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Background Patient stratification is the cornerstone of numerous health investigations, serving to enhance the estimation of treatment efficacy and facilitating patient matching. To stratify patients, similarity measures between patients can be computed from clinical variables contained in medical health records. These variables have both values and labels structured in ontologies or other classification systems. The relevance of considering variable label relationships in the computation of patient similarity measures has been poorly studied.

Objective We propose and evaluate several weighted versions of the Cosine similarity that consider structured label relationships to compute patient similarities from a medicoadministrative database.

Material and Methods

As a use case, we clustered patients aged 60 years from their annual medicine reimbursements contained in the Échantillon Généraliste des Bénéficiaires, a random sample of a French medico-administrative database. We used four patient similarity measures: the standard Cosine similarity, a weighted Cosine similarity measure that includes variable frequencies and two weighted Cosine similarity measures that consider variable label relationships. We construct patient networks from each similarity measure and identify clusters of patients using the Markov Cluster algorithm. We evaluate the performance of the different similarity measures with enrichment tests based on patient diagnoses.

Results

The weighted similarity measures that include structured variable label relationships perform better to identify similar patients. Indeed, using these weighted measures, we identify more clusters associated with different diagnose enrichment. Importantly, the enrichment tests provide clinically interpretable insights into these patient clusters.

Conclusion

Considering label relationships when computing patient similarities improves stratification of patients regarding their health status.

BACKGROUND

Identifying similar patients can serve multiple purposes in healthcare. In routine practice, finding patients similar to a given patient can help elucidate undiagnosed cases, particularly in the case of rare diseases [START_REF] Garcelon | Next generation phenotyping using narrative reports in a rare disease clinical data warehouse[END_REF]. Similar patients can also provide prognostic guidance. In research, identifying groups of similar patients is useful to stratify the population. This enables, for instance, a more precise estimation of medicine efficacy for a given patient profile or matching similar patients in case-control studies [START_REF] Li | Identification of type 2 diabetes subgroups through topological analysis of patient similarity[END_REF][START_REF] Ahlqvist | Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables[END_REF].

The similarity between patients can be computed from medical health records such as medicoadministrative databases. Medico-administrative databases contain data used for health care reimbursement purposes, including information about hospitalization, medicine and medical device consumption. They therefore provide a comprehensive perspective on the entire healthcare pathway of a given patient.

The variables contained in these databases are labeled by terms that can be related to each other.

For instance, medicines are labeled by codes organized into classification trees such as the Anatomical Therapeutic Chemical (ATC) classification. Within this classification, all anti-diabetic medicines belong to the same class. Thus, the labels of two medicines used to treat diabetes are related according to the classification, and patients treated with these medicines are expected to be more similar than patients treated with medicines from different classes. Other classification systems are available for various types of medical data. For instance, the International Classification of Diseases (ICD) is used for diagnoses [START_REF] Hong | International classification of diseases (ICD)[END_REF] and SNOMED-CT is used for clinical information [START_REF] Donnelly | SNOMED-CT: The advanced terminology and coding system for eHealth[END_REF].

The objective of similarity measures is to identify patients sharing characteristics, such as taking the same medicine or having the same diagnoses at a specific age. The most commonly used measures to compute similarities between patients are the Euclidean distance, the Jaccard index, and the Cosine similarity [START_REF] Irani | Clustering techniques and the similarity measures used in clustering: A survey[END_REF]. Weighted measures can also be incorporated to these similarity measures to account for the frequency of the variables. For instance, the Inverse Document Frequency is a weighted measure that assigns greater importance to rare variables [START_REF] Jones | A statistical interpretation of term specificity and its application in retrieval[END_REF][START_REF] Conroy | Patient similarity using population statistics and multiple kernel learning[END_REF].

However, these classical similarity measures rely only on the variable values and do not consider other information associated with the variables, such as their labels. For instance, when considering medications, two patients are similar if they take similar dosage of similar medicine.

In this case, similarity is defined at both the dosage level (i.e., variable value) and at the medicine level (i.e., variable label relationships). Hence, analyzing the relationships between variable labels, by leveraging a label classification system, is expected to provide pertinent information for computing patient similarity from a clinical perspective.

