent hyperpolarizability of HI (Left: βzxx, Right: βzzz). The red
and black vertical lines are half of the excitation energy of a3Π0+ state for HF(0.0958 a.u.)
and EOM-CC (0.1001 a.u.), respectively.

Table 3: Excitation energy (a.u.) of HI for the lowest five states

State X2C-EOM-CC X2C-HF NR-EOM-CC NR-HF
a3Π2 0.1773 0.1670 0.1894 0.1775
a3Π1 0.1831 0.1743 0.1894 0.1775
a3Π0− 0.1979 0.1861 0.1894 0.1775
a3Π0+ 0.2001 0.1916 0.1894 0.1775
A1Π1 0.2108 0.2120 0.2111 0.2189

Verdet constant of Xe and Rn

In the current section, we show a calculation of the Verdet constant as an illustrative

example of the use of our implementation for a mixed electric-magnetic property. The

Verdet constant is evaluated with the following frequency-dependent quadratic response

function:27,90

V (ω) = ω
eNϵxyz

24c0ϵ0me

Im⟨⟨µ̂x; µ̂y, m̂z⟩⟩ω,0 (14)

with N the number density of the gas, e the elementary charge, me the electron mass, c0 the

speed of light in vacuo, and m̂z is magnetic dipole moment operator.
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We calculate the Verdet constant at three different laser wavelengths (589 nm, 694.3

nm, and 1064 nm) for Xe and Rn and list the results in Table 4. For Xe, compared to the

experiment, the HF value shows sizeable relative errors of about 10%. The relativistic effect

increases the value and reduces the error to 5% at the HF level. It’s evident that the scalar

relativistic results (with the SFDC Hamiltonian) closely align with the NR-HF values, but

deviate significantly from the DC and X2C results. One can note the scalar relativistic effects

decrease Verdet’s constant value while SOC moves the results in the opposite direction, but

more strongly. This suggests that a major portion of the relativistic correction originates

from the spin-orbit coupling, and considering only scalar relativistic effects may lead to

an underestimation of results. Additionally, upon investigating the influence of the Gaunt

interaction, we determine it to further increase the value of the Verdet constants, but much

more modestly (0.5%).

The effect of electron correlation is also to increase the Verdet constant, but the higher

the degree of electron correlation recovered, the less important the increase. If we compare

the DALTON NR-CCSD results obtained with a truncated correlation in space with those

in which all occupied and virtual orbitals are included in the calculation, we observe a 2%

difference, with the latter calculation showing smaller values. On the other hand, comparing

CCSD and CC391 results with the truncated correlation space, we observe a small increase in

the Verdet constant for CC3. Relative to the QR-CC results, our non-relativistic EOM cal-

culation seems to overestimate the correlation effect by about 1%, due to the non-extensivity

issue discussed for the hyperpolarizabilities (and in ref67). Even though this overestimation

causes the X2C-EOM value to be significantly larger than experimental results, we anticipate

that, given the downward trend in the QR-CC results upon improving the correlation space

discussed above (approximately -0.08 (10−3 rad/(T m) at the 1064 nm wavelength), the X2C-

EOM value with a complete orbital space are expected to come closer to the experimental

values.

When we examine the Rn, we find the relativistic effect to be substantial for both HF
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and CC. For example, at wavelength 589 nm, the non-relativistic EOM value is 18.90 (10−3

rad/(T m)), but the relativistic EOM value is 25.91 (10−3 rad/(T m)). Even in the absence of

experimental data for reference, such a pronounced correction underscores the importance of

accounting for relativistic effects. Beyond this amplified relativistic effect, other observations

for Rn align with those for Xe. This includes the dominance of the relativistic effect by spin-

orbit coupling, the marginal influence of the Gaunt interaction, and a comparable magnitude

of difference between EOM and QR-CC.

It’s also worth noting, as reported in the supplementary material of Ref,33 that the

performance of B3LYP is somewhat poor. It tends to overestimate the values in both non-

relativistic and relativistic calculations, with errors approaching 18% for Xe compared to the

experiment.
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Table 4: Verdet Constant V(ω) [in 10−3 rad/(T m)] for Gaseous Xe and Rn at Different
Laser Wavelengths

Method λ(589 nm) λ(694.3 nm) λ(1064 nm)
Xe

NR-HF 11.18 7.88 3.26
SFDC-HFd 11.12 7.83 3.24
X2C-HF 11.61 8.17 3.37
DC-HFb 11.61 8.17 3.37

DCG-HFc 11.66 8.20 3.39
NR-B3LYP 13.62 9.56 3.93
X2C-B3LYP 14.60 10.21 4.18

NR-EOM 12.55 8.83 3.65
X2C-EOM 13.10 9.21 3.79
NR-CCSDa 12.39 8.72 3.60
NR-CCSDa * 12.11 8.53 3.52
NR-CC3a 12.46 8.77 3.62

