
HAL Id: hal-04208196
https://hal.science/hal-04208196

Submitted on 15 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Optimal location of EVs public charging stations based
on a macroscopic urban electromobility model

Rémi Mourgues, Martin Rodriguez-Vega, Carlos Canudas de Wit

To cite this version:
Rémi Mourgues, Martin Rodriguez-Vega, Carlos Canudas de Wit. Optimal location of EVs public
charging stations based on a macroscopic urban electromobility model. CDC 2023 - 62nd IEEE
Conference on Decision and Control, IEEE, Dec 2023, Singapore, Singapore. �hal-04208196�

https://hal.science/hal-04208196
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Optimal location of EVs public charging stations based on a
macroscopic urban electromobility model

Rémi Mourgues1, Martin Rodriguez-Vega1, Carlos Canudas-de-Wit1

Abstract— This paper introduces a graph-based dynamic
model for electric vehicle (EV) mobility in urban areas. The
model tracks EV state-of-charge (SoC) changes over time and
space, along with power inputs from public charging stations
(PCS). It considers driver behavior when deciding when and
where to charge, accounting for factors like current SoC,
distance to PCS, and charging cost. The model helps identify
optimal PCS locations to enhance convenience for EV users
and profitability for PCS owners. Additionally, an averaged
version of the model is presented to reduce computational
overhead while aiding in optimal PCS placement. Simulation
results affirm the effectiveness of our model and optimization
approach in identifying ideal charging station locations and
enhancing EV charging infrastructure accessibility.

I. INTRODUCTION

As the world transitions towards a decarbonized trans-
portation sector, Electric Vehicles (EVs) have emerged as
a promising alternative to conventional vehicles. To keep
up with the predicted sharp increase of EVs, the expansion
of charging infrastructure will need to be accelerated [1].
Although most of EV charging is currently done at private
points at home or work [2], as the penetration rate increases,
it can be expected that Public Charging Stations (PCS) will
play a more important role: in some metropolitan areas
around 50% to 60% of vehicles park at the roadside [3],
and do not have ready access to private chargers.

The optimal placement of charging stations is crucial
for maximizing the convenience of EV users and ensuring
the efficient use of resources. Due to its importance, this
problem has received growing attention in the literature. One
of the most common approaches to solving the optimal PCS
location problem is to maximize the area and number of
vehicles covered by the PCS positions. In [4], the traffic
network is modeled as a graph, where EV flows are defined
on the links, and the objective is to maximize the sum of
EV flows of links that have a PCS. [5] also uses a graph
representation but optimizes the social cost instead, which
takes into account recharging time, traffic congestion, and
missed trips due to EVs’ lack of energy. Other approaches,
such as [6] and [7], consider instead the 2D area around each
PCS, taking into account additional information and spatial
statistics, such as population density, location of points of
interest, and average occupancy of already existing PCS, to
define the optimization criteria. More detailed reviews of the
state of the art can be found in [8] from the point of view of
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the transportation sector, and in [9] from the point of view
of the power sector.

However, the existing solution approaches commonly ne-
glect the time dimension, which is a critical factor in describ-
ing the formation of peaks of demand. This lack of adequate
flow models, able to accurately forecast the spatiotemporal
distribution of EVs charging demand, was identified in [8]
as a key challenge.

This paper addresses the issue by presenting an enhanced
Electromobility model, which delineates the spatiotemporal
distribution of electric vehicles (EVs) and their average State
of Charge (SoC) within an urban context. The primary con-
tribution extends the model introduced in [10], establishing
a connection between urban mobility patterns, EV flows,
energy consumption, and power inputs from both private
and public charging stations. The extension in this paper
incorporates a driver behavior model in Section II, which
calculates charging demand at each public charging station
(PCS) based on factors like price, distance, EV SoC, and the
attributes of competing PCS. Analytical properties of this
model are examined, and a more manageable approximation
is proposed in Section III.

The second contribution employs both models to formulate
and address the optimal PCS location problem. Section IV’s
formulation considers EV recharging demand, benefits for
PCS operators, and social equity in area coverage. The
paper demonstrates the efficacy of this approach by solving
optimization problems in a simulated scenario in Section V

This paper offers tangible resources, rooted in authentic
data, to empower policymakers, transportation planners, and
industry stakeholders in their efforts to construct a more
environmentally sustainable transportation network.

II. ELECTROMOBILITY MODEL

In this section, we first introduce the original framework
of the model, and then explain in more details the new
contributions.

