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Abstract 

Background Patient stratification is the cornerstone of numerous health investigations, 

serving to enhance the estimation of treatment efficacy and facilitating patient matching. To 

stratify patients, similarity measures between patients can be computed from clinical 

variables contained in medical health records. These variables have both values and labels 

structured in ontologies or other classification systems. The relevance of considering 

variable label relationships in the computation of patient similarity measures has been 

poorly studied. 

Objective We propose and evaluate several weighted versions of the Cosine similarity that 

consider structured label relationships to compute patient similarities from a medico-

administrative database. 

Material and Methods As a use case, we clustered patients aged 60 years from their annual 

medicine reimbursements contained in the Échantillon Généraliste des Bénéficiaires, a 

random sample of a French medico-administrative database. We used four patient similarity 

measures: the standard Cosine similarity, a weighted Cosine similarity measure that includes 

variable frequencies and two weighted Cosine similarity measures that consider variable 

label relationships. We construct patient networks from each similarity measure and 

identify clusters of patients using the Markov Cluster algorithm. We evaluate the 

performance of the different similarity measures with enrichment tests based on patient 

diagnoses. 

 
1 These authors contributed equally to this work. 



2 

Results The weighted similarity measures that include structured variable label 

relationships perform better to identify similar patients. Indeed, using these weighted 

measures, we identify more clusters associated with different diagnose enrichment. 

Importantly, the enrichment tests provide clinically interpretable insights into these patient 

clusters. 

Conclusion Considering label relationships when computing patient similarities improves 

stratification of patients regarding their health status. 

Keywords: prior expert knowledge; structured variable labels; patient stratification; patient clustering; patient 

networks; similarity measures 

 

1 BACKGROUND 

Identifying similar patients can serve multiple purposes in healthcare. In routine practice, finding 

patients similar to a given patient can help elucidate undiagnosed cases, particularly in the case 

of rare diseases [1]. Similar patients can also provide prognostic guidance. In research, identifying 

groups of similar patients is useful to stratify the population. This enables, for instance, a more 

precise estimation of medicine efficacy for a given patient profile or matching similar patients in 

case-control studies [2,3]. 

The similarity between patients can be computed from medical health records such as medico-

administrative databases. Medico-administrative databases contain data used for health care 

reimbursement purposes, including information about hospitalization, medicine and medical 

device consumption. They therefore provide a comprehensive perspective on the entire 

healthcare pathway of a given patient. 

The variables contained in these databases are labeled by terms that can be related to each other. 

For instance, medicines are labeled by codes organized into classification trees such as the 

Anatomical Therapeutic Chemical (ATC) classification. Within this classification, all anti-diabetic 

medicines belong to the same class. Thus, the labels of two medicines used to treat diabetes are 

related according to the classification, and patients treated with these medicines are expected to 

be more similar than patients treated with medicines from different classes. Other classification 

systems are available for various types of medical data. For instance, the International 

Classification of Diseases (ICD) is used for diagnoses [4] and SNOMED-CT is used for clinical 

information [5]. 

The objective of similarity measures is to identify patients sharing characteristics, such as taking 

the same medicine or having the same diagnoses at a specific age. The most commonly used 
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measures to compute similarities between patients are the Euclidean distance, the Jaccard index, 

and the Cosine similarity [6]. Weighted measures can also be incorporated to these similarity 

measures to account for the frequency of the variables. For instance, the Inverse Document 

Frequency is a weighted measure that assigns greater importance to rare variables [7,8]. 

However, these classical similarity measures rely only on the variable values and do not consider 

other information associated with the variables, such as their labels. For instance, when 

considering medications, two patients are similar if they take similar dosage of similar medicine. 

In this case, similarity is defined at both the dosage level (i.e., variable value) and at the medicine 

level (i.e., variable label relationships). Hence, analyzing the relationships between variable labels, 

by leveraging a label classification system, is expected to provide pertinent information for 

computing patient similarity from a clinical perspective.  

