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In recent years, computer science has made major advances in understanding drawing 
behavior. Artificial intelligence, and more precisely deep learning, has displayed 
unprecedented performance in the automatic recognition and classification of large 
databases of sketches and drawings collected through touchpad devices. Although 
deep learning can perform these tasks with high accuracy, the way they are performed 
by the algorithms remains largely unexplored. Improving the interpretability of deep 
neural networks is a very active research area, with promising recent advances in 
understanding human cognition. Deep learning thus offers a powerful framework 
to study drawing behavior and the underlying cognitive processes, particularly 
in children and non-human animals, on whom knowledge is incomplete. In this 
literature review, we  first explore the history of deep learning as applied to the 
study of drawing along with the main discoveries in this area, while proposing open 
challenges. Second, multiple ideas are discussed to understand the inherent structure 
of deep learning models. A non-exhaustive list of drawing datasets relevant to deep 
learning approaches is further provided. Finally, the potential benefits of coupling 
deep learning with comparative cultural analyses are discussed.
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Introduction

Drawing is a powerful communication medium that can convey concepts beyond words. Two 
different approaches are traditionally used to study drawing behavior (Pysal et al., 2021): the process 
approach (Freeman and Cox, 1985; Adi-Japha et al., 1998) and the product approach (Brooks, 2009; 
Xu et al., 2009). The process approach analyzes drawings through the behavioral characteristics 
linked to the drawing task and the individual who is drawing. For example, this perspective may 
require information on behavioral sequences (investigated through coordinates and the time spent 
drawing each point or behavioral sampling), which is more difficult to collect than the data needed 
for the product approach. Indeed, the latter analyzes the result of the drawing, based only on spatial 
and visual information, to infer the underlying behavior. Drawings, as final products, have been 
widely used to better understand the cognitive capacities of individuals, in particular to investigate 
the cognitive development of children (Malchiodi, 1998; Barraza, 1999; Cox, 2005; Farokhi and 
Hashemi, 2011). Studying visual features such as the color palette in drawings, the product approach 
has been pivotal in describing the diversity of personalities in children (Goldner and Scharf, 2011), 
identifying mental disorders (Tharinger and Stark, 1990) and post-traumatic symptoms (Backos and 
Samuelson, 2017), and even revealing concealed emotions (Fury, 1996). Both of these approaches 
– process and product – are covered in this review.
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In toddlers, first drawings are in the form of scribbles, described as 
a motor activity not directed by the eyes, but by the mechanical 
functioning of the motor system arm-wrist-hand (Piaget and Inhelder, 
1967; Freeman, 1993). At this age, scribblers appear to take little interest 
in their final products, whereby the process of drawing itself or 
improving the technique prevails over the will of representation 
(Thomas and Silk, 1990; Golomb, 1992). Figurative drawings, where 
what is drawn is representative for both the subject and external eyes, 
only appear at 3–4 years of age (Golomb, 1992; Freeman, 1993).

However, figuration and internal representativeness are not always 
similar. Since the end of the 19th century, researchers have developed a 
methodology to address the difficulties of studying drawings and 
scribbles (Farokhi and Hashemi, 2011). These analyses are limited by the 
subjective judgment of the observer (Lark-Horovitz, 1942), which is 
prone to several biases, especially with respect to semantic analyses. 
These issues are minor when computing low-level features such as color 
statistics, but are fundamental when trying to extract higher-level 
features; for example, one observer may see a house where another 
observer only sees a scribble, or both observers may fail to detect the 
drawer’s intention to represent a house. The distinction between 
figuration and internal representativeness is essential, particularly when 
analyzing young children’s drawings. Indeed, while previous theories 
proposed that the drawing among the youngest reflect motor activity 
only, recent studies have provided evidence for a symbolic function of 
drawing as early as 2 years old, suggesting that even young children can 
learn and become aware of the two visual aspects of drawing: the 
referent, which is the concept of what is drawn, and the signifier, which 
is the drawing object itself (Longobardi et al., 2015). However, a young 
child using drawings for symbolic representation may not intend to 
represent the formal aspects of reality through his or her first drawings, 
but rather seeks to express the world around him or her in a 
physiognomic way, using the line as means of expression (Longobardi 
et al., 2015). In other words, what is regarded as a scribble for an adult 
can be a symbolic representation for a young child. To understand the 
emergence and development of drawings, it is important to interpret 
such drawings. To do so, asking very young children about their product 
is impossible, as they cannot communicate verbally. To address this 
problem, one could ask adults to interpret the drawings. However, by 
doing so, adults would typically fail to detect the intention of the drawer 
and the meaning of scribbles. Asking the child about his/her intention 
only partially solves this problem because for a given child, the answer 
has been shown to vary from 1 day to the next (Martinet et al., 2021). 
The answer is also dependent on the subject’s verbal communication 
skills, which are naturally limited in toddlers, as in other great apes. This 
is not a problem for free-form drawings (i.e., no instruction), but 
becomes challenging for task-based drawings (i.e., instructions and 
constraints on the drawings; Martinet et al., 2021). The same problem 
arises among great apes such as chimpanzees (Pan troglodytes), who are 
well known for their drawing behavior (Martinet and Pelé, 2020). 
Indeed, captive chimpanzees spontaneously draw and paint if provided 
with appropriate materials (pen, paint, brushes, and paper) and can 
continue this behavior without being reinforced with food (Boysen 
et al., 1987; Tanaka et al., 2003).

To interpret the intention behind drawings, objective and 
mathematical analyses have been developed. Martinet et  al. (2021) 
elaborated an innovative mathematical tool based on spatial fractal 
analysis, and Beltzung et al. (2021) used temporal fractal analysis for this 
purpose. The combination using a principal component analysis of 
simple metrics (number of lines, circles, colors, cover rate, etc.) can also 

provide interesting results regarding interindividual differences in 
human (Sueur et al., 2021) or orangutan drawings (Pelé et al., 2021).

