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Abstract

The extraction of consensus segmentations from several binary or probabilistic masks is
important to solve various tasks such as the analysis of inter-rater variability or the fusion
of several neural network outputs. One of the most widely used methods to obtain such
a consensus segmentation is the STAPLE algorithm. In this paper, we first demonstrate
that the output of that algorithm is heavily impacted by the background size of images
and the choice of the prior. We then propose a new method to construct a binary or
a probabilistic consensus segmentation based on the Fréchet means of carefully chosen
distances which makes it totally independent of the image background size. We provide a
heuristic approach to optimize this criterion such that a voxel’s class is fully determined by
its voxel-wise distance to the different masks, the connected component it belongs to and the
group of raters who segmented it. We compared extensively our method on several datasets
with the STAPLE method and the naive segmentation averaging method, showing that it
leads to binary consensus masks of intermediate size between Majority Voting and STAPLE
and to different posterior probabilities than Mask Averaging and STAPLE methods. Our
code is available at https ://gitlab.inria.fr/dhamzaou/jaccardmap.

Keywords: Consensus, Distance, Heuristics, Optimization, STAPLE

1. Introduction

The fusion of several segmentations into a single consensus segmentation is a classical prob-
lem in the field of medical image analysis related to the need to merge multiple segmenta-
tions provided by several clinicians into a single “consensus” segmentation. This problem
has been recently revived by the development of deep learning and the multiplication of
ensemble methods based on neural networks (Isensee et al., 2021). One of the most well-
known methods to obtain a consensus segmentation is the STAPLE algorithm (Warfield
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et al., 2004), where an Expectation-Maximization algorithm is used to jointly construct a
consensus segmentation, and to estimate the raters’ performances posed in terms of sensi-
tivities and specificities. The seminal STAPLE method (Warfield et al., 2004) creating a
probabilistic consensus from a set of binary segmentations was followed by several follow-up
works. For instance, Asman and Landman (2012) replaced global indices of performance
by spatially dependent performance fields and Commowick et al. (2012) combined STAPLE
with a sliding window approach to allow spatial variations of rater performances. Another
improvement consisted in introducing the original image intensity information (Asman and
Landman, 2013). Several alternatives to STAPLE were proposed, with a large diversity of
approaches. Some of them decided to use a generative model but with different properties.
For example, Audelan et al. (2020) modeled raters’ input maps by heavy-tailed distributions
whose parameters are estimated by variational calculus, and Sabuncu et al. (2010) presented
a model using a random field learnt on the whole set to model the interaction between the
intensity maps and the corresponding label maps. Methods based on deep learning were
also conceived, as in Zhang et al. (2020) where two CNNs are trained together to estimate
simultaneously the consensus segmentation and each rater’s performance via an estimation
of their spatial confusion matrices. Also in Ji et al. (2021) authors incorporate the ex-
pertise level of each rater and specific modules to better take into account disagreements
between raters. However, those methods do not lead to explainable results and they require
the collection of a preliminary training data on a consequent number of cases which make
them not suitable on small datasets. In addition to those complex methods, several studies
(Rohlfing and Maurer, 2007; Aljabar et al., 2009) show that simple majority voting (MV)
could remain a suitable pick. However STAPLE and its simple yet robust probabilistic
model remains the go-to method for consensus segmentation estimation (Warfield et al.,
2004; Dewalle-Vignion et al., 2015) despite suffering from several limitations, some of them
already addressed in the literature (Asman and Landman, 2012; Commowick et al., 2012;
Asman and Landman, 2013) and some, to the best of our knowledge, never raised before.

In this article, we first analytically characterize the dependence of the STAPLE algo-
rithm on the size of the background image and the choice of prior consensus probability.
We then introduce an alternative consensus segmentation method, coined MACCHIatO,
which is based on the minimization of the squared distance between each binary segmenta-
tion and the consensus. After choosing a distance between binary or probabilistic shapes,
the consensus is thus posed as the estimation of the Fréchet mean of this distance (an ex-
tension of centroids to metric spaces), which is independent of the size of the background
image for a well-chosen distance. We show that the adoption of specific heuristics based
on morphological distances (i.e. voxel-wise distances to the different binary masks based
on morphological operations) during the optimization allows to provide a novel binary or
probabilistic globally consistent consensus method that creates masks of intermediate size
between Majority Voting and the STAPLE methods.

This work extends our MICCAI-UNSURE 2022 paper (Hamzaoui et al., 2022) by (1)
Adding the Dice coefficient and its soft surrogates as distances between binary sets (2)
Providing more mathematical details on baseline models and the STAPLE’s dependence
on the background size and prior choice (3) Adding experiments and a dataset to justify
the choice of selected heuristics and to analyze the impact on the consensus volume and
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computational time and (4) Expanding the discussion in various ways including detailing
the limitations of the proposed approach.

2. Estimation of a soft or hard consensus from binary segmentations

In the remainder, we consider the problem of generating a consensus segmentation Tn,
1 ≤ n ≤ N given K binary segmentations S = {S1, ..., SK}, Sk

n ∈ {0, 1} of size N provided
by each rater k. The consensus segmentation may be either a hard binary segmentation
Tn ∈ {0, 1} or a soft probabilistic segmentation T̃n ∈ [0, 1], the tilde sign indicating that
we are dealing with a continuous probabilistic consensus value, rather than a binary one.
Given a soft consensus, one can easily generate a hard consensus by thresholding the soft
consensus voxels at the 0.5 limit. Yet, this raises the issue of dealing with voxels that are
exactly at the 0.5 value which can be either set arbitrarily to one of the 2 classes or set
aside to a third class.

In terms of probabilistic framework, the main approach is to consider that each observed
binary segmentation Sk results from a random process applied on a consensus segmentation
T which is captured by the likelihood distribution p(Sk|T, θk) also involving some parameters
θk specific to each rater k. A prior probability on the consensus p(T ) is also defined related
to the general a priori knowledge about the consensus segmentation. Then a hard consensus
can be obtained as a maximum likelihood T = argmaxM p(S|M) or maximum a posteriori
estimate U = argmaxU p(S|U)p(U) whereas a soft consensus is obtained as the posterior
probability p(T̃ |S) = p(S|T̃ )p(T̃ )/p(S). The parameters θk are also estimated by maximum
likelihood for hard consensuses or maximum marginal likelihood for soft ones.