Several measures have been proposed to analyze variable label relationships. The Wu and 

Palmer measure examines the relationships between two variable labels by considering their 

depth in the classification tree [9] while the Lin measure considers both their depth in the 

classification tree and their frequency [10]. These measures have been incorporated into the 

computation of patient similarities in various studies. For instance, Ni et al. compute patient 

similarities based on their ICD-10 diagnosis, using a weighted similarity measure that considers 

the classification depth of ICD-10 codes [11]. Girardi et al. adapted the Jaccard distance to include 

diagnose relationships in patient similarity computation based on the depth of their ICD-10 codes 

[12]. However, these weighted patient similarity measures are limited to variables associated 

with binary values (i.e., Boolean variables) and cannot be applied to quantitative variables. To the 

best of our knowledge, similarity measures able to simultaneously consider variable label 

relationships from classifications and quantitative values of variables are lacking in the field. 

The efficiencies of the similarity measures are usually estimated by assessing the quality of the 

clusters obtained using the measures. The clustering performance is evaluated with metrics such 

as silhouette score or accuracy. However, interpreting these performance metrics from a clinical 

perspective can be challenging. An alternative method to assess the performance of clustering 

involves using external variables that were not used initially to compute patient similarities. 

These external variables can be related to prognosis [13] or tumor characteristics [14], for 

instance.  

In this paper, we propose to weight the Cosine similarity to include variable label relationships 

in order to identify similar patients. We further aim to assess the added value of incorporating this 

information thanks to an evaluation protocol that can be interpreted clinically. Our study focuses 

on a specific use case related to medicine reimbursement in a national French medico-

administrative database. We first compute several weighted similarity measures and employ 

them to cluster patients, thereby revealing groups of similar patients. We then assess the 

performance of the different similarity measures in identifying clusters of patients thanks to 
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enrichment tests based on external variables (i.e., diagnoses). We observed that taking into 

account the relationships between the variable labels in the computation of patient similarities 

improves the quality of the identified patient clusters. 

 

 

2 MATERIAL AND METHODS 

Let I be the set of variables (i.e., medicines). Let X and Y be the vectors of variables from I for two 

patients. We compute the similarity between patients using four different measures. The first two 

measures (Cosine similarity and Cosine similarity weighted by the Inverse Document Frequency) 

rely on quantitative variables, while the remaining two (Cosine similarity weighted by the Wu and 

Palmer measure and Cosine similarity weighted by the Lin measure) rely on both quantitative 

variables and label relationships of the variables.  

 

2.1 Defining patient similarity measures 

2.1.1 Cosine similarity 

The Cosine similarity between two patient vectors X and Y is defined as the cosine of the angle (θ) 

between the two vectors [15]: 

  (1) 

The Cosine similarity values range from -1 to 1 , with value equal to -1 when vectors are opposite, 

0 when vectors are different (i.e., orthogonal) and 1 when they are identical. 

 

2.1.2 Cosine similarity weighted by the Inverse Document Frequency 

The Cosine similarity weighted by the Inverse Document Frequency (IDF) is defined as follows for 

two patient vectors X and Y [7]: 

  (2) 

with , where NI is the total number of observations of all the variables in the set I 

and Ni is the total number of observations of the variable i.  

As for the standard Cosine similarity, the values of this weighted version range from -1 to 1. 

 

2.1.3 Cosine similarity weighted by the Wu and Palmer measure 

The Cosine similarity weighted by the Wu and Palmer measure is defined as follows for two 

patient vectors X and Y [9]: 
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  (3) 

with WP(i,j) being the Wu and Palmer measure between the labels of the two variables i and j of 

the set I. 

The labels of the variables of the set I are organized into a classification tree consisting of 

successive levels (Figure 1). The label composing the top level is the root and the labels composing 

the lowest level are the leaves. Each level in the classification is connected to the next level through 

edges representing the relationship between variable labels in the classification. A sequence of 

edges represents a path in the classification. 

The Wu and Palmer measure is computed from the variable labels as follows: 

  (4) 

with depth(z) = Ez/E where Ez is the number of edges between the root and the variable label z in 

the classification tree and E is the total depth in the classification tree (i.e., the number of edges in 

the shortest path from the root to the leaves); LCA(i,j) is the Lowest Common Ancestor of the labels 

of the variables i and j in the classification (i.e., the lowest label of the variable of set I that has both 

i and j as descendants). For example, the Wu and Palmer measure between the medicine labels B1 

and B22 from the classification of the Figure 1 is computed as follows: 

 

As for the standard Cosine similarity, the values of this weighted version range from -1 to 1. 