The rise of deep learning

Over the last few decades, researchers have been investigating 
drawings using AI and computer vision (Eitz et al., 2012; Li et al., 2013). 
The latter encompasses sophisticated techniques and algorithms which 
can extract features in an image that are meaningful to human visual 
perception, such as facial features (e.g., eyes and nose). These techniques 
are widely used for detection [e.g., corner and edge detection (Li Y. et al., 
2015)], segmentation (e.g., K-mean, P-Tile), and recognition 
(convolutional neural network). Most analyses use computer vision to 
extract features which are then fed into a classifier.

It is important to note that traditional models and machine learning 
have been successfully used as approaches to study the drawing behavior. 
For example, by measuring the proportion of time the pen was in 
contact with the paper, Cohen et al. (2014) have shown a link between 
the Digital Clock-Drawing test and depression. Polsley et al. (2021) used 
machine learning methods, as Random Trees and Random Forest, to 
demonstrate how curvature and corners in drawings are linked to the 
age. These mathematical analyses and indices are objective contrary to 
former measures and are a good starting point for developing more 
objective studies using artificial intelligence (AI).

Currently, the most efficient and promising way to learn from 
images, including drawings, is deep learning (Figure  1; Ravindran, 
2022), a sub-branch of computer vision and artificial intelligence, and 
more precisely neural networks, also used for speech recognition 
(Graves et  al., 2013) and text classification (Liu et  al., 2017). Deep 
learning allows us to go further by avoiding some anthropomorphic 
biases, such as the confirmation bias. For example, when analyzing 
drawings without deep learning, the features may be unconsciously 
selected accordingly to the beliefs of the human devising this process. 
By using almost raw data, deep learning thus reduces such biases.

The first mathematical model defining the concept of artificial 
neurons dates back to McCulloch and Pitts (1943). Deep learning only 

FIGURE 1

Euler diagram of artificial intelligence and neural networks in computer 
vision.
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surged in 2012, when a deep convolutional neural network (CNN) 
named AlexNet (Krizhevsky et al., 2012), outperformed other methods 
by a large margin in a popular competition of image classification, the 
ImageNet Large Scale Visual Recognition Challenge (ILSVRC; Deng 
et al., 2009). CNNs (Figure 2) form a subcategory of artificial neural 
networks, specifically designed for processing images by learning filters 
(via convolutional layers) that optimize performance in a predefined 
task (e.g., categorizing images or regressing images with a continuous 
variable). These filters allow capturing a hidden representation of images 
(Mukherjee and Rogers, 2020). A glossary of technical terms is presented 
in Table 1.

Although deep learning is now a flagship approach to image 
analysis, most of these algorithms have been trained and designed for 
photos. Compared to photos, drawings and sketches are sparser and can 
be abstract. DL models thus need to be created to specifically process 
this type of data (Zhang et al., 2016; Yu et al., 2017; Pysal et al., 2021).

These models can successfully classify drawings from several 
categories with high accuracy but allow limited interpretability. 
Indeed, deep learning models are often considered black boxes because 
of the number of parameters reaching tens of millions (Krizhevsky 
et al., 2012). Nevertheless, as in all scientific domains, interpretability 
and comprehension are key points when developing a model. What 
does a model outperforming human recognition ‘discover’ and 
‘comprehend’ in the data that humans do not? Is it possible to extract 
and decipher the discriminant features and are humans able to 
understand them? To improve the interpretability of these models and 
to answer these questions, multiple methods have been developed and 
are discussed later in this review. Nevertheless, interpretability and 
explainability remain important challenges in deep learning (Gilpin 
et  al., 2018) and are among the most active research topics in AI 
(Zhang et al., 2016; Wu T. et al., 2018; Rudin, 2019). According to 
Gilpin et  al. (2018), “the goal of interpretability is to describe the 
internals of a system in a way that is understandable to humans” and 
explainability (for deep networks) consists in giving an explanation to 
“the processing of data inside a network, or explaining the 
representation of data inside a network” (note that the definitions of 
these concepts are still debated, see for example Tjoa and Guan, 2021). 
When studying drawings, the interpretability of AI is also fundamental 
to improving the knowledge of the ontogeny of drawing and the 
emergence of representativeness. Likewise, the AI processing of 
children and chimpanzees drawings can be compared to allow a better 
understanding of the evolutionary history of drawing. To achieve this 
goal, the assumptions on the underlying mechanisms of the drawing 
behavior can be  formalized and implemented in a neural network 
model. With this objective, Philippsen and Nagai (2019) combined 

Bayesian inference and deep learning. They developed a neural 
network capable of completing partial drawings based on prior 
information. The goal of their study was to use this model to replicate 
children’s and chimpanzees’ drawing behavior to analyze the relative 
importance of different priors.

As previously mentioned, in children, the quality and 
representativeness of drawings improve with age (Martinet et al., 2021). 
In addition to age, other variables influence representation, such as sex 
(Picard and Boulhais, 2011) and cultural background (Alland, 1983; 
Gernhardt et  al., 2013). For example, Gernhardt et  al. (2013) 
demonstrated that the number of facial details and facial expressions in 
drawings vary among children from different cultures. Deep learning is 
a promising tool for understanding cultural variations in drawing. To 
the best of our knowledge, no such studies have been carried out yet. 
However, deep learning applied to drawings has recently been used to 
characterize mental disorders in individuals, such as Autism Spectrum 
Disorder (Anne et  al., 2018), to predict the Draw-a-Person test 
(Widiyanto and Abuhasan, 2020), the Clock-Drawing test (Chen et al., 
2020), and detect mild cognitive impairment (Ruengchaijatuporn 
et al., 2022).

Overall, deep learning in complement to other machine learning 
methods has the potential to greatly improve our knowledge of the 
ontogeny and evolutionary history of drawing behavior. This review 
presents and discusses the different applications of deep learning in 
drawing analysis and aims at giving the keys for readers who are 
interested by using deep learning to study drawing behavior and 
want to go further. The first section introduces different approaches 
to drawing analysis based on deep learning, which have already been 
applied or appear promising. These approaches are not discussed in 
relation to their performance (e.g., score of accuracy), but on the 
insights they can bring on the understanding of the drawing 
behavior. The second section reviews publicly available datasets that 
are well suited for studying drawings and sketches using AI and 
outlines the challenges. The review is concluded by discussing future 
research frameworks and perspectives in deep learning as applied 
to drawings.