A. EVs mobility and energy consumption model

We model the macroscopic movement of EVs in an urban
metropolitan area by means of a graph-based framework,
G = {N,L} where the nodes N correspond to the locations
of interest where EVs move to/from, and the links L ⊂ N×N
represent the real journeys between nodes. Following the
framework introduced in [11], the nodes are divided in two
types: Origins (e.g. municipalities of an urban area), and Des-
tinations (e.g. workplaces, shopping areas, schools, leisure
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Fig. 1: Illustration of the framework with a simple network. In
orange the origin node, in purple the destination node, and in blue,
the locations of two PCS. The arrows represent the links of the
graph in each direction, with their corresponding flow and SoC
losses. Only charging stations that are close enough to a link will
provide power to it.

Symbol Description Domain Units
εi(t) Avg. SoC of EVs in node i [0, 1] -
Ni(t) Number of EVs in node i R+ veh
ϕi,j(t) Flow of EVs from i to j R+ veh/h
∆εi,j SoC loss in the link (i, j) [0, 1] -
ℓi,j Real path length of the link (i, j) R+ km
C Average EVs battery capacity R+ kWh
εki,j SoC at PCS k within the path (i, j) [0, 1] -

TABLE I: Main notations of the mobility and energy consumption
components of the Electromobility model

places). The main notations in this section are summarized
in Table I.

The model states are: the number of EVs in each node
Ni(t), their average SoC εi(t), and the EV flow between
nodes i 7→ j, ϕi,j(t). Each link (i, j) ∈ L connects Origin
to Destination nodes (i.e. G is bipartite), and has road path
length ℓi,j . Each EV that traversing link (i, j) losses C∆εi,j
energy, depending on the vehicle mass, average road grade,
and aggregate resistive forces, as in [12]. Fig. 1 shows the
main variables of interest and their interactions.

We consider the link EVs flows ϕi,j(t) as exogenous
inputs given by the people mobility model from [11], depend-
ing on the number of people wanting to make each trip and
a time profile function calibrated from real data (see [13]),
coupled with a mode choice model from [10], calibrated with
public survey data. The penetration rate η of EVs is defined
as the proportion of EVs in the total vehicle flow ϕV .

The dynamics of Ni is given by the conservation law,

Ṅi(t) =
∑
j∈N

(ϕj,i(t)− ϕi,j(t)). (1)

The dynamics of the SoC are given by the energy balance
from transported, lost, and PCS-provided energy, between
nodes (see [10] for a more detailed derivation),

ε̇i =
1

Ni

∑
j∈N

(
ϕj,i(εj − εi −∆εj,i) +

1

C

K∑
k=1

P k
j,i

)
, (2)

where we assume there are a total of K PCS, and for each
k ∈ [1..K], P k

j,i is the power input from PCS k to EVs on
the link (j, i).

B. Public charging stations with driver behavior

Consider that each PCS k has nominal total power P k
tot,

price per kilowatt-hour πk, and spatial coordinates (xk, yk) ∈
U , where U is the area of interest. The main notations for
this section are summarized in Table II.

We assume that the EVs are primarily attracted by the PCS
that are close enough to their paths. This is defined in terms
of the “Attraction-law”, commonly used in human mobility
applications [14],

Ak
i,j =

P k
tot

Pref
exp

(
−
(
dki,j/σ

)2)
, (3)

where Ak
i,j is the ”attraction-law” between the (i, j)-link and

the k-PCS, Pref is a reference power parameter (e.g. the
median power of charging points in many urban areas is 22
kW), dki,j is the shortest distance between the PCS and the
path, and σ is a parameter that specifies how far drivers are
willing to go for a recharge. We say the link and the PCS are
connected if Ak

i,j is larger than a chosen threshold Athresh.
We will now introduce the novel enhancements to the

electromobility model, integrating driver behavior consid-
erations. In this context, we presume that drivers assign a
utility value to each charging station they can access along
their route. They are then inclined to charge at stations
with higher utility ratings. This addition is crucial because,
without it, drivers would invariably opt to charge whenever
their State of Charge (SoC) falls below 1 (as referenced
in [10]). This discrete choice modeling approach has been
extensively explored in the existing literature, see [15].

For that, we propose the following utility function µ :
[0, 1] × R+ × R+ → R, which depends on current SoC
of vehicles ε, the price π, and the distance to the charging
station d,

µ(ε, π, d) = γε

(
1

ε
− 1

1− ε

)
− γππ − γde

(d/σ)2 , (4)

where γε, γπ , and γd are tunable parameters. The first term
ensures that a high number of low-SoC EVs will want to
charge, while only a few with high SoC will look for a PCS.