We make use of the following notations : FPk, TPk, FNk, and TNk are respectively
the number of false positives, true positives, false negatives, and true negatives between
observed mask Sk and consensus T , i.e. FPk =

∑N
n=1 S

k
n ∧ Tn.

We consider as baseline methods to create a hard consensus the majority voting (MV)
and the ML STAPLE (Maximum Likelihood STAPLE, a binary version of STAPLE) algo-
rithms whereas mask averaging (MA) and STAPLE algorithm are baseline approaches for
the soft consensus estimation. We describe below the hypotheses in terms of probability
distribution associated with those baseline models and discuss their limitations.

2.1 Majority Voting and Mask Averaging Models

We first make the hypothesis of voxel independence, i.e. that the binary value of each
voxel of an observed segmentation mask Sk is independent of the values of other vox-
els : p(Sk|T ) =

∏N
n=1 p(S

k
n|Tn). Furthermore, we consider that the prior and likeli-

hood probability are simple Bernoulli distributions of the same parameter bn ∈ [0, 1] :
p(Sk

n = 1|bn) = p(Tn = 1|bn) = bn. This means that the probability parameter bn is poten-
tially different for all voxels, but the same for all raters : θk = θ = {bn}. Also, the observed
masks S do not directly depend on the consensus but share the same distribution.

Therefore the likelihood of observing the whole segmentation data is then

p(S|θ) =
K∏
k=1

N∏
n=1

bS
k
n

n (1− bn)
1−Sk

n =
N∏

n=1

bS
+
n

n (1− bn)
S−
n
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where S+
n (resp. S−

n = K−S+
n ) is the number of times voxel n is equal to 1 (resp. 0) in the

observed segmentation masks Sk,1 ≤ k ≤ K. After maximizing the likelihood, one trivially

gets the Bernoulli parameter as p(Sk
n = 1|bn) = p(Tn = 1|bn) = S+

n
K = bn, leading to the

Mask Averaging consensus formula where the probability of having a foreground voxel is
the frequency of positive voxels in the observed masks Sk. To estimate the hard consensus,
one needs to maximize p(Tn|bn) thus leading to majority voting : Tn = 1 if S+

n > S−
n and

Tn = 0 if S+
n < S−

n .

Limitations Majority voting and mask averaging are simple and easy-to-understand
mechanisms to choose a consensus. Yet they suffer from the fact that this decision is
purely local without any influence from the neighboring pixels. This can lead to situations
where the hard consensus includes some isolated voxels or has very irregular boundaries.
This is especially true for mask averaging, which does not have any mechanisms to enforce
inter-rater consistency and that relies on the implicit assumption that the neighboring vox-
els of a segmented voxel are likely to be segmented, which is not the case on the boundaries.
Another limitation of majority voting is the case where the number of raters K is even
and therefore many decisions are ambiguous with as many foreground than background
voxels. Finally, those simple models assume that all raters’ contributions to the consensus
are equal which may not be the case. In particular, an underperforming rater will bias the
soft consensus with mask averaging.

2.2 STAPLE model

In the STAPLE algorithm (Warfield et al., 2004), all voxels are also assumed independent
but the probability that Sk

n is equal to Tn depends on whether Tn is a background or
foreground voxel, and on the rater k. More precisely, p(Sk

n = Tn|Tn = 1) = pk and p(Sk
n =

Tn|Tn = 0) = qk where pk is the sensitivity of rater k and qk its specificity.

Prior Consensus The consensus prior probability is here supposed to factorize as the
product of voxel priors wn values p(T ) =

∏N
n=1 P (Tn) =

∏N
n=1wn. The original STAPLE

paper (Warfield et al., 2004) also introduced an Ising Markov random field model as a prior
consensus probability to enforce that a voxel prior value depends on that of its neighbors.
However, this approach leads to solving iteratively graph cuts problems and is not available
in most widely used STAPLE implementations. Instead, the original paper assumes simple
independent priors that lead to closed-form updates. Choosing wn = w = 1

2 is a non-
informative prior but another common choice is to have a spatially uniform value wn =
w = 1

NK

∑
n,k S

k
n which is the average relative size of the foreground object in the observed

segmentation masks. We further consider more general priors of the form w = A
Nα , with

A a constant independent of the image size, and α ∈ N an exponent. The non-informative
case wn = 0.5 corresponds to α = 0 while the average object size to α = 1.

Maximum likelihood STAPLE (ML STAPLE) The likelihood of the observed data
simply writes as L(T, θ) =

∏K
k=1 p

TPk
k (1− pk)

FNkqTNk
k (1− qk)

FPk and does not involve the
prior on the consensus. There is no closed-form expression for the estimation of the rater
parameters (pk, qk) and the hard consensus (T ) maximizing the likelihood. But an iterative
maximization of the likelihood is possible by setting its derivatives to zero which leads to
the update equation :
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pk =
TPk

TPk + FNk
qk =

TNk

TNk + FPk
(1)

s+n =

K∏
k=1

p
Sk
n

k (1− pk)
1−Sk

n s−n =
K∏
k=1

q
1−Sk

n
k (1− qk)

Sk
n (2)

Tn = 1 if s+n > s−n Tn = 0 if s+n < s−n

Maximum marginal likelihood (MML STAPLE) The marginal likelihood or evi-

dence writes as p(S|θ) =
∏N

n=1(wn
∏

k p
Sk
n

k (1− pk)
1−Sk

n + (1−wn)
∏

k q
1−Sk

n
k (1− qk)

Sk
n) and

is only a function of the rater parameters θk. Its maximization is not tractable in closed
form but the expectation-maximization algorithm provides a way to estimate some local
maxima. The E-step consists in evaluating the posterior probability from Bayes law with
the current estimated sensitivities and specificities :

un = p(T̃ |θ,S) =
wn

∏
k p

Sk
n

k (1− pk)
1−Sk

n

wn
∏

k p
Sk
n

k (1− pk)1−Sk
n + (1− wn)

∏
k q

1−Sk
n

k (1− qk)S
k
n

(3)

.
The M-step updates the parameters pk and qk as follows :

pk =

∑
n,Sk

n=1 un∑
n un

=
sTPk

sFNk + sTPk
qk =

∑
n,Sk

n=0(1− un)∑
n(1− un)

=
sTNk

sTNk + sFPk
(4)

where sTPk, sTNk, sFPk, sFNk are the ”soft extension” of the number of true positive, true
negative, false positive, and false negative voxels from rater k.