Approaches in deep learning for 
drawing(s) analysis

This section is divided into two parts. The first part is focused on 
model-centric analyses, which refers to studies directly using the outputs 
of a model to make interpretation of the results. The second part focuses 
on analyses based on model-internals. The studies considered in this 

FIGURE 2

Example of a CNN architecture. The model takes an image as input; the image passes through layers to finally be classified between predefined classes.
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part use the weights of a model after being trained (i.e., post hoc 
interpretation methods), such as heatmaps, to discover for example of 
the information is encoded in the model.

Model-centric analyses

As in classical drawing studies, deep learning approaches can 
be  classified as focusing either on drawings as a product or on the 
process of generating drawings and sketches. While the first approach 
investigates only the spatial dimension of drawings, the second considers 
the temporal dimension.

Product approach

Prediction-based analyses
Machine learning models are often trained with the aim to predict 

labels for unlabeled data (i.e., that have never been seen by the model). 
In deep learning, this prediction task can be conducted at several levels, 
from labeling the image as a whole (classification) or predicting a label 
for every pixel of an image (segmentation).

Classification
The most popular application of deep learning is classification. 

Classification plays a major role in computer vision in tasks as varied as 
classifying Alzheimer’s disease from magnetic resonance images (Wen 
et al., 2020), identifying fish species (Li X. et al., 2015), and recognizing 
malware images (Yue, 2017). Classification is also a preliminary step in 
other tasks, such as segmentation. CNNs are mostly used for image 
classification in a supervised learning paradigm, where a model is 
trained to classify images into categories predefined by the user, by 
learning from a dataset of labeled images (i.e., images for which the 
category is known). Once trained, the model is used to predict the 
categories of new, unlabeled images.

The first CNN developed for sketch classification was Sketch-a-Net 
(Yu et al., 2017), which achieved better performance than humans in 
object classification. It may be surprising that a model trained on data 

labeled by humans can outperform humans at classification. Indeed, 
CNNs learn a latent representation, that is, hidden features from the 
data, which is more complex than human representation. Sketch-a-Net 
performs better on sketches than neural networks trained on photos, 
highlighting the need for specific architectures for drawings (Yu et al., 
2017). A CNN can thus outperform and replace classical methods used 
in sketch classification based on predefined classes. For example, in 
psychology, Vaitkevičius (2019), built a CNN capable of successfully 
classifying scribbles in 20 different classes as defined by the psychologist 
Rhoda Kellogg (e.g., “single dot,” “imperfect circle through single 
vertical line,” “spiral line”). Compared to other classifiers used in 
computer vision (e.g., support vector machine (SVM), random forest, 
k-nearest neighbors), CNN achieves the best results, matching the 
efficiency of neural networks in analyzing non-figurative drawings, 
demonstrating how deep learning can automatize complex and 
laborious tasks. Another example is Rakhmanov et al. (2020), who used 
a simple CNN architecture (two convolution layers and two fully 
connected layers) to classify drawings according to the Draw-a-Person 
test (Goodenough, 1926), a cognitive test in which the subject (a child, 
most often) draws a human figure, and a score is assigned to the drawing 
based on several criteria (e.g., the number of eyes, body proportions, 
presence of the mouth) to assess the child’s intellectual maturity. This 
test is used for several purposes, such as detecting behavioral disorders 
or measuring nonverbal intelligence. Several parameters are tested 
during the training of the neural network mode, and data augmentation 
is applied to compensate for the low number of drawings, to significantly 
increase the accuracy. Data augmentation is a computer vision technique 
which is widely used in machine learning, which increases the size of 
the training data set by slightly modifying the original instances (that 
are images in this case, by applying rotation, horizontal flip, color 
contrasts for example) during the training phase. DA also reduces 
overfitting, a phenomenon that occurs when the model is too specialized 
for the training data and generalizes poorly on new data. Although the 
deep learning model was able to learn and produce relevant results, 
Rakhmanov et al. (2020) found that other methods of computer vision, 
such as the bag of visual words (BoVW) approach, outperformed CNN 
(62% accuracy for BoVW versus 52% for CNN). This example shows 

TABLE 1 Glossary of technical terms.

Terms Meaning Definition

AI Artificial Intelligence All techniques allowing reproduction of intelligence.

ML Machine Learning Subset of AI techniques which learn from the training data.

DL Deep Learning Subset of ML techniques based on artificial neural networks. The analyzed features are learned by the model.

ANN Artificial Neural Network Model consisting of layers made up of units, also called neurons. An ANN can be shallow, or deep (DNN) when 

consisting of at least 2 hidden layers (i.e., layers between input and output).

CNN Convolutional Neural Network An ANN is specifically designed for images using convolutional layers.

RNN Recurrent Neural Network An ANN designed to process sequences, such as time series.

GNN Graph Neural Network An ANN where node relationships are studied.

GAN Generative Adversarial Network Unsupervised DL method capable of generating fake but realistic data.

VAE Variational Autoencoder An ANN belonging to the family of autoencoders, consisting of an encoder that compresses the data, and a 

decoder that reconstructs the data. Reconstruction in VAE is through a sampling of the hidden representation of 

the statistical model, rather than the hidden representation itself.

DA Data augmentation Techniques allowing an increase in the number of training data, by altering them through different 

transformations.

TL Transfer Learning Method consisting of reusing a model already trained on another task.
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that a straightforward CNN design does not necessarily outperform 
state-of-the-art methods.

Thus, more complex CNN structures are required to learn the 
hidden representation of an object from sketches. To this end, Zhang 
et al. (2016) built SketchNet, a neural network capable of classifying 
sketches in object categories to discover the shared structures between 
real images and sketches belonging to the same category. The 
classification part of this model relies on associating a sketch image with 
a positive real image (from the same category) and a negative image 
(from another predicted category). The authors used an architecture 
consisting of three subnetworks optimized to extract features of the 
sketch images, positive images, and negative images. The features of the 
sketch and real images were eventually merged. SketchNet is based on 
prediction rankings. For a given sketch, the model computes the 
probability of the sketch belonging to each category, before returning 
the top five prediction categories (i.e., the five more likely predicted 
classes for this sketch) and the nearest real images.