Several measures have been proposed to analyze variable label relationships. The Wu and

Palmer measure examines the relationships between two variable labels by considering their depth in the classification tree [START_REF] Wu | Verb semantics and lexical selection[END_REF] while the Lin measure considers both their depth in the classification tree and their frequency [START_REF] Lin | An information-theoretic definition of similarity[END_REF]. These measures have been incorporated into the computation of patient similarities in various studies. For instance, Ni et al. compute patient similarities based on their ICD-10 diagnosis, using a weighted similarity measure that considers the classification depth of ICD-10 codes [START_REF] Ni | Fine-grained patient similarity measuring using deep metric learning[END_REF]. Girardi et al. adapted the Jaccard distance to include diagnose relationships in patient similarity computation based on the depth of their ICD-10 codes [START_REF] Girardi | Using concept hierarchies to improve calculation of patient similarity[END_REF]. However, these weighted patient similarity measures are limited to variables associated with binary values (i.e., Boolean variables) and cannot be applied to quantitative variables. To the best of our knowledge, similarity measures able to simultaneously consider variable label relationships from classifications and quantitative values of variables are lacking in the field.

The efficiencies of the similarity measures are usually estimated by assessing the quality of the clusters obtained using the measures. The clustering performance is evaluated with metrics such as silhouette score or accuracy. However, interpreting these performance metrics from a clinical perspective can be challenging. An alternative method to assess the performance of clustering involves using external variables that were not used initially to compute patient similarities.

These external variables can be related to prognosis [START_REF] Kańduła | ViLoN-a multi-layer network approach to data integration demonstrated for patient stratification[END_REF] or tumor characteristics [START_REF] Sørlie | Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications[END_REF], for instance.

In this paper, we propose to weight the Cosine similarity to include variable label relationships in order to identify similar patients. We further aim to assess the added value of incorporating this information thanks to an evaluation protocol that can be interpreted clinically. Our study focuses on a specific use case related to medicine reimbursement in a national French medicoadministrative database. We first compute several weighted similarity measures and employ them to cluster patients, thereby revealing groups of similar patients. We then assess the performance of the different similarity measures in identifying clusters of patients thanks to enrichment tests based on external variables (i.e., diagnoses). We observed that taking into account the relationships between the variable labels in the computation of patient similarities improves the quality of the identified patient clusters.

MATERIAL AND METHODS

Let I be the set of variables (i.e., medicines). Let X and Y be the vectors of variables from I for two patients. We compute the similarity between patients using four different measures. The first two measures (Cosine similarity and Cosine similarity weighted by the Inverse Document Frequency) rely on quantitative variables, while the remaining two (Cosine similarity weighted by the Wu and Palmer measure and Cosine similarity weighted by the Lin measure) rely on both quantitative variables and label relationships of the variables.

Defining patient similarity measures

Cosine similarity

The Cosine similarity between two patient vectors X and Y is defined as the cosine of the angle (θ) between the two vectors [START_REF] Singhal | Modern information retrieval: A brief overview[END_REF]:

(1)
The Cosine similarity values range from -1 to 1 , with value equal to -1 when vectors are opposite, 0 when vectors are different (i.e., orthogonal) and 1 when they are identical. As for the standard Cosine similarity, the values of this weighted version range from -1 to 1. 

with WP(i,j) being the Wu and Palmer measure between the labels of the two variables i and j of the set I.

The labels of the variables of the set I are organized into a classification tree consisting of successive levels (Figure 1). The label composing the top level is the root and the labels composing the lowest level are the leaves. Each level in the classification is connected to the next level through edges representing the relationship between variable labels in the classification. A sequence of edges represents a path in the classification.

The Wu and Palmer measure is computed from the variable labels as follows:

(4)

with depth(z) = Ez/E where Ez is the number of edges between the root and the variable label z in the classification tree and E is the total depth in the classification tree (i.e., the number of edges in the shortest path from the root to the leaves); LCA(i,j) is the Lowest Common Ancestor of the labels of the variables i and j in the classification (i.e., the lowest label of the variable of set I that has both i and j as descendants). For example, the Wu and Palmer measure between the medicine labels B1 and B22 from the classification of the Figure 1 is computed as follows:

As for the standard Cosine similarity, the values of this weighted version range from -1 to 1.