2.2.1 Influence of the prior term

We can better understand the influence of the prior when estimating the probability to
belong to a consensus by writing its logit logit(un) = ln ( un

1−un
) from Eq.3 :

logit (un) = logit(wn) +
∑

k,Sk
n=1

log

(
pk

1− qk

)
+

∑
k,Sk

n=0

log

(
1− pk
qk

)
(5)

Thus, we see that to estimate un each foreground voxel of rater k ”votes” with a (usually)

positive quantity log
(

pk
1−qk

)
whereas each background voxel ”votes” with a (usually) neg-

ative quantity log
(
1−pk
qk

)
. Then the prior term logit(wn) biases this vote depending on

whether wn is greater or smaller than 1
2 .

2.2.2 Influence of the background size

In many cases, the size N of images that contain the objects delineated by the raters is
arbitrary since it can be the size of the original image (with a large value of N) or the size
of a restricted region of interest (with a small value of N). It is therefore important to
estimate the influence of the background size, i.e. the number of true negative voxels TNk,
in the estimation of the hard and soft consensus.
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Influence on hard consensus Based on Eqs.1 and 2, the sensitivity and coefficient
s+n are not influenced by TNk, but the specificities are. More precisely, we have qk =
1 − FPk

TNk
+ O((TNk)

−2), and therefore the quantity s−n tends towards 0 when TNk reaches
large values. This implies that the hard consensus converges towards the union of all
observed segmentation masks when the background size becomes large.

Influence on soft consensus The posterior probability un and specificities qk are mainly
impacted by the increase of the background size, while the sensitivities are more marginally
influenced. The nature of the soft consensus depends on the α exponent of the prior
expression wn = A

Nα , and in particular we have :

logit (un) = (

K∑
k=1

Sk
n − α) logN + logA+ ln (

pk
sFPk

) +
∑

k,Sk
n=0

ln (1− pk) +O(N−2)

A direct consequence of this formula is that the background size impacts the obtained
consensus, as can be seen in Fig. 1a where the consensus obtained when applying STA-
PLE on a bounding box tightly surrounding the organ (referred to as Focused STAPLE in
Fig. 1a) appears as smaller and with more non-binary values than the one computed on the
whole image (referred to as Full size STAPLE in Fig. 1a). Comparisons between STAPLE
computed on both volumes are available in Tab. 10 in the appendices. Moreover, as seen
in Fig.1b, the soft consensus when having a large background size depends on the value of
α, with larger α corresponding to smaller consensuses. The detailed proof is presented in
Appendix A.

Removing the Influence of the background size We explore under which conditions
the STAPLE model leads to consensus estimations that are independent of the background
size. A first simplification of the model is to assume that all raters perform equally pk = p,

qk = q. In this case, the global specificity maximizing the likelihood is q =
∑K

k=1 TNk∑K
k=1 TNk+FPk

which is still dependent on the size of the background through TNk.
A second simplification is to consider that each rater sensitivity and specificity are

equal, i.e. pk = qk = γk. This implies that the rater performance is independent of the
fact the consensus voxel is in the background or foreground. In this case, the parameter
pk = qk = γk can be interpreted as the accuracy parameter and its optimization leads to

γk = TPk+TNk
N . It is easy to see that in that case, s+n

s−n
=

(
γk

1−γk

)S+
n −S−

n

, and therefore the

maximum likelihood is equivalent to majority voting when γk > 1
2 which is independent

of background size. With this simplification, and from Eq.5, the soft consensus obtained
by maximizing the marginal likelihood with a non-informative prior wn = 1

2 , is such that
logit(un) = (S+

n − S−
n ) logit(γk). The value of γk depends on the background size, but

whether a voxel is more likely to be a background pixel un > 1
2 does not depend on the

background size.

2.2.3 Limitations

The STAPLE algorithm addresses the problem of taking into account the performance of
raters when building a consensus segmentation. However, this approach has the drawback
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(a) Impact of background size on a simple
2D case with 7 raters (the 7th is an empty
map), with STAPLE computed on a 67×61 im-
age (middle), and 640×640 (right) with w =
(
∑

n,k S
k
n)/NK. The relative size of the struc-

ture can be seen at the top right corner.

(b) Limits of STAPLE algorithm for 3 differ-
ent values of α on a toy example with 4 raters
providing the red, blue, green and magenta con-
tours. The figures are the number of raters who
segmented this zone, and the colors are the prob-
ability of the soft consensus with colormap bor-
rowed from Fig.1a.

Figure 1: Impact of STAPLE hyperparameters and background size on the soft consensus

of being dependent on the choice of the prior, and the background size. This dependence
of the STAPLE consensus can be explained by the fact that it is a generative model which
should explain the foreground and the background voxels separately. When assuming that
the rater performance is the same in both background and foreground, then the model be-
comes equivalent to majority voting. This dependence is a subject of concern as STAPLE
is often used as a standard in label fusion works. To improve the robustness of comparisons
with novel methods and decrease the impact of this hidden hyperparameter, researchers
may compute STAPLE consensus using several bounding boxes, or at least indicates the
size of the bounding box on which STAPLE was applied.
The use of local sliding windows in STAPLE as in Commowick et al. (2012) can somewhat
mitigate the background size effect, but smaller structures in images can still be impacted
and the window size remains a hyperparameter which is difficult to set.

3. MACCHIatO framework

3.1 Main approach description

In the previous section, we have seen that only the majority voting and mask averaging
algorithms lead to a consensus that is independent of the background size. Yet, those
algorithms are purely local at the voxel level and can lead to irregular boundaries or isolated
voxels.

In this section we introduce a new framework to compute soft and hard consensuses
that are i) invariant from the background size and ii) dependent on the global morphology
of each binary object. This approach is coined MACCHIatO for Morphologically-Aware
Consensus Computation via Heuristics-based IterATive Optimization.

Distance-based approach We formulate the estimation of a hard consensus T as the
minimization of the sum of the square distance between the consensus T and each observed
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binary mask Sk :

T = arg min
M∈{0,1}N

K∑
k=1

d(M,Sk)2 (6)

where d(T, Sk) is a distance as defined in Deza and Deza (2016) between the two masks Sk

and T . This is equivalent to estimating the consensus as a maximum likelihood where the
likelihood can be written as p(Sk|T ) ∝ exp(−λd(T, Sk)2). We can note that the squared
sum

∑K
k=1 d(M,Sk)2 also corresponds to the definition of a Fréchet variance. Based on this

interpretation, T appears as the Fréchet mean of S i.e. its centroid in the metric space
defined by d.