Segmentation
Classification can be used as a preliminary step for other tasks, such 

as segmentation. Image segmentation partitions the pixels of an image 
into multiple regions and assigns a label to each pixel. This technique is 
widely used in various fields, such as medicine (Brzakovic and Neskovic, 
1993) and video surveillance (Patro, 2014). It can rely on classical 
computer approaches, but more recently, also on deep learning 
(Figure 3).

While classification helps improve segmentation, the opposite is 
also true. Sketches can be classified as a whole after segmentation and 
analysis of individual components, as in semantic sketch segmentation 
(SSS), which aims at labeling individual strokes. Semantic segmentation 
is notoriously difficult, however, because of complex perceptual laws, 
such as those proposed by Gestalt theory (Wertheimer, 1938). For 
example, the law of closure states that in an image with missing parts, 
the brain visually fills in the gaps. Interestingly, CNNs have been found 
to reproduce some perceptual laws. It appears that perceptual laws may 
or may not be  present depending on the training set, and more 
generally the weights of the model (Kim et al., 2019, 2021; Jacob et al., 
2021). For these reasons, it is a complex task to understand if and how 
neural network perception differs from that of humans, and these 
questions are still debated. Moreover, as with classification, it is 
necessary to develop architectures and models of semantic 
segmentation for sketches, specifically because of the differences 
between sketches and photos.

One of the first CNN-based models of sketch segmentation was 
SketchParse, proposed by Sarvadevabhatla et  al. (2017). SketchParse 
automatically parses regions of sketches and has proven to be effective, 
for example, in separating the head, body, and tail of a horse. However, 
SketchParse parses regions, not strokes, which limits the utility of 
segmentation in studying drawings as a process because regions most 
often are not consistent with strokes.

Graph neural networks (GNNs) can overcome this limitation. 
Starting from these neural networks, it is possible to cluster strokes into 
semantic object parts. Yang et  al. (2021) proposed SketchGNN, a 
convolutional GNN which outperforms state-of-the-art models, such as 
SSS and stroke labeling. Their model also extracts features at three 
different scales: point-level, stroke-level, and sketch-level. SketchGNN 
can for example label each pixel of a sketch representing a face, to 
associate with the pixel a larger face component, such as the nose or the 
mouth, without taking into account the order of the strokes. Predicting 
object parts by strokes labeling could allow for comparing the structure 
of specific parts of an object depending on the culture of the drawers, 
for example to compare object proportions. Another interesting SSS 
model was proposed by Li et al. (2019). Their model is an hourglass-
shaped network consisting of an encoder and a decoder. The 2D image 
passes through a network which predicts the segmentation map. The 
corresponding segmentation map is then transformed into a stroke-
based representation, which is used to refine the segmentation map. Due 
to the lack of 2D annotated sketches, the network is trained on edge 
maps extracted from 3D models already segmented and labeled, which 
can thus be transformed into sketches. Moreover, as the model is trained 
on 3D models, several viewpoints are available, that may not be the ones 
frequently represented in drawings. As it would be  questionable to 
analyze freehand sketches by using a network mainly trained on 3D 
model-transformed sketches, the authors evaluated their model on 
freehand sketch datasets (Eitz et al., 2012; Huang et al., 2014); their 
model outperformed previous ones. Comparing children’s and 3D 
model-transformed sketches, for a given category, could improve our 
knowledge of their spatial representation.

Generation-based analyses
Deep learning used for image classification and segmentation is 

usually referred to as discriminative AI, where models are trained to 
convert high-dimensional inputs (e.g., images) into low-dimensional 
outputs (e.g., the names of depicted objects). In contrast, generative AI 
generates high-dimensional outputs (e.g., images) from low-dimensional 
inputs (e.g., semantic representations). Most people know generative AI 

FIGURE 3

Examples of segmentation results through CNNs from Chen et al. (2017). Reprinted with permission.
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through web-based applications that allow drawing one’s portrait in Van 
Gogh’s style or putting fake words in Obama’s mouth on a video. 
However, beyond these applications, generative AI has become one of 
the most growing research areas in AI because of a very large array of 
applications (Wu et al., 2016; Kell et al., 2020; Yang and Lerch, 2020; 
Bian and Xie, 2021), which include a study of drawings.

Generation
Pallavi (2019) devised SuggestiveGAN, a generative adversarial 

network (GAN; Karras et  al., 2019). A GAN is an unsupervised 
algorithm in which two neural networks compete. Fundamentally, one 
neural network (the discriminator) is a classifier to distinguish real 
images from fake images; the other neural network (the generator) tries 
to generate the most ‘realistic’ fake images (according to the real dataset). 
SuggestiveGAN is able to reconstruct incomplete drawings (with 
missing strokes). The proposed model grasps the structure of the 
drawings at the expense of the details.

Style transfer
Style transfer involves applying the style of an image to another 

image, but not the content. Gatys et al. (2016) proposed a CNN-based 
method of style transfer that quickly achieved high popularity owing to 
its impressive visual results. The method has been popularized by the 
famous Van Gogh painting, whose style has been widely transferred 
onto various kinds of portraits and landscape photos. The authors 
defined the style from the Gram matrix of activations, a measure of 
covariation between filters within a given layer (usually, all convolutional 
layers are used to define the style). The content is defined by the 
activation of the deepest convolutional layers. The stylized image is then 
obtained by searching a new image that simultaneously minimizes the 
distance between its content and that of the ‘content’ image, and the 
distance between its style and that of the ‘style’ image. One of the most 
famous examples of Gatys et al. (2016) model is the transfer of Van 
Gogh’s painting style to photographic portraits or landscapes.