 

2.1.4 Cosine similarity weighted by the Lin measure 

The Cosine similarity weighted by the Lin measure is defined as follows for two patient vectors X 

and Y: 

  (5) 

With Lin(i,j) the Lin measure between the labels of the two variables i and j of the set I. 

The Lin measure analyzes the relationship between two variables i and j by considering the 

information content (IC) of the labels of the two variables and the information content of their 

lowest common ancestor [10]: 

  (6) 

with IC(z) = −logP(z) where P(z) is the probability of occurrence of the variable z estimated by its 

frequency. For example, the Lin measure between the medicine labels B1 and B22 from the 



6 

classification of the Figure 1 is computed as follows: 

 

As for the standard Cosine similarity, the values of this weighted version range from -1 to 1. 

 

Figure 1: Example of a classification tree of medicine data 

The classification is composed of several medicine labels organized in successive levels interconnected by 
edges. The depth of a given variable label is the number of edges between the root (i.e., label “Medicines”) 

and that given variable label, divided by the number of edges in the shortest path from the root to the 
leaves. p is the medicine label frequency 

 

 

2.2 Identifying clusters of patients from patient networks 

Various clustering methods can be used to identify clusters of patients from their similarity 

measures. Some examples include K-means, hierarchical clustering, or the Markov cluster 

algorithm applied to patient networks [16,17]. In a previous work, we showed that building 

patient networks using Cosine similarity on medicine data and clustering the networks was a 

pertinent approach to identify patient clusters and trajectories [18]. Therefore, here, we build 

patient networks using Cosine similarity or its weighted versions on medicine data, and cluster 

the networks with the Markov Cluster algorithm to identify clusters of patients. 

 

2.2.1 Constructing patient networks 

A patient network is a graph G = (V,E) with V patient nodes and E edges representing interactions 

between patient nodes. The network is constructed using a similarity matrix. Let M = [mX,Y ]n be 

the similarity matrix where n is the number of patients and mX,Y is the similarity between patient 

vectors X and Y. This similarity matrix is symmetrical, with mX,Y = mY,X. We compute four similarity 

matrices, each corresponding to a specific similarity measure. We then apply a threshold t to the 

similarity matrices to construct the patient networks. Two patients are connected in the network 

(i.e., an edge between the patients is present) if their similarity is above the threshold t. The 

connection between patients X and Y is weighted by the value mX,Y of the matrix. 
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To ensure comparable networks for the different similarity measures, we select a distinct 

threshold t for each measure. These thresholds are chosen to obtain approximately 5000 patient 

nodes in the largest connected component of each network (supplementary Table S1). 

2.2.2 Clustering patient networks 

We apply the Markov Cluster algorithm (MCL) [19] on the largest connected component of each 

patient network. The MCL algorithm uses random walks to simulate flows on the network. The 

flows allow to distinguish network areas where nodes are strongly connected, which correspond 

to the clusters. We use the version 0.0.6.dev0 of the “markov-clustering” Python package with the 

default parameters.  

2.3 Cluster enrichment analysis 

Let external variables be binary variables that are not used to compute the similarities between 

patients. The aim of the enrichment analysis is to assess if each external variable has a frequency 

higher than expected in a cluster. For each external variable and each cluster of patients, we 

compare patients inside and outside the cluster using Fisher's exact test [20]. This procedure 

involves performing a number of tests equal to the product of the number of clusters times the 

number of external variables. We adjust this multiple testing with the Benjamini-Hochberg 

procedure. We consider that a variable is enriched in a given cluster if its adjusted p-value is lower 

than 0.05. 

2.4 Use-case: the Échantillon Généraliste des Bénéficiaires 

We use health data from the Échantillon Généraliste des Bénéficiaires (EGB), a French medico-

administrative database. The EGB is a random sample of the French health insurance database 

[21]. It is representative of the French population and contains approximately 660,000 individuals 

followed over a period of 11 years.  