Link with baseline models In section 2.2.2, we have seen that when the sensitivity and
specificity are equal, the maximization of the STAPLE model leads to the majority voting
algorithm. In this case, we can write the likelihood p(Sk|T ) = γTPk+TNk

k (1 − γk)
FPk+FNk

(where γk is the accuracy parameter) which is a product of N independent Bernoulli distri-
butions. Since the Bernoulli distribution is a member of the exponential family (Dai et al.,
2013), it can be also written as p(Sk|T ) ∝ exp(−λk(FPk+FNk)) where λk = logit(γk). The
number of false positives or false negatives FPk+FNk is the number of elements of symmetric
difference between the two sets Sk and T : FPk+FNk = |T∆Sk| = |(T ∪Sk)\ (T ∩Sk)| and
is also called the Hamming distance in information theory. Thus, by choosing d(T, Sk) =√
|T∆Sk|, the maximum likelihood leads to majority voting consensus (as detailed in Ap-

pendix B).

Soft consensus framework On the baseline models, soft consensuses were obtained as
posterior probabilities of having a consensus from the observed binary masks. However, from
the likelihoods p(Sk|T̃ ) ∝ exp(−λd(T̃ , Sk)2), the computation of the posterior p(T̃ |S) may
not be tractable due to the difficulty of computing the normalization constant. Instead, we
propose to approximate p(T̃n|S) by the quantity Ũn ∈ [0, 1] such that Ũ ∈ [0, 1]N minimizes
the quantity :

Ũ = arg min
X̃∈[0,1]N

K∑
k=1

ds(X̃, Sk)2 (7)

where ds(X̃, Sk) is a distance between the probabilistic array X̃ and the binary mask Sk.
More precisely, the distances ds(X̃, Sk) considered are soft surrogate of the distance between
binary sets d(X̃, Sk) such that ds(X̃, Sk)2 = d(X̃, Sk)2 when X̃ ∈ {0, 1}N . For instance, the
distance d(X̃, Sk) = ∥X̃ −Sk∥ is a soft surrogate of the Hamming distance since |X̃∆Sk| =
∥X̃ − Sk∥2. Besides it is clear that the mask averaging (MA) method is a soft consensus
minimizing the following squared sum

∑K
k=1 ∥Ũ − Sk∥2.

Optimization approach The estimation of the soft and hard consensus is independent
of the background size if the distance d(T, Sk) is invariant to the number of true negatives.
Besides, unlike the MV and MA algorithms, the optimization cannot be performed at
the voxel level when the distance cannot be split voxelwise. Instead of optimizing the
whole foreground object, we chose to consider each connected component separately from
each other to obtain more coherent results. Finally, we further split the optimization into
subcrowns with various heuristics to speed up the computation.
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3.2 Distances between binary masks

We detail below the selected distances between binary sets that are considered and their
associated soft surrogates. We mainly focus on distances based on two widely used methods
to measure the overlap between binary segmentations : the Jaccard and Dice coefficients.

Jaccard distance The Jaccard coefficient (aka IoU) between binary masks A and B ∈
{0, 1}N is defined as : Jac(A,B) = |A∩B|

|A∪B| . In Kosub (2019), it is shown that its complemen-

tary to 1 distJ(A,B) = 1−Jac(A,B) = |A∆B|
|A∪B| is a metric between binary sets following the

triangular inequality. Several formulations of soft surrogates exist that extend the Jaccard
distance. We focused specifically on two of them : the Soergel metric (Späth, 1981; Deza

and Deza, 2016) dSg(x, y) =
∑

i max(xi,yi)−min(xi,yi)∑
i max(xi,yi)

which follows the triangular inequality

but is not differentiable, and the widely-used Tanimoto distance (Willett et al., 1998; Deza

and Deza, 2016; Leach and Gillet, 2007) dTan(x, y) = 1−
∑

i xiyi∑
i x

2
i+y2i −xiyi

= ||x−y||2
||x−y||2+<x,y>

.

Dice coefficient It is defined as DSC(A,B) = 2|A∩B|
|A|+|B| and is widely used in image seg-

mentation as a performance index. Indeed, the Dice index is equal to the F1-score and
corresponds to the harmonic mean of the sensitivity and positive predictive value. It is
closely related to the Jaccard coefficient as DSC(A,B) = 2Jac(A,B)

1+Jac(A,B) . The Dice distance

distD(A,B) = 1 − DSC(A,B) is a near-metric i.e. it respects a relaxed form of the trian-
gular inequality (Gragera and Suppakitpaisarn, 2018). Soft surrogates of the Dice distance
have been developed especially as a loss function in deep learning. We consider in the
remainder two main extensions of the Dice distance (Ma et al., 2021) on non-binary sets

defined as dpSD(x, y) = 1− 2
∑

i xiyi∑
i x

p
i+

∑
i y

p
i
where p ∈ {1, 2}.

By construction, all those distances only depend on segmented pixels and are indepen-
dent of the background size. Note that both distances are extended to get a null distance
between two empty sets. Using those distances in the Fréchet variance computation, the
inclusion of voxels segmented by a large number of raters (resp. a few raters) decreases
(resp. increases) its value. The different formulations of the MACCHIatO framework are
summarized in table 1.