Since the seminal work of Gatys et al. (2016), other CNN-based style 
transfer algorithms have been proposed and applied to various contexts 
[e.g., in user-assisted creation tools (Jing et al., 2020)]. For drawings and 
sketches, it is necessary to design specific models of style transfer as in 
the classification of drawings which are sparser and have a higher level 
of abstraction compared to paintings. Chen Y. et al. (2018) proposed 
CartoonGAN, a GAN-based style transfer algorithm developed for 
cartoon stylization. The model generates cartoon images based on real-
world photos, which can be useful for photo editing or for artists to gain 
time. More recently, Chen C. et al. (2018) proposed a framework capable 
of synthesizing face sketches while preserving details, such as skin 
texture and shading.

Hicsonmez et al. (2017) applied style transfer to drawings to learn 
the styles of different book illustrators. Their objective was to apply the 
style of drawing from an illustrator (the “style image”), to an image 
produced by a different illustrator (the “content image”). Their 
framework shows that this technique can be successfully applied to 
drawings. Dissociating the style and content of a drawing, and modeling 
how these two components vary separately would have numerous 
implications in drawing studies. For example, by using the style of 
children’s drawings, one may analyze the development of motor skills 
through the complexity of the strokes, by using only the style component 
of the drawing, while dissociating the motor constraints from the 
representational constraints. The style component can also be used to 
investigate the link between different types of curves used (broken 

curves and smooth curves) and internal representativeness (Adi-Japha 
et al., 1998). Moreover, studying the development of the style of the 
drawing system and the writing system, using style transfer, would help 
in understanding the differences and similarities between the two 
systems. Finally, using generative AI like the one developed by Chen 
C. et al. (2018), but instead generating realistic photos from drawings 
would shed light onto children’s representation of the world.

Process approach

Prediction-based analyses

Classification
In addition to the product approach, sketch recognition could allow 

a better understanding of the cognitive processes underlying the drawing. 
It is known that the development of drawing and writing shows kinematic 
differences according to age (Adi-Japha and Freeman, 2001). Thus, 
classifying drawings and writing across ages could lead to discriminant 
low-level features, such as shapes, that could help in understanding the 
links as well as differences among techniques between these systems. 
Writing is not the only phenomenon correlated with drawings. Indeed, 
as shown by Panesi and Morra (2021), executive functions (e.g., shifting, 
inhibition) and language are linked to drawing behavior. Their work 
proposes several tasks to which different scores are assigned, such as the 
absence/presence of structures in human figure drawings, which can 
be  further automated through deep learning. All these cognitive 
processes are directly linked to cortical activity, which is typically 
investigated using brain imaging [e.g., electroencephalography (EEG) 
and electromyography (EMG)]. Applying deep learning to brain imaging 
can be achieved within a framework such as that proposed by Leandri 
et  al. (2021) through recurrent neural networks (RNNs), which are 
specifically designed for temporal sequences.

He et  al. (2017) developed a model able to use the temporal 
information of the strokes to perform sketch recognition as well as 
Sketch-based Image Retrieval (SBIR), which aims at finding real images 
visually similar to a given sketch. The proposed model is based on a CNN 
coupled with a R-LSTM (Residual Long Short-Term Memory) network. 
Multiple representations of the drawings are learnt by considering 60, 80, 
and 100% of the strokes of the drawings separately. The performance 
achieved by this model demonstrates how stroke ordering information 
can be used in deep learning and how it plays a role in classification. To 
go further, Xu et al. (2022) proposed to consider drawings as graphs 
thanks to GNNs (Graph Neural Network). A classical application of such 
architectures is node classification. A graph consists of edges and links, 
and GNNs analyze the relationships between the nodes. In sketches, 
these types of models take the relationships between the strokes into 
account. Their proposed model, called Multi-Graph Transformer, allows 
for capturing geometric and temporal information about the drawings, 
as well as understanding the relationship between strokes. These models 
could thus be useful to improve our knowledge on the links between 
object parts and object representations. These approaches could also help 
at understand which strokes are the most relevant for classification or 
comparing which parts of an object are drawn first depending on the 
culture or age for example.

Segmentation
The information contained in the stroke order and temporal 

sequences can provide very rich information, which may be hard to 
decipher just through image classification. Wu X. et al. (2018) designed 
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a stroke-level sketch segmentation model, Sketchsegnet, that is based on 
a variational autoencoder (VAE) which learns the probability 
distribution from the data. In Sketchsegnet, widely used in image 
generation (Razavi et al., 2019; Zhu et al., 2020), the VAE consists of a 
bidirectional RNN (BiRNN; Schuster and Paliwal, 1997) for the encoder 
and an autoregressive RNN (Inselberg and Dimsdale, 1990) for the 
decoder, thus accounting for the sequence order of strokes. For each 
sketch category, labels are predefined (e.g., ‘cream’ and ‘cone’ for an ice 
cream). Their model achieves an accuracy of 90% for stroke labeling.

Thus far, research on sketch and drawing segmentation using AI has 
been primarily methodological, with only rare applications to better 
understand the ontogeny and evolutionary history of drawing behavior. 
Nonetheless, segmentation could be of great interest in this kind of 
analysis. For example, segmentation can be  used to analyze body 
proportions, which are indicative of the emotional state in children [e.g., 
disproportionally large hands can express aggression (Leo, 2015), and 
the relative size of the head and trunk varies with age in children 
(Thomas and Tsalimi, 1988)]. In addition, annotated sketch databases 
are not common, and annotating sketches will lead to bias, depending 
on the perception of the person doing the annotation. For this reason, 
SSS should be  studied in depth through unsupervised stroke-level 
segmentation or by using temporal sequence algorithms (Gharghabi 
et al., 2019), which also consider the time spent not drawing. Applying 
SSS to scribbles could lead to semantic segmentation, not necessarily 
obvious to human perception. Moreover, SSS allows the analysis of 
specific regions, such as the head, at a certain level of detail despite the 
complexity. This could help in understanding the relative importance of 
different visual stimuli in shaping the representation space of children. 
Models using 3D sketches, similar to Li et al. (2019), can elucidate the 
emergence of 3D geometry in children, and more generally, the 
development of spatial ability in children, necessary for 
representativeness. Using deep learning to analyze low-level features 
such as the spatial distribution of strokes, their orientation and form, 
and how these vary with age could also be  informative about the 
ontogeny of the drawing behavior in humans and other animals.