Cosine similarity weighted by the Lin measure

The Cosine similarity weighted by the Lin measure is defined as follows for two patient vectors X and Y:

(5)

With Lin(i,j) the Lin measure between the labels of the two variables i and j of the set I.

The Lin measure analyzes the relationship between two variables i and j by considering the information content (IC) of the labels of the two variables and the information content of their lowest common ancestor [START_REF] Lin | An information-theoretic definition of similarity[END_REF]: [START_REF] Irani | Clustering techniques and the similarity measures used in clustering: A survey[END_REF] with IC(z) = -logP(z) where P(z) is the probability of occurrence of the variable z estimated by its frequency. For example, the Lin measure between the medicine labels B1 and B22 from the As for the standard Cosine similarity, the values of this weighted version range from -1 to 1.

Figure 1: Example of a classification tree of medicine data

The classification is composed of several medicine labels organized in successive levels interconnected by edges. The depth of a given variable label is the number of edges between the root (i.e., label "Medicines") and that given variable label, divided by the number of edges in the shortest path from the root to the leaves. p is the medicine label frequency

Identifying clusters of patients from patient networks

Various clustering methods can be used to identify clusters of patients from their similarity measures. Some examples include K-means, hierarchical clustering, or the Markov cluster algorithm applied to patient networks [START_REF] Xu | Survey of Clustering Algorithms[END_REF][START_REF] Schaeffer | Graph clustering[END_REF]. In a previous work, we showed that building patient networks using Cosine similarity on medicine data and clustering the networks was a pertinent approach to identify patient clusters and trajectories [START_REF] Lambert | Tracking clusters of patients over time enables extracting information from medico-administrative databases[END_REF]. Therefore, here, we build patient networks using Cosine similarity or its weighted versions on medicine data, and cluster the networks with the Markov Cluster algorithm to identify clusters of patients.

Constructing patient networks

A patient network is a graph G = (V,E) with V patient nodes and E edges representing interactions between patient nodes. The network is constructed using a similarity matrix. Let M = [mX,Y ] n be the similarity matrix where n is the number of patients and mX,Y is the similarity between patient vectors X and Y. This similarity matrix is symmetrical, with mX,Y = mY,X. We compute four similarity matrices, each corresponding to a specific similarity measure. We then apply a threshold t to the similarity matrices to construct the patient networks. Two patients are connected in the network (i.e., an edge between the patients is present) if their similarity is above the threshold t. The connection between patients X and Y is weighted by the value mX,Y of the matrix.

To ensure comparable networks for the different similarity measures, we select a distinct threshold t for each measure. These thresholds are chosen to obtain approximately 5000 patient nodes in the largest connected component of each network (supplementary Table S1).

Clustering patient networks

We apply the Markov Cluster algorithm (MCL) [START_REF]A cluster algorithm for graphs[END_REF] on the largest connected component of each patient network. The MCL algorithm uses random walks to simulate flows on the network. The flows allow to distinguish network areas where nodes are strongly connected, which correspond to the clusters. We use the version 0.0.6.dev0 of the "markov-clustering" Python package with the default parameters.

Cluster enrichment analysis

Let external variables be binary variables that are not used to compute the similarities between patients. The aim of the enrichment analysis is to assess if each external variable has a frequency higher than expected in a cluster. For each external variable and each cluster of patients, we compare patients inside and outside the cluster using Fisher's exact test [START_REF] Fisher | On the interpretation of χ 2 from contingency tables, and the calculation of P[END_REF]. This procedure involves performing a number of tests equal to the product of the number of clusters times the number of external variables. We adjust this multiple testing with the Benjamini-Hochberg procedure. We consider that a variable is enriched in a given cluster if its adjusted p-value is lower than 0.05.

Use-case: the Échantillon Généraliste des Bénéficiaires

We use health data from the Échantillon Généraliste des Bénéficiaires (EGB), a French medicoadministrative database. The EGB is a random sample of the French health insurance database [START_REF] Tuppin | French national health insurance information system and the permanent beneficiaries sample[END_REF]. It is representative of the French population and contains approximately 660,000 individuals followed over a period of 11 years.