Table 1: Distances between binary sets and their soft surrogate considered to compute hard
and soft consensuses with the MACCHIatO framework

Hard Consensus
Method

Soft Consensus
Method Distance Soft Surrogate Computation-level

Majority Voting Mask Averaging |A∆B| ∥x− y∥ Voxel-level

ML STAPLE MML STAPLE NA NA Image-level

MACCHIatO-J
MACCHIatO-TJ

Jaccard dJ
Tanimoto dTan

Connected
component

level

MACCHIatO-SJ Soergel dSg

MACCHIatO-D
MACCHIatO-1SD

Dice dD
d1SD

MACCHIatO-2SD d2SD
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3.3 Heuristic computation based on morphological distance and crowns

Domain of optimization Since the distances listed in the previous section are indepen-
dent of the number of true negatives, their computations can be restricted to the union of
all rater masks : ES = {n|

∑K
k=1 S

k
n > 0}. Furthermore, we consider that to decide whether

a voxel belongs to the consensus, one should only take into account the regional context as-
sociated with the connected components surrounding that voxel, since far-away components
may not be relevant. Therefore, we choose to minimize separately the Fréchet variances
of Eqs. 6 and 7 for each connected component St of the masks union ES . Therefore, in
practice, we minimize the Local Mean Squared Distance between S and the consensus :
LMSDd(S,M) =

∑
St⊂ES

1
K

∑
k d(S

k
∥St,M∥St)

2 where Sk
∥St (resp. M∥St) are the restriction

of the binary masks Sk (resp. M) to the connected component St. A benefit of this choice
is that the determination of the Fréchet Mean behaves similarly to a structure-wise MV, as
the Fréchet Mean of components segmented by less than half of the raters is the null set.
However, contrary to MV, raters who do not segment a component kept by the majority of
raters do not bias its consensus segmentation, as their contribution to the associated LMSD
is 1

K δ∅(M∥St) = 0 and does not impact the Fréchet mean. To lighten notations, we drop
the St index in the remainder. It is equivalent to considering that ES has only one single
connected component.

Subcrown-based optimization The minimization of the Fréchet variance is a combi-
natorial problem with a complexity of 2|ES | for the naive approach. Furthermore, it may
lead to several global minima when the number of raters K is small. For those reasons,
we propose instead to seek a local minimum of the Fréchet variance by introducing some
heuristics in the optimization. With this approach, the local minimum has a lower com-
plexity to compute and, by construction, is maximally connected to avoid isolated voxels.

More precisely, instead of a computationally expensive per voxel minimization of the Fréchet
variance, we decompose the set ES into a set of subcrowns that take into account the global
morphological relationships between each rater mask. The formal definition of subcrowns
requires the specification of distance maps DmN (Sk) to each binary mask Sk on ES ac-
cording to a chosen neighborhood N . This one can be either the 4 or 8 (resp. 6 or 26)
connectivity in 2D (resp. 3D). The distance DmN (Sk) is set to 0 for all voxels inside the
object Sk.

The global morphological distance map is the sum of those distance maps

DN
S =

∑
Sk∈S

DmN (Sk)

for all raters on ES . A crown CN
td is defined as the set of voxels having the same global

morphological distance td. Those crowns realize a partition of ES (ES =
∐

tdC
N
td ), and the

0-crown corresponds by construction to the intersection of all masks in S.

We further split each crown as a set of subcrowns by grouping the voxels that have been
produced by the same set of raters. In other words, a subcrown corresponds to a set of
voxels located at the same morphological distance from the intersection of all rater masks
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and which have been segmented by the same group of raters, as seen in Fig. 2a. Formally,
a subcrown is noted (CN

td )
g
where the superscript g corresponds to a group of raters and

subcrowns realize a partition of a crown :

CN
td =

∐
g∈P(J1,KK)

(CN
td )

g
,with (CN

td )
g = {n|n ∈ CN

td & ∀k Sk
n = (k ∈ g)} (8)

where P(J1,KK) is the power set (i.e. the set of all subsets) of the first K integers.

The process for the construction of subcrowns is illustrated in Fig. 2a

3.4 Hard consensus algorithm

The optimization proceeds in a greedy fashion by iteratively removing or adding subcrowns
to the current estimate of the consensus until the LMSDd criterion stops decreasing. In
Alg. 1, we use two concurrent strategies : either we start from the union of all masks and
then remove subcrowns with decreasing distances (a straegy illustrated in Fig. 2b, or we
start with the crown with the minimum distance and then add subcrowns of increasing
distances. Both growing and shrinking strategies are applied as the greedy process can lead
to different results, and we keep the consensus associated with the minimum LMSDd of
both strategies and the null set. The latter is also tested in the last stage since the distance
of a set M to the null set is δ∅(M), for both Dice and Jaccard distances. This discontinuity
is not compatible with the iterative process and calls for a independent test.

Examples of consensuses obtained with this strategy can be seen in Fig. 3. Thus, the
resulting consensus leads to a consistent grouping since all voxels belonging to the same
connected component, having the same morphological distance, and being generated by the
same group of raters will end up in the same class. Alternative optimization approaches
could have been based on adding or removing single voxels (smaller than subcrowns) or
crowns (larger than subcrowns). While voxel-based minimization would be very time-
consuming, especially in 3D, conversely crown-based would lead to suboptimal results as
crowns can be fairly large. Thus, the Morphologically-Aware Consensus Computation via
Heuristics-based IterATive Optimization (MACCHIatO) algorithm is designed to be a good
compromise between computational efficiency and consistency, with a number of iterations
exponentially depending on K but which is lower than the naive 2|ES | complexity.

3.5 Soft consensus algorithm

The estimation of a probabilistic or soft consensus is based on the minimization of the sum
of square surrogate distances as displayed in Eq. 7 and the optimization is split for each
connected component of the mask union ES .

The soft MACCHIatO algorithm extends the previous approach to minimize the crite-
rion LMSDds(T̃ ,S). A brute force approach would lead to the optimization of a sum of K
rational polynomials over a set of |ES | scalars. Instead, we proceed in a greedy manner,
separately on each connected component of ES , by starting with the mean consensus and
optimizing successively subcrowns of increasing distances. All subcrowns of increasing dis-
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(a)

(b)

(c)

Figure 2: (a) Construction of the heuristics. From left to right: Segmentations by 3 raters
(red, green, and blue); computation of the associated distance maps DmN (Sk); merging
into the morphological distance map DN

S restricted to the voxels segmented at least one;
subdivision into subcrowns (1 color = 1 subcrown) based on morphological distance and
raters). (b) An iteration of the shrinking approach with the selection of sub-crowns and the
evaluation of their contribution to the LMSDd (c) Application of mask averaging and soft
MACCHIatO on a toy example with three segmentations (red, green, and blue contours).
After thresholding, averaging gives an empty segmentation whereas the soft MACCHIatO
method is more inclusive and outputs one connected component.
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Input: S segmentation maps, N neighborhood, d distance
Result: T
Initialization: Computation of DN

S , tdu = max(DN
S ), tdi = min(DN

S );
T u =

⋃
k S

k; T i = {n|(DN
S )n = tdi}

while LMSDd(T
u,S) decreases do // Shrinking strategy

for g ∈ P(J1,KK) do
if LMSDd((T

u/(CN
tdu

)g),S) < LMSDd(T
u,S) then

T u ← T u/(CN
tdu

)g

end

end
tdu ← max({x ∈ DN

S |x < tdu})
end
while LMSDd(T

i,S) decreases do // Growing strategy

for g ∈ P(J1,KK) do
if LMSDd((T

i ∪ (CN
tdi

)g),S) < LMSDd(T
i,S) then

T i ← T i ∪ (CN
tdi

)g

end

end
tdi ← min({x ∈ DN

S |x > tdi})
end
T ← arg min

T∈{Tu,T i,∅}
LMSDd(T,S)

Algorithm 1: Hard consensus algorithm.