Generation-based analyses
As drawings are directly linked to the temporal sequences of the 

strokes, it is fundamental to consider the process when generating parts of 
drawings, to generate meaningful strokes. Among the first to use generative 
AI were Ha and Eck (2017) who studied the behavior of drawing by 
developing a neural network capable of reproducing and mimicking 
human drawing through conditional and unconditional generation. To do 
so, they considered each drawing as a list of points, and each point as a 
vector of length 5 to characterize the position and state of the pen at a given 
time. The generative model used in this study was VAE. In Ha and Eck’s 
(2017) model, both the encoder and decoder are recurrent neural networks, 
and hence, the name Sketch-RNN. When given an incomplete sketch, 
Sketch-RNN generates strokes to complete the sketch. As a result of the 
random nature of VAE, the model can predict different final results for the 
same initial sketch. The authors suggested that Sketch-RNN could be used, 
for example, to help students learn how to draw.

A model combining an RNN with Bayesian inference was developed 
by Philippsen and Nagai (2019) to unravel the sensory and cognitive 
mechanisms of drawing behavior. They relied on a ‘predictive coding’ 
scheme, according to which the brain constantly generates and updates 
internal, cognitive models of the world to predict the consequences of our 
actions in response to sensory inputs (Rao and Ballard, 1999). The authors 
investigated how varying the integration of sensory inputs with cognitive 

models influenced the ability of the RNN to learn to complete partial 
drawings. They found that a strong reliance on cognitive models is 
necessary to complete representational drawings, thereby highlighting the 
importance of internal models for efficient cognitive abilities such as 
abstraction and semantic categorization. Interestingly, the authors also 
stressed that drawings generated with a weak reliance on cognitive models 
differed from children’s drawings but resembled chimpanzee’s drawings. 
This result echoes previous suggestions that the inability of chimpanzees to 
complete representational drawings could be  attributed to their poor 
predictive cognitive skills, such as those involved in imagination (Saito 
et al., 2010; Watanabe, 2013). This study also demonstrates the benefits of 
generative AI in understanding the development and evolution of drawing 
behavior. This predictive coding scheme can have other applications, such 
as understanding pathologies like metamorphopsia (e.g., straight lines that 
appear distorted) from the drawings of patients to unravel the neuronal 
mechanism that leads to these drawings.

Model internals-based methods

As we have seen, drawing behavior can be studied by designing and 
training deep neural networks models and directly interpret the output. 
However, these approaches do not take advantage of the internal 
knowledge learnt by the model. To address this issue, it is possible to 
develop techniques that use model internals, such as the weights and the 
neuronal activations of each layer separately.

Predictive models based on CNNs have been shown to outperform 
other models such as SVM and k-nearest neighbors, in most 
applications. However, as with any quantitative model, predictive power 
comes at the cost of interpretability, and a notorious limitation of CNNs 
is their low explanatory appeal (Rudin, 2019). Regarding the ability of 
CNNs to help understand human behaviors, some researchers have 
suggested that AI is simply replacing a black box (the brain) with 
another. Other researchers have argued otherwise (Hasson et al., 2020). 
Ribeiro et al. (2016) developed a model to classify photographs of wolves 
and huskies. Based on accuracy alone, the model worked well. However, 
this model was in fact performing badly; all the pictures of wolves in the 
training set had snow in the background, and pictures of huskies did 
not. In learning the most discriminative features to separate images of 
wolves from those of huskies, the model thus focused on the presence 
or absence of snow in the background and did not encode the features 
of these canines. This purposely bad-designed experiment highlights 
how the qualitative analysis of learned features can increase the model 
interpretability. CNNs have explicit architectural specifications; they are 
trained with user-defined learning rules; and one has direct access to the 
weights (strength of connections between neurons) and neuronal 
activation. Analyzing how varying these hyperparameters improves or 
deteriorates the fit between models and empirical data offers exciting 
venues of research, in exploring both the neuronal mechanisms of 
information processing and their behavioral expressions (e.g., Richards 
et  al., 2019; Lindsay, 2021). A remarkable example is the study by 
Philippsen and Nagai (2019) discussed previously, in which the authors 
varied the hyperparameters prior to analyzing the relative importance 
of sensory inputs and cognition in drawing behavior. More generally, 
when devising and training a model to discriminate between children 
and adult drawings, or between drawings of humans and other great 
apes, independent of model performance, one may be  interested in 
knowing which features are responsible for AI discrimination. To do so, 
two possible approaches exist: local interpretation, allowing us to 
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understand the features of a specific image (i.e., based on the data), and 
global interpretation, allowing us to understand class discrimination 
(i.e., based on the model).

Local interpretation
Local interpretation encompasses techniques aiming at 

understanding a specific prediction (i.e., for a given instance) for a 
given model. Applied to deep learning, such methods can help 
understanding which part of an image played a role for a given 
prediction task. This section will provide examples of such techniques 
applied to sketches.