We extract from the EGB data on medicine reimbursements between 2008 and 2018 (Figure 

2), including the date of reimbursement and the medicine classification in the Anatomical 

Therapeutic Chemical (ATC) class (see example Table 1). The ATC class is an international 

classification of medicines established by the World Health Organization (WHO) [22]. We exploit 

this classification in the patient similarity measures. We then select patients aged 60 and who had 

received reimbursement for at least one medicine for two or more consecutive months. We 

therefore keep only patients with sustained reimbursements. We also extract chronic disease 

diagnoses declared by the patient to the French health insurance. These diagnoses are coded with 

the 10th revision of the international statistical classification of diseases and related health 

problems (i.e., using ICD-10 code). We thus exclude from our analysis the patients with no 
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declared chronic diseases. Importantly, diabetes appears as the most frequent chronic disease 

observed within the population. We analyze female and male patient datasets separately. In each 

dataset, we calculate for each patient, the number of reimbursements they had for each medicine 

at age 60 (see example Table 2). 

 
Figure 2: Flowchart of the medicine data extraction process from the Échantillon Généraliste des 

Bénéficiaires (EGB) 
 

Patient ID Reimbursement date ATC class Medicine name 

P1 01/04/2008 M01AE01 Ibuprofen 

P1 01/12/2015 B01AC06 Aspirin 

P2 01/02/2010 N02AX02 Tramadol 

P3 01/05/2016 B01AC04 Clopidogrel 

Table 1: Example of medicine reimbursements contained in the Échantillon Généraliste des 
Bénéficiaires (EGB) 

ATC: Anatomical Therapeutic Chemical 
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Patient ID Tramadol Aspirin Ibuprofen 

P1 0 10 5 

P2 1 8 4 

P3 2 6 3 

Table 2: Example of total number of reimbursements that three patients aged 60 years received 
for three different medicines 

3 RESULTS 

Our two use-case datasets are composed of 8,872 female and 9,765 male patients. For each 

dataset, we compute the similarity between patients, build networks, and identify clusters. We 

assess the performance of the different patient similarity measures with enrichment tests on the 

patient clusters using declared chronic diseases. 

 

3.1 Similarity measures including variable label relationships have higher 

similarity values in the use-case populations 

We first compare patient similarities computed from medicine reimbursements using four 

similarity measures, i.e., the standard Cosine similarity and its weighted versions (Material and 

methods 2.1). 

In the dataset of female patients, the Cosine similarity weighted by the Wu and Palmer measure 

and the Cosine similarity weighted by the Lin measure identify more patient pairs with similarities 

with non-zero values (n0 = 3.89×107 for these two measures) as compared to the Cosine similarity 

and the Cosine similarity weighted by IDF (n0 = 3.02×107 for the two other measures) (Figure 3). 

Additionally, the Cosine similarity weighted by the Wu and Palmer measure and the Cosine 

similarity weighted by the Lin measure show a higher variability. Thus, the weighted Cosine 

similarity measures that include variable label relationships information have higher similarity 

values. Similar results are observed in the dataset of male patients (Figure S1). 
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Figure 3: Similarity distributions in the female patient dataset 

A: Distribution of the Cosine similarity, B: Distribution of the Cosine similarity weighted by the Inverse 
Document Frequency (IDF), C: Distribution of the Cosine similarity weighted by the Wu and Palmer 

measure, D: Distribution of the Cosine similarity weighted by the Lin measure. n0: Total number of patient 
pairwise similarities with non-zero values. 

 

 

3.2 Similarity measures including variable label relationships improve patient 

cluster quality 

A patient network is constructed for each of the four similarity measures, in both male and female 

datasets, leading to 8 different patient networks (Material and methods 2.1). The Figure 4 shows 

the two networks constructed for the dataset of female patients using the Cosine similarity and 

the Cosine similarity weighted by the Wu and Palmer measure. The network constructed with the 

Cosine similarity (Figure 4A) displays a highly connected structure. Conversely, the network 

constructed with the Cosine similarity weighted by the Wu and Palmer measure (Figure 4B) 

reveals distinct subnetworks. 