Figure 3: Comparison of several hard consensus methods on a 2D slice with 5 raters using
MV, ML STAPLE and both hard MACCHIatO. On the left is indicated the number of
raters who segmented each pixel.
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tances are iteratively considered until LMSDd(T̃ ,S) stops decreasing. For each subcrown
r = (CN

td )
g, we seek the scalar value pr ∈ [0, 1] such that it minimizes

pr = arg min
x∈[0,1]

(d(T̃(td,g),x,S)), with T̃(td,g),x =

{
x if n ∈ r

T̃n otherwise
.

The algorithm is described in Alg.2 and iteratively optimizes each subcrown from the inside
to the outside of the ES set. We have observed no gain in combining a growing and a
shrinking exploration of subcrowns contrary to Alg. 1. For the optimization process of
Eq. 3.5, we use the SLSQP algorithm (Kraft, 1988) implemented in Scipy v1.7.3 (Virtanen
et al., 2020). Resulting consensus can be seen in Figs. 4, 6 and 7.

Input: S segmentation maps, N neighborhood, ds distance
Result: T̃
Initialization: Computation of DN

S ; T̃ = 1
K

∑K
k=1 S

k

while LMSDds(T̃ ,S) decreases do
for td ∈ DN

S in increasing order do
for g ∈ P(J1,KK) do

p = arg min
x∈[0,1]

(LMSDds(T̃(td,g),x,S)) with T̃(td,g),x =

{
x on (CN

td )
g

T̃ elsewhere

T̃ ← T̃(td,g),p

end

end

end
Algorithm 2: Soft consensus algorithm

Figure 4: Comparison of several soft consensus methods on a 2D case with 5 raters using
MA, STAPLE and MACCHIatO with different distances.
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4. Results

4.1 Datasets and Implementation Details

We tested our method on 3 datasets :

• A private database of transition zones of prostate T2w MR images, composed of 40
cases segmented by 5 raters.

• The publicly available MICCAI MSSEG 2016 dataset of Multiple Sclerosis lesions
segmentations (Commowick et al., 2018) segmented from Brain MR images, with 15
subjects segmented by 7 raters

• The publicly available SCGM dataset (Prados et al., 2017), with 40 spinal cords and
their grey matter segmented by 4 raters. We used the whole spinal cord segmentation
(SCGM-SC) and the grey matter segmentation (SCGM-GM).

Images from the private dataset (resp. MSSEG dataset, SCGM dataset) have a size of
[80-288]×[320-640]×[320-640] voxels (resp. [144-261]×[224-512]×[224-512] voxels and [3-
28]×[100-655]×[100-776] voxels). It was possible to extract from the private dataset bound-
ing boxes of size [58-227]×[53-184]×[62-180] voxels. Similarly, we were able to extract from
SCGM-SC (resp. SCGM-GM) bounding boxes of size [3-20]×[15-90]×[24-131] voxels(resp.)
From the 3D private dataset, we created a 2D subset by extracting a single slice for each
patient located at the base of the prostate since this region is subject to a high inter-rater
variability (Becker et al., 2019; Montagne et al., 2021).
Examples for each dataset of segmentations by the different raters of the same case are
available in Appendix C (Fig. 8).

Implementation details In the remainder, STAPLE results were produced by using the
algorithm implemented in SimpleITK v2.0.2 (Lowekamp et al., 2013). All MACCHIatO
methods used the 8 or 26-connectivity neighborhood for 2D or 3D cases. MACCHIatO
code is available at https ://gitlab.inria.fr/dhamzaou/jaccardmap

4.2 Heuristics relevance

In Section 3.3, we have presented the subcrown-based heuristics that drives the optimization
of the local mean square distance criteria. Indeed, those subcrown group voxels are based
on three properties : their morphological distance, the connected component they belong to,
and the raters who segmented them. To check if this heuristics is appropriate, we compared
it with two alternatives :

• The first alternative iteratively minimizes the LMSDd at the crown level (as defined
in subsection 3.3 and represented in Fig. 2a), without any rater-related property.

• The other one iteratively processes each voxel separately.

We compared the 3 heuristics by computing a soft consensus (with the Tanimoto dis-
tance) on the toy example of Fig. 5, and we display their optimized value of LMSDds and
their computation time in Table 2. Furthermore, since the size of ES is small, we could
estimate the true minimizer of LMSDds that involves the optimization of |ES | parameters.
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Table 2: Computed LMSDds and com-
putation time for the soft consensus with
Tanimoto distance on the toy example of
Fig. 5 using three different heuristics and
the true minimizer.

Heuristics LMSDd Time

Subcrown-based
heuristics 0.159 0.26s

Crown-based
heuristics 0.176 0.07s

Voxel-based
approach 0.159 0.92s

Estimated True
minimizer 0.159 0.55s

Figure 5: Different soft consensuses ob-
tained on a toy example. Each contour
corresponds to one of the raters’ segmen-
tation and colors indicate the probability
using the same colormap as Fig 4.

Unlike the crown-based heuristics, the subcrown-based and voxel-based heuristics appear
to compute a consensus close to the real LMSDds minimizer. In addition, the subcrown
method is significantly faster than the voxel-based approach.

We have also compared the three heuristics on two datasets in Table 3. The crown-
based heuristics is the fastest method to compute but with the highest criteria LMSDds ,
whereas the voxel-based method requires far more computation time than the subcrown-
based heuristics and even several hours for some Prostate 3D cases. Surprisingly, on average,
the subcrown-based heuristics reaches a lower LMSDds criteria than the voxel-based method,
although the difference may hardly be seen in the produced consensus. On those datasets,
we were not able to estimate the true minimizer of LMSDds , due to the high memory
resources those computations would require.