Bag-of-features (BoF) is a computer vision algorithm that aims to 
extract the occurrence count of features, and is more interpretable than 
CNNs. Brendel and Bethge (2019) developed BagNet, a neural network 
that combines the flexibility of CNNs and the interpretability of 
BoF. Although BagNet was originally created to analyze natural images, 
Theodorus et al. (2020) used this model to interpret sketch classification. 
They compared BagNet to non-interpretable CNNs such as VGG 
(Simonyan and Zisserman, 2015), ResNet (He et  al., 2016), and 
DenseNet (Huang et al., 2017), to determine whether the increased 
interpretability is due to the model itself or to the difference between 
natural images and sketches. BagNet was trained to classify sketches 
into 251 object categories. For each model (VGG, ResNet, DenseNet), 
the authors extracted and compared class activation maps (CAMs; 
Zhou et  al., 2016) for multiple images. For a given category, CAM 
indicates which region of an image influences the prediction of that 
category the most (Figure 4). To go beyond the qualitative interpretation 
allowed by a simple description of CAMs, Theodorus et  al. (2020) 
developed a quantitative metric of interpretability, the heatmap 
interpretability (HI) score, which evaluates the quality of a CAM. A 
high HI score indicates a meaningful heatmap. Figure 4 illustrates that 
the CAMs from ResNet-50 and DenseNet-109 have a low HI compared 
to VGG-16 and BagNet-33, because highly activated pixels are largely 
scattered. Concurrently, a questionnaire was used to empirically 
evaluate the interpretability of the model. Each respondent was given 
one correctly predicted image per category with its corresponding 
heatmap and was asked to label object parts according to the heatmap. 
Comparing the CAMs for several categories, the authors concluded that 
their model did not use the same features as humans do for classifying 
object sketches. For example, the CAMs for the categories of ‘sword’ 
and ‘knife’ showed that the model only focused on the tip of these 
objects during classification, while humans also considered the handle 
and the shape of the blade.

Theodorus et al. (2020) provided an example of how interpretable deep 
learning models could be used for sketches. Although their model does not 
understand object representation as humans do (Baker et al., 2018; Jacob 
et  al., 2021), training models on different age classes separately and 
analyzing the heatmaps of several object categories can help formulate 
hypotheses about the development of drawing behavior in children. CNNs 
can be used in conjunction with eye tracking. By using the framework 
proposed by Theodorus et al. (2020), the dots from CAMs for a given 
object can be compared to those of humans when classifying an object. 
Eye-tracking and CNN can also be used for a phylogenetic approach to 
understand the visualization, understanding, and representation of objects 
of different apes, for a comparison with young children.

In addition to heatmaps, other techniques offer interpretations, such 
as perturbation-based models. An example of such a method is ZFNet 
(Zeiler and Fergus, 2014), where parts of a given image are occluded and 
replaced by a gray square. Using this method, boxes can be occluded to 

understand which parts of the image are important for classification. 
However, it should be noted that the transparency of the prediction must 
be  rigorously studied, as it may not be  achievable through local 
interpretations (Ghassemi et al., 2021).

Global interpretation
To understand how information flows in the model, another 

possibility is to study the global interpretation, such as feature 
visualization. The first convolutional layer of a CNN extracts basic 
features, that is, edges and color blobs (Qin et al., 2018), which are easy 
to visualize and understand, while the deeper layers extract more 
complex shapes, which can describe parts of objects, entire objects, or 
complex patterns abstract to human perception (Singer et al., 2020, 
2021) showed that photographs and drawings are similarly represented 
in the early and intermediate layers for networks trained 
on photographs.

Feature visualization has been widely studied in computer vision 
(Zeiler and Fergus, 2014; Yosinski et al., 2015; Olah et al., 2017), but few 
studies have been conducted on sketches and drawings. Young-Min 
(2019) studied the visual characteristics involved in comic book page 
classification. First, they designed a model to classify comic book pages 
between several comic artists. They then investigated visual features 
using a previously published method (Szegedy et al., 2015), with nine 
representative neurons for each layer. The results showed that, contrary 
to photograph classification, the features used by the CNN in classifying 
drawings of comics were not parts of objects, such as face features, but 
common artistic patterns (e.g., textures).

Applying these techniques to sketch classification, neural networks 
can discover new features for several classification problems, such as 
between very young children and chimpanzees, or even compare the 
drawing style between different cultures. The hierarchical order of the 
layer can also be meaningful in understanding the drawing behavior of 
children at several levels, ranging from a stroke to an object shape 
construction. For instance, when looking for interspecific and 
intraspecific differences in drawings, the first convolutional layer of a 
CNN can extract basic features, differentiating humans from other great 
apes. For a given CNN trained for classification, one can test whether the 
depth of the layer discriminant of the classifier is linked to the degree of 
behavioral divergence (that could be developmental, cultural, genetic, or 
phylogenetic). One would expect early layers to be discriminant enough 
to classify between species, and deeper layers would be needed for more 
complex classification, such as cultural or developmental divergences. As 
orangutans are more dexterous with their hands than chimpanzees and 
gorillas (Mackinnon, 1974), the first layer could separate humans and 
orangutans as well as the two other species.

Another way to interpret CNNs is by using the model parameters 
proposed by Chen et al. (2016), who developed InfoGAN, a generative 
model for interpretation that maximizes mutual information to discover 
latent features. This method has been evaluated using various datasets, 
such as the MNIST dataset (LeCun, 1998), a database of handwritten 
digits. In this case, the generator was able to discover latent features 
describing, for example, digit type, width, and rotation of the digits. 
InfoGAN has also been used on the CelebA face dataset (Liu et al., 
2015), revealing encoded features like the azimuth, the presence of 
glasses, hairstyle, and emotion. From these results, we anticipate that 
InfoGAN would have a high appeal in studying sketches, to explore the 
development of perception and representation in children by identifying 
features that are common and those that are discriminant between 
children and adult drawings.
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Long et al. (2018) collected drawings from young children, older 
children, and adults to understand how object representation develops 
with age. They used a method called transfer learning, where a model 
trained on one task is reused for another task. Transfer learning saves 
computing resources and allows for high performance with a relatively 
small number of datasets because it exploits the fact that some 
properties learned by a model to solve one task are useful for many 
other related tasks. In the study by Long et al. (2018), sketches were 
encoded by a pre-trained CNN; features were extracted from layers 
across several depths; and representational dissimilarity matrices 
(RDMs) were calculated for each of the three-age classes and compared. 
Their study showed that the way older children represent objects is 
more similar to that of adults than young children. Moreover, this also 
raises the possibility of studying different levels of representation of 
drawings through different layers of CNNs. Thus, local and global 
interpretations are possible with CNNs.

Available datasets for drawing(s) 
analysis

As a result of the widespread availability of touch-screen devices, 
drawings and in particular, sketches, can now be more easily collected and 
analyzed. Moreover, scholars can also collect drawings online through 
crowdsourcing or online drawing games. However, these datasets have 
been rarely used in psychological or anthropological studies, possibly 
because of the lack of associated metadata on the participants, such as their 
age, location, gender, culture, or drawing skill level. This metadata can 
be difficult to collect because they may require ethical approval.