We extract from the EGB data on medicine reimbursements between 2008 and 2018 (Figure 2), including the date of reimbursement and the medicine classification in the Anatomical Therapeutic Chemical (ATC) class (see example Table 1). The ATC class is an international classification of medicines established by the World Health Organization (WHO) [START_REF] Skrbo | Classification of drugs using the ATC system (Anatomic, Therapeutic, Chemical Classification) and the latest changes[END_REF]. We exploit this classification in the patient similarity measures. We then select patients aged 60 and who had received reimbursement for at least one medicine for two or more consecutive months. We therefore keep only patients with sustained reimbursements. We also extract chronic disease diagnoses declared by the patient to the French health insurance. These diagnoses are coded with the 10th revision of the international statistical classification of diseases and related health problems (i.e., using ICD-10 code). We thus exclude from our analysis the patients with no declared chronic diseases. Importantly, diabetes appears as the most frequent chronic disease observed within the population. We analyze female and male patient datasets separately. In each dataset, we calculate for each patient, the number of reimbursements they had for each medicine at age 60 (see example 

RESULTS

Our two use-case datasets are composed of 8,872 female and 9,765 male patients. For each dataset, we compute the similarity between patients, build networks, and identify clusters. We assess the performance of the different patient similarity measures with enrichment tests on the patient clusters using declared chronic diseases.

Similarity measures including variable label relationships have higher similarity values in the use-case populations

We first compare patient similarities computed from medicine reimbursements using four similarity measures, i.e., the standard Cosine similarity and its weighted versions (Material and methods 2.1).

In the dataset of female patients, the Cosine similarity weighted by the Wu and Palmer measure and the Cosine similarity weighted by the Lin measure identify more patient pairs with similarities with non-zero values (n0 = 3.89×10 7 for these two measures) as compared to the Cosine similarity and the Cosine similarity weighted by IDF (n0 = 3.02×10 7 for the two other measures) (Figure 3).

Additionally, the Cosine similarity weighted by the Wu and Palmer measure and the Cosine similarity weighted by the Lin measure show a higher variability. Thus, the weighted Cosine similarity measures that include variable label relationships information have higher similarity values. Similar results are observed in the dataset of male patients (Figure S1). 

Similarity measures including variable label relationships improve patient cluster quality

A patient network is constructed for each of the four similarity measures, in both male and female datasets, leading to 8 different patient networks (Material and methods 2.1). The In the network of female patients built with the Cosine similarity, we identify 12 clusters composed of at least 50 patients. We carry out an enrichment analysis to identify, in each cluster, potential enrichments in chronic diseases (Figure 5A). The enrichment analysis reveals several significant enrichments. For instance, we observe significant enrichments of patients with thyroid and breast cancers in cluster 1, cerebrovascular diseases in cluster 5 and depressive episodes in cluster 2. Similarly, in the dataset of male patients, we identify 11 clusters (Figures 6A). The enrichment analysis reveals significant enrichments of patients with cerebrovascular diseases in cluster 5, atherosclerosis in cluster 6, prostate cancer in cluster 8 and thyroid cancer in cluster 9.

Of note, we identify several clusters with the same enriched chronic diseases. For instance, female dataset), the enrichment analysis reveals clusters significantly enriched in respiratory disease patients (female cluster 4 and male cluster 7), psychiatric disorders patients with psychotic side (female cluster 1 and male cluster 6), coronary disease patients (female cluster 5 and male cluster 1) and patients with type 2 diabetes associated with its comorbidities (female and male clusters 2). In the dataset of female patients, we find clusters significantly enriched in thyroid and breast cancer patients (clusters 3 and 6). In the dataset of male patients, we find clusters significantly enriched in atherosclerosis patients (cluster 3), depressive disorders patients (cluster 4) and heart failure patients (cluster 9). Similar results are obtained using the Cosine similarity weighted by the Lin measure (Figures 5D and6D). Notably, all clusters are significantly enriched in diabetes patients, in both datasets. This is explained by the fact that diabetes is the most frequent chronic disease in our population (see overall columns in Figures 5 and6). 

DISCUSSION

In this paper, we proposed two novel weighted similarity measures for health quantitative variables. These similarity measures were weighted by considering the variable labels relationships. They performed better in identifying clusters of patients suffering from different diseases as compared to unweighted similarity measures that did not consider label relationships.

Overall, our analysis highlighted the interest of considering variable label relationships when calculating patient similarities to improve patient stratification.