Exp 12.30e 3.56±0.10f

Rn
NR-HF 16.80 11.80 4.86

SFDC-HFd 16.56 11.60 4.76
X2C-HF 23.13 16.02 6.48
DC-HFb 23.14 16.03 6.48

DCG-HFc 23.25 16.10 6.51
NR-B3LYP 20.08 14.04 5.74
X2C-B3LYP 30.38 20.83 8.31

NR-EOM 18.90 13.26 5.44
X2C-EOM 25.91 17.92 7.22
NR-CCSDa 18.65 13.08 5.37

a Calculations were performed using the DALTON program
* Include all occupied and virtual orbitals
b Dirac-Coulomb Hamiltonian92

c Dirac-Coulomb plus Gaunt interaction Hamiltonian
d Dirac-Coulomb without spin-orbit coupling Hamiltonian93

e Reference94

f Reference34

Two-photon absorption cross-sections

Finally, we consider the two-photon absorption cross-sections. As a showcase for our

implementation, we highlight the two-photon transitions for group IIIB divalent ions, namely,

(Ga+, and In+). Such systems have been discussed in the literature95,96 for their potential
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use as an atomic clock. As an initial step in this exploration, we focus on spin-allowed

transitions, allowing for comparative analyses with other non-relativistic programs. We

intend to address spin-forbidden transitions in subsequent work.

In Table 5, we calculate the TPA cross-sections and the corresponding excitation energy

of the target states for Ga+, and In+ by HF and CC. Both methods indicate that relativistic

effects reduce TPA cross-sections. Notably for In+, the X2C value is roughly 60% of its

non-relativistic counterpart. When comparing HF and CC, we find that electron correlation

further diminishes the TPA cross-sections. For Ga+, the electron correlation effect is slightly

larger than that of relativity, whereas, in the case of In+, relativistic effects show larger

contributions to the final TPA cross-sections than electron correlation.

The observed trend, wherein both electron correlation and relativistic effects reduce the

TPA, can be understood by examining their effect on the excitation energies. We find that

both factors increase the excitation energy of the target state ((4s5s)1S0 for Ga+, (5s6s)1S0

for In+) and from equation 6, a higher excitation energy in the denominator usually results

in a smaller transition amplitude.

In non-relativistic calculation, our EOM results closely match the TPA results derived

from QR-CC in DALTON, with only about a 3% discrepancy, in line with the discrepancies

observed for the hyperpolarizabilties.

Table 5: Two-photon absorption cross-sections δ (a.u.) and excitation energy (a.u.) of the
target states for Ga+, and In+

Systems(transitions) NR-HF X2C-HF DC-HF NR-EOMa X2C-EOMa NR-CCb

Two-photon absorption cross-sections
Ga+(4s-5s) 3211.01 2710.27 2704.53 2535.17 2128.33 2455.97
In+(5s-6s) 7964.78 4851.59 4831.34 6203.59 3745.02 6022.11

Excitation energy
Ga+(4s-5s) 0.4382 0.4472 0.4473 0.4718 0.4812 0.4718
In+(5s-6s) 0.3760 0.3983 0.3986 0.4042 0.4269 0.4042

a Correlate both (n-1)d and (n)s shell of total 12 electrons
b Calculations were performed using the DALTON program

We test MP2FNO-based EOM-CC energy and TPA for Ga+ and display the results in
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Table 6. The relativistic MP2FNOs are generated based upon our previous implementation

in DIRAC.97 From the first three columns, it’s evident that when using standard selection

schemes, we cannot achieve reasonable TPA values in comparison to the original canonical

orbital results, even with a threshold of 1.0d−6 for the occupation number where we retrieve

more than 99.99% correlation energy for the ground state. We find the excitation energy of

the TPA target state (4s5s)1S0 is markedly overestimated in FNO calculations, especially

when using threshold of 1.0d−4 and 1.0d−5.

At the MP2 level, the 5s orbital has a small contribution to the correlation energy in the

ground state. As a result, when we obtain the MP2 density matrix and natural orbitals, the

occupation numbers for natural orbitals primarily influenced by 5s orbitals are exceedingly

small. These orbitals are therefore omitted by the selection scheme based purely on the

threshold of occupation numbers. While the 5s orbital is not be particularly important for

the ground state, it plays a significant role in the excited state under consideration.

Recognizing this, we’ve adjusted the selection scheme in the MP2FNO implementation.