Datasets can be organized into two families: amateur and expert 
datasets. In this review, amateur datasets mostly collate data on sketches 

and drawings without associated metadata on the person who did the 
drawing (in particular the drawing skills). Expert datasets gather 
drawings that have been extracted from books or comics. This kind of 
data can lead to other difficulties, such as copyrights. Moreover, the 
style difference between two experts may be significantly larger than 
that of between two amateurs, meaning that results obtained with one 
expert dataset may not be easily generalized to another expert dataset. 
We  provide a non-exhaustive list of drawing datasets that are 
summarized in Table 2.

Amateur datasets

A major –and one of the first – sketch datasets is QuickDraw by 
Google. This dataset includes more than 50 million sketches belonging 
to over 345 object categories (Jongejan et al., 2016). QuickDraw is an 
online game where participants are asked to draw an object in 20 s, and 
a network is trained to recognize that object. For each sketch, the 
category is stored, as well as a Boolean indicating if the category was 
recognized by the game, the timestamp of the sketch, the country where 
the drawing was made, and the spatial and temporal data of the strokes. 
Despite some limitations (e.g., the lack of metadata such as the sex and 
age of the person who did the drawing), QuickDraw is a highly 
promising tool for investigating cultural differences in drawing-based 
object representations.

The second important amateur dataset is the TU-Berlin dataset, 
which provides more than 20,000 sketches of 250 categories of 
common objects drawn by 1,350 unique participants (Eitz et  al., 
2012). TU-Berlin sketches were collected via Amazon Mechanical 
Turk (AMT), a crowdsourcing marketplace where requesters hire 
crowd-workers to perform particular tasks (in our case, drawing an 

FIGURE 4

CAM of three objects by different models from Theodorus et al. (2020). The more the dots are clustered, the more of the corresponding area is considered 
in the model. Note that VGG-16 and BagNet-33 learned the representation of object parts. Reprinted with permission.
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object from a given category). Furthermore, each drawing is 
associated with a second category, for which other participants are 
asked to identify the drawn object. The temporal order of the strokes 
is available for each drawing; however, the personal data on the 
participants are not available.

A third dataset is the Sketchy database, which consists of 12,500 
photographs of 75,471 sketches belonging to 125 object categories 
(Sangkloy et al., 2016). Each sketch is paired with a photograph, and 
each photograph is linked to a number from 1 to 5, characterizing the 
ease of sketching. Temporal data on strokes are available for each sketch. 
As most of the datasets are constructed by asking the participants to 
draw a particular object, there may be a large variability with respect to 
the drawn object and its features. For example, when asked to draw a 
dog, two participants may think about completely different breeds, 
which can be undesirable for the analyses. For this reason, datasets 
containing sketches representing photographs can lead to a decrease in 
variability, which can be an asset for this type of data.

Experts’ datasets

Among expert datasets, Manga109 (Fujimoto et al., 2016) provides 109 
Japanese comic books drawn by 94 professional creators with each book 
containing 194 pages on average. These books date from 1970 to 2010 and 
several genres are illustrated. Each page is annotated with rectangular areas 
characterizing the position of metadata, such as frames, text, and character 
(face, body), through software developed for this study.

Hicsonmez et al. (2017) collected more than 6,500 pages from a total 
of 24 children’s book illustrators, with the goal of recognizing the authors 
using deep learning.

The list of datasets in this review is not exhaustive, only the main 
datasets are described. Other sketches datasets exist, such as COAD 
(Tirkaz et  al., 2012), SPG (Li et  al., 2018), SketchyScene (Zou 
et al., 2018).

Future research framework and 
perspectives

This review provides an overview on how deep learning has been and 
could be  used to increase our knowledge of drawing behavior. 
Understanding the ontogeny of drawing behavior has many fundamental 
applications including, diagnosis of pathologies and understanding 

perception. However, the classical methods used in psychology or 
comparative cognition, to analyze drawings, rely on verbalization by the 
author and the subjective interpretation of the experimenter, which limits 
the reproducibility of results; one way to overcome this is to use deep 
learning. Simple classification using deep learning can lead to high 
accuracy, but the interpretability and reliability of the input are not easy to 
assess, which is also true for supervised (classification, feature visualization) 
and unsupervised (InfoGAN) learning. Methods have been developed to 
interpret these results, such as heatmaps and similarity matrices, that are 
relevant to sketches. Another approach uses generative modeling (e.g., 
GANs) to generate drawings, to analyze the generative process, and 
eventually infer the underlying behavior. However, while drawing ontogeny 
is known to critically depend on various factors such as culture, age, and 
sex, the large datasets of drawings and sketches, currently used to train 
CNN and other AI algorithms, usually lack this kind of information. Thus, 
it is important to develop new datasets, methods, and criteria to advance 
our understanding of drawing behavior. A dataset with many ancillary 
variables could, for example, allow cultural analysis. By unraveling the 
extraordinary predictive capacity of models and through ongoing research 
to make these models more transparent, AI will undoubtedly significantly 
contribute to improving our understanding of the fundamental behavior 
of drawing, for humans and their relatives.
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TABLE 2 Summary of the presented datasets.

Dataset # of images # of categories of 
drawings

Drawing skill Type of approach 
(product or 
process)

Metadata

Quick, Draw! 50 million sketches 345 (objects categories) Amateur Both Country

TU-Berlin dataset 20,000 sketches 250 (object categories) Amateur Both Human prediction 

available for each drawing

Sketchy dataset 75,471 sketches of 12,500 

photographs

125 (object categories) Amateur Both Drawings paired with a 

photograph

Manga109 dataset 109 Japanese comics with 

194 pages each

94 (professional creators) Expert Product Labeled rectangles around 

frames, faces…

Hicsonmez et al. dataset 

(2017)

6,500 pages 24 (professional illustrators) Expert Product

All these datasets are at least partially available online.
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