Symbol Description Domain Units
ℓki,j Length along path (i, j) to PCS k [0, ℓi,j ] km
dki,j Shortest distance from k to path

(i, j)
R+ km

πk Cost of PCS k R+ e /kWh
Pk
tot Total power of points in PCS k R+ kW

Pref Reference power for PCS attrac-
tion

R+ kW

σ Maximum deviation distance R+ km
µk
i,j Utility of charging at k R -

µ̄k
i,j Utility of charging after k R -

γε, γπ , γd Weight parameters for utility asso-
ciated to SoC, price, and distance,
respectively

R -

βk
i,j Proportion of flow that wants to

charge in PCS k
[0,1] -

Dk
i,j Charging demand at PCS k R+ kW

Sk
i,j Charging supply of k into (i, j) R+ kW

Pk
i,j Power provided by PCS k to link

(i, j)
R+ kW

TABLE II: Notation summary of the charging at PCS components
of the Electromobility model



The second and third terms specify the drivers’ sensitivity to
the price and distance to the PCS, respectively. The distance-
related penalty is low for d < σ, but increases sharply
afterwards. Other definitions for the utility could be proposed
which consider other variables and interactions according to
the application.

Denote by µk
i,j = µ(εi, π

k, dki,j) the utility of charging at
PCS k while traveling along the path (i, j), and by µ̄k

i,j the
utility of charging somewhere downstream, computed as

µ̄k
i,j = max

p|k≺p

{
µp
i,j

}
, (5)

where the notation k ≺ p means that k precedes (is upstream
of) p along the same path, ℓki,j < ℓpi,j . If there are no other
PCS afer k, we set µ̄k

i,j = 0. The proportion of EVs that
charge at k is

βk
i,j =

eµ
k
i,j

eµ
k
i,j + eµ̄

k
i,j

. (6)

Note: βk
i,j ∈ [0, 1], lim

µk
i,j→−∞

βk
i,j = 0 and lim

µk
i,j→∞

βk
i,j = 1.

Thus the power provided by each station to each connected
link is

P k
i,j = min(Dk

i,j , S
k
i,j), (7)

where the charging demand is

Dk
i,j = C(1− εi +∆εki,j)ϕi,jβ

k
i,j

∏
p≺k

(1− βp
i,j). (8)

where ∆εki,j = ∆εi,jℓ
k
i,j/ℓi,j , with ℓki,j the path length from

i to PCS k. The available PCS power supply is divided
proportionally between all connected paths,

Sk
i,j =

Dk
i,j∑

(n,m) D
k
n,m

P k
tot. (9)

Example 1 (System with two-nodes and one CS). Consider
the example shown in Fig. 1 with only PCS 1 active. The
system dynamics are:

ε̇1 =
1

N1

(
ϕ2,1(ε2 − ε1 −∆ε2,1) +

1

C
P 1
2,1(ε2)

)
,

ε̇2 =
1

N2
ϕ1,2(ε1 − ε2 −∆ε1,2).

(10)

with P 1
2,1(ε2) = min

(
Cβ1

2,1ϕ2,1(1 +
ℓ12,1
ℓ2,1

∆ε2,1 − ε2), P
)

,
and

Ṅ1 = ϕ2,1(t)− ϕ1,2(t),

Ṅ2 = ϕ1,2(t)− ϕ2,1(t).
(11)

C. General model representation

Denote by N(t) ∈ R|N |
+ , and ε(t) ∈ [0, 1]|N | the

concatenated states of number of EVs Ni(t) and SoC εi(t),
respectively, and by ϕ(t) ∈ R|L|

+ the concatenated vector of
link flows ϕi,j(t).

Furthermore, denote by u ∈ RK×2 the location of K PCS,
i.e.,

u =
[
(x1, y1), (x2, y2), . . . (xK , yK)

]⊤
.

The model can be compactly written as
Ṅ = Iϕ(t), (12)
ε̇ = f(N(t), ϕ(t), ε(t), u) = f(t, ε, u), (13)

where I ∈ {−1, 0, 1}|N |×|L| is the graph’s incidence matrix,
and f is a vector function that gathers (2)–(7). As ϕ and N
do not depend on ε, f can be considered as a function of
time for ease of notation.

III. MODEL PROPERTIES

In this section we study several model properties which
are inherent to the physic of the system. In particular we
analyze the average states and their stability, which are
useful for simplifying the optimization problem and better
understanding the aggregate system behavior.