Besides selecting natural orbitals with occupation numbers exceeding the threshold, we also

incorporate all doubly-degenerate orbitals with occupation numbers below the threshold (in

atomic systems, that corresponds to s1/2 and p1/2 orbitals). We provide a more in-depth

discussion on this point in the supplementary information, where we include the excitation

energy for the eight lowest states and the energy of virtual orbitals.

With this expanded natural orbital space, we revisit the CC and TPA calculations, pre-

senting the outcomes in the 4th to 6th columns of Table 6. We note a marked improvement

in the excitation energy of the target state. Even at a threshold of 1.0d−4, the discrepancy

when compared to full canonical results is around 1%. For the TPA, we also see more ac-

curate results. For example, at a threshold of 1.0d−6, the error drops from 57% to 30% by

correlating only two additional doubly-degenerate orbitals. We also detect a consistent trend

of approaching the canonical orbitals results when going from 1.0d−4 to 1.0d−6.

There remains a 30% discrepancy between truncated FNOs and canonical orbital results.
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From equation 6, to achieve precise scattering amplitudes, we cannot overlook the impact

on the transition dipole moment, which is highly sensitive to diffuse orbitals. Conversely,

these diffuse orbitals will have low occupation numbers in the MP2 calculations for the

ground state and will therefore be removed from the correlating space, even with the slightly

modified procedure we used.

Table 6: Performance of MP2FNOs on Two-photon absorption cross-sections δ (a.u.) and
excitation energy (a.u.) of the target states for Ga+

FNOa FNOb FNOc FNOd FNOe FNOf Canonical Expg

Number of correlated virtual orbitals
25 35 48 29 38 50 82

CCSD ground state correlation energy
-0.2371 -0.2396 -0.2399 -0.2373 -0.2397 -0.2399 -0.2399

Excitation energy of the target state (4s5s)1S
0.5864 0.6414 0.5192 0.4861 0.4838 0.4835 0.4812 0.4860

Two-photon absorption cross-sections
0.19976 <1.0d−15 3353.67 200.06 1300.01 1491.51 2128.33
a FNOs with the threshold of occupation number 1.0d−4

b FNOs with the threshold of occupation number 1.0d−5

c FNOs with the threshold of occupation number 1.0d−6

d FNOs with the threshold of occupation number 1.0d−4 plus doubly-degenerate orbitals
e FNOs with the threshold of occupation number 1.0d−5 plus doubly-degenerate orbitals
f FNOs with the threshold of occupation number 1.0d−6 plus doubly-degenerate orbitals
g Results from NIST

Conclusion

In this work, we implement the relativistic Equation-of-Motion Coupled Cluster method

to study the molecular quadratic response properties and two-photon absorption cross-

sections. This implementation is accomplished in the GPU-accelerated coupled cluster mod-

ule of DIRAC (ExaCorr), extending our previous linear response coupled cluster code67 to

solve both left and right response equations.

We have validated the implementation by assessing the purely electric properties such

as static and frequency-dependent first hyperpolarizability of six hydrogen halide molecules
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from HF to HAt. Using a non-relativistic Hamiltonian, our code exactly reproduces the

EOM-based quadratic response properties implemented in the DALTON code. Compared

to Hartree-Fock and B3LYP linear response calculations, our relativistic EOM quadratic

response calculation shows the significance of both relativistic effect and electron correlation.

We have also investigated the Verdet constant, a mixed electric-magnetic property, for

Xe and Rn with different Hamiltonian and correlation models. Both correlation and spin-

orbit coupling are found to have pronounced effects. Compared to NR-QR-CC, our NR-

EOM calculation overestimated the results by roughly 1%. While the X2C-EOM calculation

deviates from the experimental value more than its non-relativistic counterpart, we find this

to be due to error cancellation in the treatment of electron correlation, and we estimate that

using larger correlating spaces should bring our X2C results more in line with experiment.

We note such calculations are currently not feasible with our single-node code due to memory

limits in computational resources at our disposal.

On the other hand, as consistent with previous works, we also observe the performance

of B3LYP on the Verdet constant is poor with an error of 18% compared to the experiment

for Xe. Such large deviations suggest it is important to investigate these properties with the

more reliable coupled cluster method.

At last, in our study of the two-photon absorption in Ga+, and In+, we find relativistic

and electron correlation effects both decrease the corresponding TPA cross-sections. We

analyzed the results by evaluating the excitation energy of the target state and found that

both effects increase the excitation energies.