Table 3: Mean LMSDds and computation time for three different heuristics on some datasets

Dataset Subcrown Crown Voxel

MSSEG 16.36 (57.48s) 16.50 (23.41s) 16.36 (20min30s)

Prostate 3D 1.24e-2 (31.5s) 1.26e-2 (5.46s) NA

Prostate 2D 5.98e-3 (0.29s) 6.22e-3 (0.07s) 6.10e-3 (5.30s)

4.3 Comparison with baseline methods

Comparison of inter-rater variabilities A first set of experiments consist in measuring
the impact of the choice of the consensus method when computing a measure of inter-rater
variability. More precisely, we compute the average precision, recall, and F1-score between
the hard consensus (considered as ground truth) and each rater segmentation. Those metrics
have been computed on the MSSEG dataset where there are potentially large disagreements
between raters. Table 4 reports those metrics averaged among all lesions of all images, a
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lesion corresponding to a connected component of the mask union ES . The MV consensus
has the highest recall and lowest precision which can be interpreted by a MV consensus
smaller than other methods. Conversely, the STAPLE consensus has the largest precision
and lowest recall, thus corresponding to a larger size consensus. Regarding terms of F1-
score, MV and MACCIHIatO methods obtained similar metrics but slightly higher for
MACCHIatO-D (0.449).

Table 4: Averaged lesion-wise measures on the MSSEG dataset for all hard consensus
methods

Measure
Method ML

STAPLE MV MACCHIatO-J MACCHIatO-D

Precision 0.976 0.497 0.562 0.570

Recall 0.273 0.817 0.769 0.758

F1-score 0.297 0.437 0.448 0.449

In addition, we also compared the methods on the number of connected components.
To do so, we defined each consensus as ground truth and from there computed the average
precision, recall, and F1-score of each rater for lesion detection (considering the existence
of a non-null intersection with the rater’s segmentation as a sufficient threshold to detect).
We performed this experiment on the MSSEG dataset, as it is our only dataset with several
connected components per case. Table 5 reports those metrics averaged among all patients.
The MV consensus has the highest detection recall and lowest detection precision which
can be interpreted by a MV consensus not segmenting some lesions conserved by the other
methods. Conversely, the STAPLE consensus has the largest precision and lowest recall,
thus corresponding to the presence of lesions rarely segmented by the raters. In terms
of F1-score, MV and MACCHIatO methods are close to each other, but it is highest for
MACCHIatO-D (0.894).

Table 5: Measures of lesion detection on the MSSEG dataset for all hard consensus methods

Measure
Method ML

STAPLE MV MACCHIatO-J MACCHIatO-D

Precision 0.994 0.887 0.914 0.931

Recall 0.643 0.967 0.931 0.930

F1-score 0.746 0.892 0.888 0.894

Comparison of consensus areas or volumes In Table 6, we compare the relative size
of hard consensuses on all datasets, taking the MV consensus as reference. On average, all
methods lead to consensuses of larger size than MV. For the MACCHIatO methods, the
difference with MV consensus is modest on a massive organ (prostate) but significant for
small lesions (>16%). The ML STAPLE method generates much larger consensuses than
MV, especially when dealing with small lesions. Note that for the MSSEG dataset, ML
STAPLE is computed on the whole image, thus with a large background size. Finally, the
MACCHIatO-D and MACCHIatO-J methods lead to consensuses of similar size, without
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Figure 6: Two consecutive slices of a MSSEG sample on which we applied STAPLE (pink),
Majority Voting (purple) and MACCHIatO-TJ (green contour) (a, c), and for each voxel
of those slices the number of raters who segmented them (b, d). We can note that some
zones (highlighted by brown squares) were selected by soft MACCHIatO-TJ whereas less
than the majority of raters segmented them.

any clear order. Table 7 compares the soft area or volumes of the soft consensuses (given
by

∑N
n=1 Ũn) generated by all methods, taking the mask averaging as reference. Fig. 6

illustrates those soft consensuses on the MSSEG dataset. The variation of volumes is
smaller for soft consensus than for hard consensus. In general, the MA method produces
the smallest volumes, and STAPLE the largest ones. The methods using surrogate Dice or
Jaccard distances give similar volumes, although the Soergel and 1SD are more diverging
on the MSSEG dataset. We also compare the size of the thresholded maps Ũn > 0.5 which
provide similar trends to their soft maps.

For both hard and soft consensuses, the largest differences between the different methods
are observed on the MSSEG dataset, followed by SCGM-GM.

Table 6: Left : Average size variation on 3D datasets for hard consensuses, with the Majority
Voting serving as the reference size. Right : percentage of cases where the computed
consensus is strictly larger than the MV consensus. Red color indicates that for this setting,
all cases are at least of equal size.

Avg. size variation w.r.t MV Frequencies of size > |MV|

Dataset
Method

Jaccard Dice ML STAPLE Jaccard Dice ML STAPLE

Prostate 3D +0.4% +0.6 % +22% 87.5% 85% 100%

MSSEG +19% +16% +151% 100% 93% 100%

SCGM-SC +2.36% +2.30% +11% 97.5% 97.5% 100%

SCGM-GM +17% +15% +47% 100% 100% 100%

We recorded the cumulative running time for STAPLE and soft MACCHIatO methods
to generate a consensus for all structures of our datasets in Table 8. We did not consider
MA as it requires far less computation than the other methods. Among the considered
algorithms STAPLE is in general the fastest method, being approximately 2-3 times faster
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Table 7: Top : Average soft volume variation on 3D datasets for soft consensuses, with the
MA serving as the reference. Bottom : Percentage of cases where the obtained consensus
has a higher volume than the MA consensus. Red color indicates for the thresholded case
that for this setting, all cases are at least of equal size.