A. Average system approximation

The proposed model was designed for the case of urban
areas, which are characterized by periodic mobility patterns
during a week. As a consequence, EV flows and numbers
of EVs at each node resulting from solving (12) evolve
periodically with a period T (typically one week) i.e.,
N(t) = N(t− T ), ϕ(t) = ϕ(t− T ), Then, N̄ , and ϕ̄

N̄ =
1

T

∫ t

t−T

N(τ)dτ, ϕ̄ =
1

T

∫ t

t−T

ϕ(τ)dτ

describe the average vehicle number per node, and the
average vehicle flow between nodes, respectively. Note that
the periodicity of N implies

ϕ̄i,j = ϕ̄j,i , ∀(i, j). (14)
As a consequence, f(t, ε, u) is periodic with respect to t,
f(t, ε, u) = f(t− T, ε, u). Hence, (13) can be used alone to
study the model dynamic properties. For that, consider the
following definition for the average SoC,

ε̄(t) =
1

T

∫ t

t−T

ε(τ)dτ (15)

which has dynamics

˙̄ε(t) =
1

T

∫ t

t−T

f(N,ϕ, ε, u)dτ. (16)

Lemma 1 (Approximated averaged equation). The dy-
namic of ε̄(t) can be approximated using the Taylor expan-
sion of f around (N̄ , ϕ̄, ε̄) by

˙̄ε(t) ≈ f(N̄ , ϕ̄, ε̄(t), u). (17)

Proof. Expanding f(N,ϕ, ε, u) around (N̄ , ϕ̄, ε̄) and ne-
glecting high-order terms, we get

f(N,ϕ, ε, u) ≈ f(N̄ , ϕ̄, ε̄, u)+
∂f

∂ε
(ε−ε̄)+

∂f

∂N
(N−N̄)+

∂f

∂ϕ
(ϕ−ϕ̄).

Noticing that, by construction, the integral of a period T
of the difference between the signals and their average do
cancel, i.e.∫ t

t−T

(ε− ε̄)dτ =

∫ t

t−T

(N − N̄)dτ =

∫ t

t−T

(ϕ− ϕ̄)dτ = 0,

as a consequence f(N,ϕ, ε, u) ≈ f(N̄ , ϕ̄, ε̄, u).

Example 2 (Average approximation. Example 1–cont.).
With regard to the Example 1, and following Lemma 1, we
obtain

˙̄ε1 =
1

N̄1

(
ϕ̄(ε̄2 − ε̄1 −∆ε2,1) +

1

C
P2,1(ε̄2)

)
,

˙̄ε2 =
1

N̄2
ϕ̄(ε̄1 − ε̄2 −∆ε1,2)

(18)



Fig. 2: Example 1. Comparison between the full model (plain line)
and the average model (dashed line).

with P2,1 given by:

P2,1(ε̄2) = min

(
Cϕ̄(1− ε̄2)(1− ε̄2 +

1

2
∆ε2,1), P

)
where β2,1 in (6) is replaced by a linear approximation.
Details are given in the Appendix I. The comparison between
the original and average model is shown in Figure 2.

B. Asymptotic-periodicity, Multiple equilibria and stability

In view of analyzing the dynamical properties of our
model, let introduce the following definitions and properties.

Definition 1 (Asymptotic-periodicity). System (13) is said
to be asymptotically periodic if its solutions satisfy

lim
t→∞

(ε(t)− ε(t− T )) = 0. (19)

Property 1 (Existence of Equilibria). If System (13) is
asymptotically periodic, then there exist one or more equi-
librium states for its average counterpart ε̄(t),

lim
t→∞

ε̄(t) = ε̄∗ ⇔ lim
t→∞

˙̄ε(t) = 0 (20)

where ε̄∗ is the average equilibrium state vector. Assuming
that (17) holds exactly, then ε̄∗ satisfies the property

f(N̄ , ϕ̄, ε̄∗, u) = 0. (21)

Note that ε̄∗ will ultimately depend on the penetration
rate η so we may expect different positions and nature of
equilibria depending on the total amount of EVs.

Besides, and because the structure of P2,1(ε̄2) =
min(D2,1, S2,1), the system (18) (a similar behavior can be
obtained for more complex systems) will exhibit different
equilibrium and stability properties for the cases of: demand
regime D, when P2,1(ε̄2) = D2,1, and the supply regime S ,
when P2,1(ε̄2) = S2,1, separated by the line ε̄2 = ε̄2c, where

ε̄2c := 1 +
∆ε2,1
4
−

√
∆ε22,1
16

+
ηc
η
(∆ε2,1 +∆ε1,2), (22)

with the critical penetration rate ηc given as

ηc :=
P

ϕ̄V C(∆ε1,2 +∆ε2,1)
. (23)

it defines the transition between different systems regimes (as
introduced by [10]). Its implications in the systems stability
are given in Property 3.