In recent years, there has been a growing interest in computing patient similarities using Electronic Health Records (EHR). However, most papers focused on computing similarities using variables extracted from medical texts through natural language processing methods. These papers also focused on the development of methods to automatically learn variable label relationships from data [START_REF] Choi | Multi-layer representation learning for medical concepts[END_REF]. However, using variable label relationships from existing medical classifications has been poorly addressed, despite the ready availability of this expert information.

In this study, we underline the value of integrating such an expert knowledge into patient similarity measures to increase clustering performance. This is particularly relevant to analyze records obtained from administrative claim databases. Indeed, these databases gather medical variables with labels that are always organized into classifications such as SNOMED-CT or ICD-10.

While our study only considered variable label relationships organized according to a classification, other types of variable label organization exist. For instance, the Human Phenotype Ontology (HPO) is a directed acyclic graph (DAG). Previous studies have already proposed variable label relationship measures for this type of label organization. For example, Köhler et al.

developed a variable label relationship measure that exploits the structure of HPO to improve clinical diagnostics [START_REF] Köhler | Clinical diagnostics in human genetics with semantic similarity searches in ontologies[END_REF]. Xue, Peng, and Shang derived another measure that exploits both the DAG structure and the phenotype term definition of HPO in order to improve the prediction of diseaserelated phenotypes [START_REF] Xue | Predicting disease-related phenotypes using an integrated phenotype similarity measurement based on HPO[END_REF]. However, these measures were originally designed for binary variables and would need to be adapted for quantitative variables commonly found in medical health records as well as in many biological and omics datasets. A recent work demonstrated the interest of considering prior knowledge representation in the context of omics data [START_REF] Kańduła | ViLoN-a multi-layer network approach to data integration demonstrated for patient stratification[END_REF].

In this study, we used the Cosine similarity because we have previously shown that this measure was more effective than others to deal with our specific use-cases [START_REF] Lambert | Tracking clusters of patients over time enables extracting information from medico-administrative databases[END_REF]. However, depending on the data, other similarity measures could be used, and weighted, to compute similarities between patients. We also explored the interest of incorporating variable frequencies in the computation of patient similarities. Indeed, we weighted the Cosine similarity by the Inverse Document Frequency (IDF) to take into account the frequency of the usage of the medicines. Our hypothesis was that it would better capture similarity information as two patients taking the same uncommon medicine would be considered more similar than two patients taking the same common medicine. However, we observed that exploiting the medicine frequency did not enhance the performance of the similarity measures. This may be attributed to the fact that a single medicine can be used to treat multiple conditions, making it challenging to associate a medicine with a specific pathology. However, considering the frequency of medicines may be more effective in the context of rare diseases [START_REF] Chen | Phenotypic similarity for rare disease: ciliopathy diagnoses and subtyping[END_REF]. In such cases, these diseases are typically treated with orphan medicines that have specific indications.

In this paper, we assessed the performance of the different similarity measures to cluster patients using external binary variables (i.e., chronic diseases). We employed these external variables in cluster enrichment analyses. This novel approach deviates from the typical reliance on internal criteria such as silhouette score, which do not offer clinically interpretable insights.

Using these enrichment analyses, we were able to interpret the clusters clinically and to compare the different similarity measures from an expert point of view. Although previous works have already used enrichment analyses to study enrichments of HPO terms in the literature [START_REF] Deng | HPOSim: an R package for phenotypic similarity measure and enrichment analysis based on the human phenotype ontology[END_REF], to the best of our knowledge, it was never used on patient medical data.

As a conclusion, we recommend considering variable label relationships when computing patient similarities to improve stratification of patients regarding their health status.
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 12 Cosine similarity weighted by the Inverse Document Frequency The Cosine similarity weighted by the Inverse Document Frequency (IDF) is defined as follows for two patient vectors X and Y [7]: (2) with , where NI is the total number of observations of all the variables in the set I and Ni is the total number of observations of the variable i.