In the network of female patients built with the Cosine similarity, we identify 12 clusters 

composed of at least 50 patients. We carry out an enrichment analysis to identify, in each cluster, 

potential enrichments in chronic diseases (Figure 5A). The enrichment analysis reveals several 
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significant enrichments. For instance, we observe significant enrichments of patients with thyroid 

and breast cancers in cluster 1, cerebrovascular diseases in cluster 5 and depressive episodes in 

cluster 2. Similarly, in the dataset of male patients, we identify 11 clusters (Figures 6A). The 

enrichment analysis reveals significant enrichments of patients with cerebrovascular diseases in 

cluster 5, atherosclerosis in cluster 6, prostate cancer in cluster 8 and thyroid cancer in cluster 9. 

Of note, we identify several clusters with the same enriched chronic diseases. For instance, female 

clusters 2, 3, 9 and 11, and male clusters 2, 4, 7, 10 and 11 are all enriched in type 2 diabetes 

patients. Female clusters 6 and 7 are enriched in breast cancer patients, female clusters 10 and 12 

in autoimmune disorder patients and male clusters 1 and 3 in coronary diseases patients. Overall, 

the use of Cosine similarity allows to identify clusters of similar patients. However, several 

clusters are redundant regarding their chronic disease enrichments. Similar results are obtained 

with the Cosine similarity weighted by IDF (Figures 5 B and 6 B). 

 

Figure 4: Patient networks built from Cosine similarity and Cosine similarity weighted by the Wu 
and Palmer measure 

Networks are built from Cosine similarity (A) and Cosine similarity weighted by the Wu and Palmer 
measure (B), on the female patient dataset. Nodes represent patients aged 60 and edges represent the 

interactions between those patients. The length of edges is inversely proportional to the Cosine similarity 
or the Cosine similarity weighted by the Wu and Palmer measure. Node colors represent the clusters 
identified with the Markov Clustering algorithm. For the sake of visualization, we only represent the 

largest connected component of each network. 
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Patient networks constructed with the Cosine similarity weighted by the Wu and Palmer measure 

and the Lin measure result in a higher number of clusters significantly enriched in chronic 

diseases and less redundant clusters (Figures 5C, 5D, 6C and 6D). Using the Cosine similarity 

weighted by the Wu and Palmer measure (Figures 5C for the female dataset and 6C for the male 

dataset), the enrichment analysis reveals clusters significantly enriched in respiratory disease 

patients (female cluster 4 and male cluster 7), psychiatric disorders patients with psychotic side 

(female cluster 1 and male cluster 6), coronary disease patients (female cluster 5 and male cluster 

1) and patients with type 2 diabetes associated with its comorbidities (female and male clusters 

2). In the dataset of female patients, we find clusters significantly enriched in thyroid and breast 

cancer patients (clusters 3 and 6). In the dataset of male patients, we find clusters significantly 

enriched in atherosclerosis patients (cluster 3), depressive disorders patients (cluster 4) and 

heart failure patients (cluster 9). Similar results are obtained using the Cosine similarity weighted 

by the Lin measure (Figures 5D and 6D). Notably, all clusters are significantly enriched in diabetes 

patients, in both datasets. This is explained by the fact that diabetes is the most frequent chronic 

disease in our population (see overall columns in Figures 5 and 6). 
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Figure 5: Chronic disease enrichments in patient clusters obtained from the female patient 
dataset 

Clusters are identified in networks built from Cosine similarity (A), Cosine similarity weighted by the 
Inverse Document Frequency (B), Cosine similarity weighted by the Wu and Palmer measure (C), and 

Cosine similarity weighted by the Lin measure (D), on the female patient dataset. The numbered columns 
represent the clusters composed of at least 50 patients, ranked from the largest to the smallest. The last 

column, named overall, represents all the patients found in the network's largest connected component. n: 
number of patients identified in each cluster or in the network largest connected component. The rows 

correspond to the chronic diseases. Box colors represent the proportion of patients with a given chronic 
disease. Stars represent significant enrichments (p-value lower than 0.05 after Benjamini-Hochberg 

correction). For the sake of visualization, we only represent chronic diseases that are significant in at least 
one cluster. 
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Figure 6: Chronic diseases enrichments in patient clusters obtained from the male patient 
dataset  

Clusters are identified in networks built from Cosine similarity (A), Cosine similarity weighted by the 
Inverse Document Frequency (B), Cosine similarity weighted by the Wu and Palmer measure (C), and 