Definition 2 (Sustainable and Unsustainable demand
regime). We call sustainable (resp. unsustainable) demand
regime (SDR, resp. UDR) the regime when the total power
capacity of the PCS, is enough (resp. not enough) to satisfy

Fig. 3: Example 1. Evolution of the mean SoC of the system using
the average model, for different η. The case η > ηc reaches a
plateau representing the fact that the cars are stuck when the SoC
comes near the loss of the path.

the total EVs energy demand. The SoC trajectories then reach
a non-zero value (resp. converge towards zero).

We now study the stability and convergence of the system,
starting with a general property.

Property 2 (Stability). If System (13) is asymptotically-
periodic, then the average equilibrium state ε̄∗ is stable, in
the sense that the system converges to one of the values of
ε̄∗ satisfying f(N̄ , ϕ̄, ε̄∗, u) = 0.

Asymptotic periodicity, and hence stability, can only be
obtained for certain cases depending on the values of η.
Indeed, as will be shown in Property 3, the system (18)
exhibits a phase transition at the critical penetration rate ηc
between SDR and UDR.

Property 3. The system (18) has the following stability
properties:
i) The following statements hold iff η < ηc:

a. There is an unique equilibrium point, ε̄∗D ∈ D
satisfying f(N̄ , ϕ̄, ε̄∗D, u) = 0,

b. ε̄∗D is asymptotically stable: ∃δ s.t. ∀ε̄(0) ∈ Bδ =
{ε̄ ∈ D : ∥ε̄− ε̄∗D∥ ≤ δ}, limt→∞ ε̄(t) = ε̄∗D.

ii) Let S∗ :=
{
ε̄∗ ∈ S : f(N̄ , ϕ̄, ε̄∗, u) = 0

}
, and s(ε̄) :=

ε̄1 − ε̄2 −∆ε1,2. Then:
a. ∀η, the trajectories ε̄(t) in S converge exponen-

tially towards s(ε̄) = 0
b. S∗ ̸= ∅ iff η = ηc. Then, the set of equilibrium

points, ε̄∗ ∈ S∗, belong to s(ε̄∗) = 0.
iii) ∀η ̸= ηc,∀ε̄(0) ∈ S , the trajectories ε̄(t) in S reach in

finite time:
a. Negative values by crossing the ε̄2 = 0 boundary

if η > ηc;
b. D by crossing the S/D boundary if η < ηc.

Proof. See Appendix I.
Remarks. ηc in (23) separates out power balance between

the injected PCS power and power losses of the network.
Case i) and ii) − b state that the SDR is reached for all
η ≤ ηc. When η = ηc, an infinite number of equilibria
exists characterized by s(ε̄∗) = 0. ii)a indicates that the
surface s(ε̄∗) = 0 is always attractive. iii) − a corresponds
to the UDR: the system loses more energy that the PCS
can provide. In this case, the system trajectories reach in
finite time the ε̄2 = 0 boundary. iii)− b corresponds to the



(a) η < ηc (sustainable demand regime): tra-
jectories converge towards an unique equi-
librium, ε̄∗D .

(b) η > ηc (unsustainable demand regime):
trajectories converge towards an infinite
number of possible equilibria.

(c) η = ηc (critical demand regime): tra-
jectories converge towards an almost-empty
state of charge.

Fig. 4: Phase portraits of system (18) for different values of η. The circles represent the final state.

SDR: the trajectories cross to the demand domain D and
potentially reach an equilibrium ε̄∗D. Although those results
do not include the study of potential oscillations between
the two regimes, we can observe from the phase portraits
in Fig. 4 that no cycles are observed at the vicinity of the
S/D boundary when η ≤ ηc, and that the only equilibrium
is indeed ε̄∗D for η < ηc.

IV. PROBLEM FORMULATION OF THE OPTIMAL
PLACEMENT OF CHARGING STATIONS

Consider the problem of finding the optimal locations, u,
of K PCS, with nominal powers P k

tot, k ∈ [1,K].

