The excitation of ethynyl in the interstellar medium : A key to understand isotopic fractionation ?

Paul Pirlot Jankowiak¹, Paul Dagdigian², and François Lique¹

¹Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, F-35000 Rennes, France ²Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218-2685, USA

March 18, 2023

The case of ethynyl (C_2H) ...

 $\mathsf{C}_2\mathsf{H}$ has been discovered in a wide range of astrophysical environments:

- Photodissociation regions
- Pre-stellar cores
- High-mass star forming regions
- Protoplanetary disks
- Cold clouds

 $\mathsf{C}_2\mathsf{H}$ has been discovered in a wide range of astrophysical environments:

- Photodissociation regions
- Pre-stellar cores
- High-mass star forming regions
- Protoplanetary disks
- Cold clouds

This molecule is one of the most abundant hydrocarbon in the ISM

Figure: Formation pathway¹ of C_2H

¹Sakai *et al.*, A&A 512, A31 (2010)

 $\mathsf{C}_2\mathsf{H}$ is so abundant that isotopologues are more appropriated systems to trace physical conditions in the ISM

 $\mathsf{C}_2\mathsf{H}$ is so abundant that isotopologues are more appropriated systems to trace physical conditions in the ISM

Hyperfine resolved spectra show a higher intensity in favor of $C^{13}CH$ lines than ^{13}CCH ones. Two reasons can explain these anomalies:

Figure: Detected C_2H isotopologues hyperfine lines of the $N=3 \rightarrow 2$ rotational transitions 1

 $\mathsf{C}_2\mathsf{H}$ is so abundant that isotopologues are more appropriated systems to trace physical conditions in the ISM

Figure: Detected $\mathsf{C}_2\mathsf{H}$ isotopologues hyperfine lines of the $N=3\to 2$ rotational transitions^1

Hyperfine resolved spectra show a higher intensity in favor of $C^{13}CH$ lines than ^{13}CCH ones. Two reasons can explain these anomalies:

- Different formation processes
- Different excitation mechanisms

 $\mathsf{C}_2\mathsf{H}$ is so abundant that isotopologues are more appropriated systems to trace physical conditions in the ISM

Figure: Detected C_2H isotopologues hyperfine lines of the $N=3 \rightarrow 2$ rotational transitions 1

Hyperfine resolved spectra show a higher intensity in favor of $C^{13}CH$ lines than ^{13}CCH ones. Two reasons can explain these anomalies:

- Different formation processes
- Different excitation mechanisms

\Rightarrow Need accurate rate coefficients induced by H_2 in order to interpret observations

¹Cuadrado *et al.*, A&A 575, A82 (2015)

Resolution of the Time-independant Schrödinger equation through Born-Oppenheimer approximation

Resolution of the Time-independant Schrödinger equation through Born-Oppenheimer approximation

Determination of the potential energy surface (PES)

- \rightarrow describe the electronic interaction between colliders
 - ab initio calculations
 - analytical representation of the potential $V(R, \alpha)$

Resolution of the Time-independant Schrödinger equation through Born-Oppenheimer approximation

Determination of the potential energy surface (PES)

- \rightarrow describe the electronic interaction between colliders
 - ab initio calculations
 - analytical representation of the potential $V(R, \alpha)$
- ightarrow Derbali poster
- ightarrow Mejdi poster
- \rightarrow M'hamdi poster

Resolution of the Time-independant Schrödinger equation through Born-Oppenheimer approximation

Determination of the potential energy surface (PES)

 \rightarrow describe the electronic interaction between colliders

- ab initio calculations
- analytical representation of the potential $V(R, \alpha)$
- ightarrow Derbali poster
- $\rightarrow \mathsf{Mejdi} \ \mathsf{poster}$
- \rightarrow M'hamdi poster

Resolution of the Close-Coupling equations \rightarrow describe the nuclear interaction between colliders

• cross sections $\sigma(E_{kin})$

• rate coefficients ($\sim \int_0^\infty \sigma(E_{kin}) dE_{kin}$) Most accurate approach \checkmark Most expensive one \times Number of channels: N \rightarrow Mem \propto N², time \propto N³

Potential energy surface

- Linear rigid rotor approximation
- 4D PES¹
- RCCSD(T)/aVQZ method
- Calculations are done with the $\rm MOLPRO$ $code^2$
- The PES was expanded in bispherical harmonics
- \rightarrow PES will be used for isotopologues

¹Dagdigian, J. Chem. Phys. 148, 024304 (2018) ²Werner, Molpro, a package of ab initio programs, version 2015.1, 2015

Figure: C_2H - H_2 representation in Jacobi coordinates

Hyperfine structure of ¹³C isotopologues

Open-shell molecules with a $^{2}\Sigma^{+}$ ground electronic state

• non zero total electronic spin $S = \frac{1}{2}$

 $\Rightarrow \hat{J} = \hat{N} + \hat{S}$

Hyperfine structure of ¹³C isotopologues

Open-shell molecules with a $^{2}\Sigma^{+}$ ground electronic state

• non zero total electronic spin $S = \frac{1}{2}$

 $\Rightarrow \hat{J} = \hat{N} + \hat{S}$

• non zero nuclear spin from ¹³C atom $l_1 = \frac{1}{2}$ $\Rightarrow \hat{F}_1 = \hat{J} + \hat{I}_1$

Hyperfine structure of ¹³C isotopologues

- Open-shell molecules with a $^{2}\Sigma^{+}$ ground electronic state
 - non zero total electronic spin $S = \frac{1}{2}$ $\Rightarrow \hat{l} = \hat{N} + \hat{S}$
 - non zero nuclear spin from ¹³C atom $l_1 = \frac{1}{2}$ $\Rightarrow \hat{F}_1 = \hat{J} + \hat{I}_1$
 - non zero nuclear spin from hydrogen atom $l_2 = \frac{1}{2}$ $\Rightarrow \hat{F} = \hat{F}_1 + \hat{I}_2$

Figure: Example of hyperfine structure of $^{13}\mathsf{CCH}$ $_{15/21}$

Reduced dimensionality approximation

Number of basis functions: 174 Mem \sim 70Gb

Reduced dimensionality approximation

Number of basis functions: 174 Mem \sim 70Gb

Number of basis functions: 13 Mem \sim 6Gb

Preliminary results for isotopologues

- $4D \rightarrow 2D PES$
- Resolution of the close-coupling equations
- Calculations have been done using HIBRIDON scattering code¹
- Extraction of the cross sections
 → determination of the rate
 coefficients
- ¹Alexander 2023, submitted

Figure: Temperature dependance of rate coefficients of ¹³CCH and C¹³CH with H₂ for $N_{j,F_1,F} \rightarrow N'_{j',F'_1,F'}$ transitions

Preliminary results for isotopologues

Figure: Systematic comparison at 10K of C¹³CH rate coefficients with ¹³CCH ones

- First preliminary $^{13}\mbox{CH-}$ and $\mbox{C}^{13}\mbox{CH-H}_2$ rate coefficients
- Moderate isotopic effect for isotopologues rate coefficients (deviations \sim 20-30%)
- Extend the range of temperatures where these molecules are detected
- These data are expected to be used in radiative transfer modeling

Acknowledgments