Cosine similarity weighted by the Lin measure (D), on the male patient dataset. The numbered columns 
represent the clusters composed of at least 50 patients, ranked from the largest to the smallest. The last 

column, named overall, represents all the patients found in the network's largest connected component. n: 
number of patients identified in each cluster or in the network largest connected component. The rows 

correspond to the chronic diseases. Box colors represent the proportion of patients with a given chronic 
disease. Stars represent significant enrichments (p-value lower than 0.05 after Benjamini-Hochberg 

correction). For the sake of visualization, we only represent chronic diseases that are significant in at least 
one cluster.  
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4 DISCUSSION 

In this paper, we proposed two novel weighted similarity measures for health quantitative 

variables. These similarity measures were weighted by considering the variable labels 

relationships. They performed better in identifying clusters of patients suffering from different 

diseases as compared to unweighted similarity measures that did not consider label relationships. 

Overall, our analysis highlighted the interest of considering variable label relationships when 

calculating patient similarities to improve patient stratification.  

In recent years, there has been a growing interest in computing patient similarities using 

Electronic Health Records (EHR). However, most papers focused on computing similarities using 

variables extracted from medical texts through natural language processing methods. These 

papers also focused on the development of methods to automatically learn variable label 

relationships from data [23]. However, using variable label relationships from existing medical 

classifications has been poorly addressed, despite the ready availability of this expert information. 

In this study, we underline the value of integrating such an expert knowledge into patient 

similarity measures to increase clustering performance. This is particularly relevant to analyze 

records obtained from administrative claim databases. Indeed, these databases gather medical 

variables with labels that are always organized into classifications such as SNOMED-CT or ICD-10. 

While our study only considered variable label relationships organized according to a 

classification, other types of variable label organization exist. For instance, the Human Phenotype 

Ontology (HPO) is a directed acyclic graph (DAG). Previous studies have already proposed 

variable label relationship measures for this type of label organization. For example, Köhler et al. 

developed a variable label relationship measure that exploits the structure of HPO to improve 

clinical diagnostics [24]. Xue, Peng, and Shang derived another measure that exploits both the DAG 

structure and the phenotype term definition of HPO in order to improve the prediction of disease-

related phenotypes [25]. However, these measures were originally designed for binary variables 

and would need to be adapted for quantitative variables commonly found in medical health 

records as well as in many biological and omics datasets. A recent work demonstrated the interest 

of considering prior knowledge representation in the context of omics data [13]. 

In this study, we used the Cosine similarity because we have previously shown that this 

measure was more effective than others to deal with our specific use-cases [18]. However, 

depending on the data, other similarity measures could be used, and weighted, to compute 

similarities between patients. We also explored the interest of incorporating variable frequencies 

in the computation of patient similarities. Indeed, we weighted the Cosine similarity by the Inverse 

Document Frequency (IDF) to take into account the frequency of the usage of the medicines. Our 

hypothesis was that it would better capture similarity information as two patients taking the same 

uncommon medicine would be considered more similar than two patients taking the same 
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common medicine. However, we observed that exploiting the medicine frequency did not enhance 

the performance of the similarity measures. This may be attributed to the fact that a single 

medicine can be used to treat multiple conditions, making it challenging to associate a medicine 

with a specific pathology. However, considering the frequency of medicines may be more effective 

in the context of rare diseases [26]. In such cases, these diseases are typically treated with orphan 

medicines that have specific indications. 

In this paper, we assessed the performance of the different similarity measures to cluster 

patients using external binary variables (i.e., chronic diseases). We employed these external 

variables in cluster enrichment analyses. This novel approach deviates from the typical reliance 

on internal criteria such as silhouette score, which do not offer clinically interpretable insights. 

Using these enrichment analyses, we were able to interpret the clusters clinically and to compare 

the different similarity measures from an expert point of view. Although previous works have 

already used enrichment analyses to study enrichments of HPO terms in the literature [27], to the 

best of our knowledge, it was never used on patient medical data. 

As a conclusion, we recommend considering variable label relationships when computing 

patient similarities to improve stratification of patients regarding their health status. 
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