A. Objective function

Let J(ε, u) be the cost function considering profits for the
charge stations operators, user satisfaction, and social equity,

J(ε, u) = λ1J1(ε, u)︸ ︷︷ ︸
profit

+λ2J2(ε, u)︸ ︷︷ ︸
satisfaction

+λ3J3(u)︸ ︷︷ ︸
equity

, (24)

where λi > 0 are weighting constants selected such that
0 ≤ J(ε, u) ≤ JM , with Ji defined as follows:

• Profit: Highlights the priority of PCS operators in
striving to maximize charging station profits through the
minimization of the gap between total PCS capacity and
the power actually supplied (sold)

J1(ε, u) =
∑
k

P k
tot −

∑
i

∑
j

P k
i,j(ε, u)

 . (25)

• Satisfaction: describes the difference between the EV
energy demand at a specific link and the expected
power supply with PSC placement at location u. By
minimizing this utility function, the satisfaction of EV
drivers is maximized. J2 is defined as

J2(ε, u) =
∑
i

∑
j

(
Di,j(ε)−

∑
k

P k
i,j(ε, u)

)
, (26)

where Di,j(ε) is the power demand on link (i, j),
Di,j = Cϕi,j(1 + ∆εi,j − εi) (27)

• Equity: pertains to the geographical dispersion of PCS.
Its purpose is to compel the optimizer to diversify PCS

locations, ensuring broader access for more users. This
is done by minimizing

J3(u) =
∑
i ̸=j

σ

(
P i
totP

j
tot

∥ui − uj∥2

)
, (28)

where σ : R+ → [0, 1] is a sigmoid function.

B. Static optimization based on the average model

In this first formulation, we consider the averaged system
ε̄(t), with the assumption that approximation (17) holds,
and that the system is asymptotically periodic. Hence, from
Property 1, system (17) will reach an average equilibrium.
The optimization is then formulated as follows:

Problem formulation 1 (Static optimization based on the
average equilibrium).

min
u∈U

J(ε̄∗, u)

s.t. f(N̄ , ϕ̄, ε̄∗, u) = 0,
(29)

where N̄ , ϕ̄ are pre-computed in advance.

C. Dynamic optimization based on the full model

Another alternative (more computationally involved), and
in view to validate the previous simplified problem formula-
tion, is to use the full model (12)-(13),

Problem formulation 2 (Dynamic optimization based on the
full model).

min
u∈U

1

T

∫ H

H−T

J(ε(t), u)dt

s.t. ε̇(t) = f(N(t), ϕ(t), ε(t), u),

(30)

where N(t) is pre-computed from (12) and stored during
the whole time-optimization horizon t = H . The value of
H should be large enough such that ε(t) is close to the
asymptotic periodic behavior by the end.

V. OPTIMAL PLACEMENT STRATEGIES

Consider the network shown in Fig. 5-6, consisting of 4
origin and 5 destination nodes. Each origin has a population
of 100 EVs. The EV flows of the network were set to
emulate realistic daily commute cycles: they are shaped as



a Gaussian bell curve with a standard deviation of 1 hour,
centered around 7h00 for origin-to-destination flows, and
around 17h00 for destination-to-origin. The amplitudes are
such that 95% of the total population moves during the day,
and distributed randomly over all links. In these figures, the
thickness of the graph links is proportional to the peak flows.

A. Optimal placement strategies for a single PCS

1) Brute force approach and heatmap computation using
the average model: To benchmark the solutions of the op-
timization Problems 1-2, we first compute the cost function
J for all possible locations of a single PCS. This allows
to plot a heatmap of J in the considered area, and also
to identify the ”true” optimal location. The network area
is spatially discretized using a rectangular grid U . Each
rectangle is labeled by the index k, for all k ∈ [1..K].
Using the time-dependent flows as inputs we compute ϕ̄i,j

for each (i, j) ∈ L and N̄i for i ∈ N. The objective function
is computed for each of the candidate locations, and the
optimal position uopt is set at the location with smallest
J , as described by Alg. 1. Figure 5 shows the heatmap of
the objective function for each position of the PCS, and the
position of uopt.

Algorithm 1 Brute force approach and heatmap computation
- Average model
Inputs: ϕ(t)
Outputs: {J(ε̄∗k, uk)}k=1...K, Jopt, uopt

Initialize Jopt ← JM , uopt ← (0, 0)
From (12) compute ϕ̄i,j ,∀(i, j) ∈ L, and N̄i,∀i ∈ N

for k = 1 to K do
Let uk = (xk, yk)
Find ε̄∗k from f(N̄ , ϕ̄, ε̄∗k, uk) = 0
if Solution exist then

Compute J(ε̄∗k, uk) using (24)
else
J(ε̄∗k, uk)← JM

end if
if J(ε̄∗k, uk) < Jopt then
Jopt ← J(ε̄∗k, uk), uopt ← uk

end if
end for

2) Optimization using the average model: We can solve
the Problem 1 using the generic Matlab optimizer fmincon,
which takes as input the objective function J , the constraints
f = 0, and an initial point u0 to compute the optimal
location uopt using an interior-point method (only fmnicon
was used in this paper, other solvers will be studied in a
future work.) Since Problem 1 is non-convex, it is possible
to end up in a local minimum. To improve the optimization,
we repeat the optimization K times using random initial
points and select the output that provides the best objective,
as explained in Alg. 2. Fig. 5 shows the obtained optimal
location of the PCS using K = 5, which in this case coincides
with the “true” optimal location found with the brute force
benchmark.