It is worth noting that most calculations are limited in size since the quadratic response

properties usually require more diffuse functions, which is challenging for the memory re-

quirement in the current single-node implementation. There is an imperative to develop al-

gorithms that can lower computational costs. In the current work, we utilize the MP2FNOs

to reduce the virtual orbital space in TPA calculations and we find for the low-lying states,

MP2FNO can effectively decrease the calculation cost while maintaining accuracy.
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For higher states such as the target state in the two-photon transition considered, the

bias of MP2FNOs towards the ground state may remove diffuse orbitals which will be im-

portant for excited states. A better way to consider the influence of these diffuse orbitals

is to take account of the excited state in a more sophisticated manner, such as introducing

the corresponding natural transition orbitals.98 Exploring this further is among our future

research objectives. Another natural development is to extend the current code to use li-

braries tailored for distributed memory computing architectures, such as the ExaTENSOR

library, something which we are currently pursuing.
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Quevedo, W.; Schröder, H.; Föhlisch, A.; Gaffney, K. J.; Lundberg, M.; Odelius, M.;

Wernet, P. Viewing the Valence Electronic Structure of Ferric and Ferrous Hexacyanide

in Solution from the Fe and Cyanide Perspectives. J. Phys. Chem. B 2016, 120, 7182–

7194.

(51) Kjellsson, L. et al. Resonant Inelastic X-Ray Scattering Reveals Hidden Local Transi-

tions of the Aqueous OH Radical. Phys. Rev. Lett. 2020, 124, 236001.

(52) Rehn, D. R.; Dreuw, A.; Norman, P. Resonant Inelastic X-ray Scattering Amplitudes

and Cross Sections in the Algebraic Diagrammatic Construction/Intermediate State

Representation (ADC/ISR) Approach. J. Chem. Theory Comput. 2017, 13, 5552–5559.

(53) Josefsson, I.; Kunnus, K.; Schreck, S.; Föhlisch, A.; De Groot, F.; Wernet, P.;
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Working equations for CCSD EOM quadratic response

In what follows a, b, c, .. will indicate particle lines, i, j, k, ... hole lines, and p, q, r, s, ...

general indexes.1 In all equations below we use Einstein notation. Furthermore, we define

• P as a permutation operator, with : P−pqf (. . . pq . . . ) = f (. . . pq . . . ) − f (. . . qp . . . );

• Y p
q = ⟨p|Y |q⟩ are matrix elements of property operator Y .
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In our implementation the property Jacobian EOMAY
νµ is never formed by itself, instead

we always evaluate the product of t̄X (or Lf ) and EOMAY
νµ. This product has the same

structure at ηYµ (Eq. 1, see definition of matrix elements in Yuan et al. 2 )

(ηYs )′ =EOM ηYs − ⟨HF | Ŷ |HF ⟩ (1)

(ηYd )′ = ηYd , (2)

with the difference of using t̄X (or Lf ) rather than t̄0 as in linear response.

Also, we reuse the ηYµ diagrams and routine by replacing the t̄0 by t̄X to define a new

intermediate (XY ηµ)′:

(XY η′)ai =Y a
e (t̄X)ei − Y m

i (t̄X)am − Y a
m(tme (t̄X)ei ) − (Y e

i t
m
e )(t̄X)am

− 1/2(tmn
fe (t̄X)femi)Y

a
n − 1/2(tnmfe (t̄X)fanm)Y e

i + t̄aeij ξ
e
j

(3)

(XY η′)abij =P−abP−ij(t̄
X)ai Y

b
j − P−ij(t̄

X)abimY
m
j + P−ab(t̄

X)aeij Y
b
e

− P−ij(t
e
mY

e
j )(t̄X)abim − P−ab(t

e
mY

b
m)(t̄X)aeij

(4)

Performance of MP2 frozen natural orbitals

We utilize the six notations below to streamline the discussion and represent the corre-

sponding MP2FNO selection scheme.

• FNO(I): threshold of occupation number 1.0d−4

• FNO(II): threshold of occupation number 1.0d−5

• FNO(III): threshold of occupation number 1.0d−6

• FNO(I’): threshold of occupation number 1.0d−4 plus doubly-degenerate orbitals

• FNO(II’): threshold of occupation number 1.0d−5 plus doubly-degenerate orbitals

2



• FNO(III’): threshold of occupation number 1.0d−6 plus doubly-degenerate orbitals

From Table 1 we note under the standard selection schemes: FNO(I, II, III), the excitation

energy of the low-lying states: (4s4p) 3P and (4s4p) 1P are closed to the canonical orbitals

results. On the other hand, for higher states 3S, 1S, 1D, and 3D, the excitation energy are

significantly overestimated. Additionally, we note that the sequence of the excited states is

incorrect for FNO(I) and FNO(II). For instance, under FNO(II), the 3S state is positioned

higher than 1S.