2. 1 . 3

 13 Cosine similarity weighted by the Wu and Palmer measure The Cosine similarity weighted by the Wu and Palmer measure is defined as follows for two patient vectors X and Y [9]:

Figure 3 :

 3 Figure 3: Similarity distributions in the female patient dataset A: Distribution of the Cosine similarity, B: Distribution of the Cosine similarity weighted by the Inverse Document Frequency (IDF), C: Distribution of the Cosine similarity weighted by the Wu and Palmer measure, D: Distribution of the Cosine similarity weighted by the Lin measure. n0: Total number of patient pairwise similarities with non-zero values.

Figure 4

 4 shows the two networks constructed for the dataset of female patients using the Cosine similarity and the Cosine similarity weighted by the Wu and Palmer measure. The network constructed with the Cosine similarity (Figure 4A) displays a highly connected structure. Conversely, the network constructed with the Cosine similarity weighted by the Wu and Palmer measure (Figure 4B) reveals distinct subnetworks.

clusters 2 , 3 , 9

 239 and 11, and male clusters 2, 4, 7, 10 and 11 are all enriched in type 2 diabetes patients. Female clusters 6 and 7 are enriched in breast cancer patients, female clusters 10 and 12 in autoimmune disorder patients and male clusters 1 and 3 in coronary diseases patients. Overall, the use of Cosine similarity allows to identify clusters of similar patients. However, several clusters are redundant regarding their chronic disease enrichments. Similar results are obtained with the Cosine similarity weighted by IDF (Figures 5 B and 6 B).

Figure 4 :

 4 Figure 4: Patient networks built from Cosine similarity and Cosine similarity weighted by the Wu and Palmer measure Networks are built from Cosine similarity (A) and Cosine similarity weighted by the Wu and Palmer measure (B), on the female patient dataset. Nodes represent patients aged 60 and edges represent the interactions between those patients. The length of edges is inversely proportional to the Cosine similarity or the Cosine similarity weighted by the Wu and Palmer measure. Node colors represent the clusters identified with the Markov Clustering algorithm. For the sake of visualization, we only represent the largest connected component of each network.

Figure 5 :

 5 Figure 5: Chronic disease enrichments in patient clusters obtained from the female patient dataset Clusters are identified in networks built from Cosine similarity (A), Cosine similarity weighted by the Inverse Document Frequency (B), Cosine similarity weighted by the Wu and Palmer measure (C), and Cosine similarity weighted by the Lin measure (D), on the female patient dataset. The numbered columns represent the clusters composed of at least 50 patients, ranked from the largest to the smallest. The last column, named overall, represents all the patients found in the network's largest connected component. n:number of patients identified in each cluster or in the network largest connected component. The rows correspond to the chronic diseases. Box colors represent the proportion of patients with a given chronic disease. Stars represent significant enrichments (p-value lower than 0.05 after Benjamini-Hochberg correction). For the sake of visualization, we only represent chronic diseases that are significant in at least one cluster.

Figure 6 :

 6 Figure 6: Chronic diseases enrichments in patient clusters obtained from the male patient dataset Clusters are identified in networks built from Cosine similarity (A), Cosine similarity weighted by the Inverse Document Frequency (B), Cosine similarity weighted by the Wu and Palmer measure (C), and Cosine similarity weighted by the Lin measure (D), on the male patient dataset. The numbered columns represent the clusters composed of at least 50 patients, ranked from the largest to the smallest. The last column, named overall, represents all the patients found in the network's largest connected component. n:number of patients identified in each cluster or in the network largest connected component. The rows correspond to the chronic diseases. Box colors represent the proportion of patients with a given chronic disease. Stars represent significant enrichments (p-value lower than 0.05 after Benjamini-Hochberg correction). For the sake of visualization, we only represent chronic diseases that are significant in at least one cluster.
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 2 

	Patient ID	Reimbursement date	ATC class	Medicine name
	P1	01/04/2008	M01AE01	Ibuprofen
	P1	01/12/2015	B01AC06	Aspirin
	P2	01/02/2010	N02AX02	Tramadol
	P3	01/05/2016	B01AC04	Clopidogrel
	Table 1: Example of medicine reimbursements contained in the Échantillon Généraliste des
		Bénéficiaires (EGB)	
		ATC: Anatomical Therapeutic Chemical	

). Figure 2: Flowchart of the medicine data extraction process from the Échantillon Généraliste des Bénéficiaires (EGB)

Table 2 :

 2 Example of total number of reimbursements that three patients aged 60 years received for three different medicines
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