(a) Average model

(b) Full model

Fig. 5: Optimal location of 1 PCS for an arbitrary network. The
background colors correspond to a heatmap of the objective function
computed by locating the PCS at each coordinate in the domain.
Whiter colors shown smallers values for J . The green square is the
optimal location computed by an off-the-shelf solver.

Algorithm 2 Optimization with solver - Average model
Inputs: ϕ(t)
Outputs: Jopt, uopt

Initialize Jopt ← JM , uopt ← (0, 0)
From (12) compute ϕ̄i,j ,∀(i, j) ∈ L, and N̄i,∀i ∈ N

for k = 1 to K do
Choose u0 = (x0, y0) ∈ U randomly
(uk, Jk)← fmincon(J, f(N̄ , ϕ̄, ·, ·), u0)
if Jk < Jopt then

Jopt ← Jk, uopt ← uk

end if
end for

3) Brute force approach and heatmap computation using
full model: Similarly to the average model analysis, we first
study the solutions of the optimization Problem 2 using a
brute force approach for the location of a single PCS, with
the same spatial grid discretization U . The network under
study has a period P = 1 day, and we used a simulation
horizon H = 1 week. In the full case, the input flows
ϕ(t) are used to compute the number of EVs N(t). To
build the heatmap, for each candidate location of the PCS,
the trajectories ε(t) for t ∈ [0, H] are computed, and the
objective value is the average of the last period of the
simulation. The optimal location uopt is the place with the
smallest objective value J . For this, we used Alg. 3. The
resulting heatmap is shown in Fig. 5.

4) Optimization using full model: To compare with the
brute-force benchmark given previously, the fmincon opti-
mizer is used as described in Alg. 4, which has a similar



Algorithm 3 Brute force approach and heatmaps computa-
tion - full model
Inputs: ϕ(t), T,H
Outputs: {J(ε̄∗k, uk)}k=1...K, Jopt, uopt

Initialize Jopt ← JM , uopt ← (0, 0)
Compute N(t) for t ∈ [0, H] using (12)
for k = 1 to K do

Let uk = (xk, yk)
Compute ε(t) for t ∈ [0, H] from (13) using uk

Compute Jk = 1
T

∫H

H−T
J(ε(t), uk)dt with (24)

if Jk < Jopt then
Jopt ← Jk, uopt ← uk

end if
end for

structure to Alg. 2. Alg. 4 uses of the function obj to
compute the value of the dynamic objective function for a
given PCS position u. The resulting optimal PCS location
uopt is shown in Fig.5, which coincides with the global
optimal obtained with the brute force approach.

Algorithm 4 Optimization with solver - full model
Inputs: u, ϕ(t), N(t), T,H
Outputs: Jopt, uopt

Initialize Jopt ← JM , uopt ← (0, 0)
Compute N(t) for t ∈ [0, H] using (12)
for k = 1 to K do

Choose u0 = (x0, y0) ∈ U randomly
(uk, Jk)← fmincon(obj(·, ϕ,N, T,H), u0)
if Jk < Jopt then
Jopt ← Jk, uopt ← uk

end if
end for
function obj (u, ϕ(t), N(t), T,H)

Compute ε(t) for t ∈ [0, H] from (13)
Compute J = 1

T

∫H

H−T
J(ε(t), u)dt with (24)

return J
end function

B. Optimal location of multiple PCS

For multiple PCS, it is no longer feasible to use the brute
force approaches in Alg. 1-3, as the number of computation
complexity increases exponentially with the number of PCS.
Therefore, we use Alg. 2 for the average model and Alg. 4
for the full model to locate 5 PCS. For the comparison
to be fair, we use the same random sequence for the
optimal search. The results are shown in Fig. 6, showing that
both algorithms provide similar results. This was expected
since the average formulation is designed to simplify the
asymptotic-periodicity of the dynamic system, and contains
the same spatial and vehicle demand properties of the full
model. However, there could be situations where both models
provide slightly different results, especially when the flows
dynamics variance are large (e.g. the peak flows in different
links occur during very different times of day). In terms
of computation time, the averaged model optimization took
1.4 minutes to provide the results, whereas the full model

(a) Average model

(b) full model

Fig. 6: Optimal location of 5 PCS for an arbitrary network, using
a solver. The same random initial conditions have been used. Note
that the methods give similar results, but the first is 40 times faster.

required 53.5 minutes. This suggests that optimization based
on the averaged model can be adopted when applying the
methods to large-scale networks.