This discrepancy can be traced back to the overestimation of the 5s orbital energy. As

illustrated in Table 2 when comparing the recanonicalized orbital energy of FNOs to the

original 5s orbital energy (-0.0999 a.u.), the energy value of 5s orbital in FNO(I)(0.2745

a.u), FNO(II)(0.1640 a.u.), and FNO(III)(-0.0119 a.u.) are all higher. Notably, for FNO(I)

and FNO(II), these are so much higher than the energies even become strongly positive.

We now shift our focus to FNO(I’), FNO(II’), and FNO(III’). We observe that the energies

of the 3S and 1S states are more accurate. For example, for FNO(I’) the error of 1S state

is 0.0017 a.u, which is significantly less than the error observed in FNO(I) at 0.1351 a.u.

This can be attributed to the fact that we achieve a notable stabilization of the 5s orbital

(-0.0932 a.u.) across the FNO(I’, II’, III’) spaces.

However, incorporating doubly-degenerate orbitals with low occupation numbers in the

ground state doesn’t significantly improve the 1D, and 3D states. We also observe that the

degeneracy of the components of 5p3/2 and 4d3/2 and 4d5/2 orbitals in FNO(I’, II’, III’) is

sometimes broken with the |mj| = 1/2 orbitals being lower than the others. This issue can

likely be attributed to the scheme we employed to include the doubly-degenerate s1/2 and

p1/2, instead of full shells. This symmetry breaking at the orbital level is then reflected in a

poorer description of the high-lying states involving those orbitals.

We note no such thing takes place for the 4p orbitals since these have large enough

occupation numbers at the ground state to always be included in the correlation treatment.
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Table 1: Performance of MP2FNOs on the excitation energy (a.u.) of eight excited states
for Ga+

Excited state FNO(I) FNO(II) FNO(III) FNO(I’) FNO(II’) FNO(III’) Canonical Expa

(4s4p)3P u
0 0.2310 0.2126 0.2120 0.2117 0.2119 0.2113 0.2112 0.2158

(4s4p)3P u
1 0.2333 0.2146 0.2140 0.2189 0.2141 0.2135 0.2132 0.2179

(4s4p)3P u
2 0.2384 0.2188 0.2181 0.2383 0.2187 0.2181 0.2173 0.2221

(4s4p)1P u
1 0.2657 0.3280 0.3249 0.3543 0.3271 0.3241 0.3221 0.3221

(4s5s)3Sg
1 0.5981 0.6425 0.4915 0.4666 0.4647 0.4645 0.4630 0.4691

(4s5s)1Sg
1 0.5864 0.6414 0.5192 0.4861 0.4838 0.4835 0.4812 0.4860

(4p2)1Dg
2
* 0.5918 0.6453 0.5183 0.5469 0.5466 0.5454 0.4914 0.4908

(4s4d)3Dg
1 0.5987 0.6632 0.5439 0.5678 0.5467 0.5460 0.5118 0.5186

a Results from NIST
* 44% from the configuration 4s4d

Table 2: Orbital energy (a.u.) of lowest 12 virtual orbitals for Ga+

FNO(I’) FNO(I’) FNO(II) FNO(II’) FNO(III) FNO(III’) Canonical Virtual orbitals
-0.1317 -0.1955 -0.1892 -0.1955 -0.1892 -0.1955 -0.1957 4p1/2

-0.1253 -0.1253 -0.1854 -0.1854 -0.1854 -0.1854 -0.1924 4p3/2

-0.1253 -0.1253 -0.1854 -0.1854 -0.1854 -0.1854 -0.1924 4p3/2

0.2745 -0.0932 0.1640 -0.0932 -0.0119 -0.0932 -0.0999 5s1/2
0.4708 -0.0384 0.1693 -0.0384 0.1270 -0.0384 -0.0659 5p1/2

0.4708 0.0579 0.1693 0.0579 0.1270 0.0579 -0.0654 5p3/2

0.4734 0.1870 0.2745 0.1693 0.1276 0.1270 -0.0654 5p3/2

0.4734 0.4708 0.4708 0.1693 0.1276 0.1270 -0.0566 4d3/2

0.4734 0.4708 0.4708 0.1870 0.1276 0.1276 -0.0566 4d3/2

1.6174 0.4734 0.4734 0.4708 0.1640 0.1276 -0.0565 4d5/2

1.6509 0.4734 0.4734 0.4708 0.1693 0.1276 -0.0565 4d5/2

1.6509 0.4734 0.4734 0.4734 0.1693 0.1693 -0.0565 4d5/2
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