VI. CONCLUSIONS

We studied the urban EV PCS location problem, by first
refined the Electromobility model [10] adding a driver be-
havior model, enabling a more realistic assessment of driver
demand. Then, we also analyzed the dynamic model prop-
erties and proposed a simplified, time-independent average
model based on urban mobility patterns. We formulated two
optimal placement problems using both models, considering
EV user satisfaction, PCS operator profitability, and social
equity in the cost function. Simulation results showed that
both approaches yield similar satisfactory results, suggesting
the averaged model improves computation efficiency.

APPENDIX I
PROOF OF PROPERTY 3

A. Approximation of β2,1

First, β2,1 in (6) is approximated as

β2,1(ε̄2) =
1

1 + exp
(
−γε

ε̄2
+ γε

1−ε̄2
+ γππ

) ≈ 1− ε̄2 (31)

Fig. 7: Shape of β2,1 and its proposed linear approximation.



where γπ = 0 and γε = 1 as the electricity price does
not play any role in the single PCS case. The quality of this
approximation is shown on the Figure 7. This approximation
leads to the P2,1(ε̄2) given in Example 2.

Proof of i): Stability in the demand regime. It is
straightforward to show from (18) that, in D, the equilibrium
is given by

ε̄∗1 = ε̄∗2 +∆ε1,2,

ε̄∗2 = 1 +
∆ε2,1
4
−

√
∆ε22,1
16

+ ∆ε1,2 +∆ε2,1.
(32)

In this case the solution is uniquely defined, and denoted ε̄∗D.
It does not depend on the value of η, however in the case
η > ηc, ε̄∗D2 < ε̄2c so ε̄∗D ∈ S.

Consider now the local approximation of system (18)
around ε̄∗D ∈ D, when δε̄ is a perturbation:

˙δε̄ = ∇f(ε̄∗) · δε̄ (33)
where ∇f is the Jacobian matrix of f :
∇f(ε̄∗) = ηϕ̄V(

− 1
N̄1

1
N̄1
− 2

N̄1

√
∆ε22,1
16 +∆ε1,2 +∆ε2,1

1
N̄2

− 1
N̄2

)
.

(34)
It can be shown from it that both eigenvalues are strictly
negative, therefore the system is stable.

Proof of ii): Stability in the supply regime. From
(18), for ε̄ ∈ S, the equilibrium exists iff η = ηc, and it
is characterized by

s(ε̄∗) = ε̄∗1 − ε̄∗2 −∆ε1,2 = 0. (35)
To show that s = s(ε̄1, ε̄2) is attractive in S, consider the
system solutions in S:

ε̄1(t) = αt− ρ
aN̄1

(1− e−at) + ε̄1(0),

ε̄2(t) = αt+ ρ
aN̄2

(1− e−at) + ε̄2(0),
(36)

with constants defined in the Table III. s(t) becomes:
s(t) = s(0)e−at

and hence s(t)→ 0, regardless the value of η.
When η = ηc, α = 0 and the system converges exponen-

tially towards the solution:
ε̄∗1 = ε̄1(0)− ρ/(aN̄1),
ε̄∗2 = ε̄2(0) + ρ/(aN̄2).

(37)

Note that some trajectories can cross the S/D boundary,
however in that case ε̄∗D2 = ε̄2c so ε̄∗D ∈ S∗. Moreover, as
said in the main part, no cycle have been noticed and all
trajectories converge towards their respective equilibrium.

When η ̸= ηc, it is straightforward to see that no equilib-
rium exists.

Proof of iii): Stability in the supply regime (η ̸= ηc).
In the case η ̸= ηc, there is no equilibrium in S, although

the s = 0 hyperplane is still attractive. It can be shown that
sign(α) = sign(ηc − η), from (36) the system trajectories
will diverge in finite time towards:

• negative values for α < 0, reaching the UDR;
• the S/D boundary for α > 0, then will follow the

demand regime dynamic. As discussed previously, they
then seem to converge towards ε̄∗D.

Constant Value
a ηϕ̄V

(
1

N̄1
+ 1

N̄2

)
b

∆ε2,1
N̄1

ϕ̄V (ηc − η) + ∆ε1,2ϕ̄V

(
ηc
N̄1

+ η
N̄2

)
α ηϕ̄V

N̄2

(
b
a
−∆ε1,2

)
ρ ηϕ̄V

(
ε̄1(0)− ε̄2(0)− b

a

)
TABLE III: Constants of the dynamic evolution of the system
for the supply regime.
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