Avg. soft volume variation w.r.t MA

Dataset
Method

TJ SJ 2SD 1SD STAPLE

Prostate 3D +0.4% +0.1% +0.1% +0.7% +10%

Thresholded +0.1% +0.07% +0.09% +0.03% +11%

MSSEG +4% +16% +2% -3% +43%

Thresholded +8% +37% +4% +11% +68%

SCGM-SC -0.4% +0.5% -0.5% +0.3% +4%

Thresholded +1% +1.3% +0.9% +0.9% +5.7%

SCGM-GM +1.2% +4.4% +1% +2.9% +8.6%

Thresholded +13% +16% +11% +14% +19%

Frequencies of soft volume > |MA|

Dataset
Method

TJ SJ 2SD 1SD

Prostate 3D 80% 65% 60% 80%

Thresholded 22.5% 12.5% 7.5% 7.5%

MSSEG 87% 100% 73% 33%

Thresholded 93% 100% 80% 93%

SCGM-SC 10% 52.5% 5% 37.5%

Thresholded 35% 67.5% 25% 27.5%

SCGM-GM 92.5% 95% 92.5% 82.5%

Thresholded 100% 100% 100% 100%
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than MACCHIatO methods. The exception here is the computation time on SCGM, which
always involves small structure sizes and large image sizes.

Table 8: Computation time of continuous methods on all datasets

Dataset
Method

TJ SJ 2SD 1SD STAPLE

Prostate 2D 11.1s 14.6s 7.4s 9.8s 2.3s

Prostate 3D 15m02s 12m52s 9m19s 9m48s 4m17s

MSSEG 14m29s 11m31s 11m42s 11m13s 3m38s

SCGM-SC 16.7s 15.1s 14s 14.3 40.6s

SCGM-GM 14.1s 12.8s 12.4s 13.3s 34.7s

4.4 Entropy of soft consensus

In Figs. 3 and 7 we show examples of soft consensuses on the prostate and grey mat-
ter datasets. It appears that MACCHIatO-SJ and MACCHIatO-1SD methods often as-
sign to subcrowns probability values very close to 0 or 1 despite being soft consensus
methods. To confirm this behaviour, we compared on all 3D datasets the Shannon en-
tropy −

∑
n Ũn log Ũn − (1 − Ũn) log(1 − Ũn) obtained by MA and by the four soft MAC-

CHIatO methods. Table 9 confirms the strong binary behavior of MACCHIatO-SJ and
MACCHIatO-1SD methods while MACCHIatO-TJ and MACCHIatO-2SD have a similar
spread than mask averaging. Thus, we classify the surrogate distances between two families :
the ones associated with low-entropy consensus (Soergel, d1SD), and the ones generating
high-entropy consensus (Tanimoto, d2SD).

Table 9: Mean entropy on 3D datasets for soft MACCHIatO methods. MA entropy is given
as a reference.

Dataset MA TJ SJ 2SD 1SD

Prostate 3D 63850 63658 6928 63799 19361

MSSEG 41295 37377 3805 37720 6107

SCGM-SC 2401 2467 259 2483 305

SCGM-GM 757 736 97 736 118

4.5 Discussion

Experiments confirmed the dependence on background size of the STAPLE method, as
shown in Fig. 1a and Appendix A (Tab. 10). We also observed that hard consensuses
obtained by MACCHIatO were generally slightly larger than those obtained by MV, par-
ticularly with MACCHIatO-J which almost never produces consensuses smaller than MV’s.
This can be explained by the fact that the MACCHIatO consensus may include voxels
segmented by less than half of the raters (as seen in Figs. 3 and 6). Finally, STAPLE con-
sensuses always have a larger size than both MACCHIatO and MV. Similar observations can
be made on soft consensus but with a smaller difference between methods on soft volumes
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Figure 7: Impact of the choice of the distance on the computed soft MACCHIatO consensus
on a SCGM-GM example

compared to hard volumes. The MACCHIatO methods by construction create consensuses,
independent from the background size, that maximize the local average (soft) squared Dice
or Jaccard coefficients between the consensus and rater masks for each connected com-
ponent. Furthermore, they produce masks that are different from the MV and STAPLE
methods and have in general larger volumes than MV consensuses and smaller volumes than
STAPLE ones. Finally, the MACCHIatO algorithms are in general more computationally
expensive than MV or STAPLE algorithms but only to a reasonable extent (about 2 or
3 times more). In this article, we had the deliberate position not to choose between soft
and hard consensus. From our perspective, the choice of method should be based on the
users’ motivations and the downstream task. If the users solely aim to generate a binary
mask for visualization purposes or inter-rater variability studies, they can opt for the hard
consensus method. However, if they wish to incorporate uncertainty modeling and obtain
more refined results, the soft consensus methods would be more suitable.
Similarly, the choice of distances should align with the intended objectives. If users prioritize
a solid mathematical foundation for the method, then they may opt for the Jaccard (hard)
and Soergel (soft) metrics as, contrary to other used distances, they respect the triangular
inequality. Alternatively, the Tanimoto distance can be used for uncertainty assessment, as
MACCHIatO-TJ outputs more non-binary values than MACCHIatO-SJ. Users also have
the flexibility to use the more commonly employed Dice instead of Jaccard if they prefer.
In definitive, we have presented a range of methods within a consistent framework and
elaborated on their characteristics. However, the specific configuration is ultimately left to
the users based on their individual requirements and preferences.

It can also be noted that the size variation observed on a dataset seems to be correlated
with its inter-rater variability, the observed differences being more important on the MSSEG
and SCGM-GM dataset than on the others.

In this article, we always considered 8-connexity in 2D cases and 26-connexity in 3D
cases, as it performed better in preliminary experiments. However, the use of other neigh-
borhoods (such as the 4-neighborhood in 2D, or the 6 and 18-neighborhood in 3D) could be
envisaged. Moreover, we did not consider the case of highly anisotropic images, like in the
SCGM dataset where a ratio of anisotropy greater than 10 in the voxel size is encountered.
For those cases, it could be considered to apply a 2.5D approach consisting in applying our
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method to each slice independently. Comparisons between 2.5D and 3D neighborhoods on
SCGM are available in Appendix D.

The proposed method has several limitations. First, we only considered a binary segmen-
tation problem. Extension to multiclass segmentation could be foreseen using for instance
the generalization method presented in Crum et al. (2006) and Sudre et al. (2017). Second,
the considered distances between binary sets are based on region overlap measures (Dice,
Jaccard indices) and discard distances between boundaries such as Hausdorff Distance (HD).
Our experiments based on HD were not conclusive.

The reasons for this may be similar to the ones described in Karimi and Salcudean
(2019) : instability of the methods to minimize a distance only defined from the largest error,
HD sensitivity to outliers, difficulties to optimize it from an optimization point of view. To
mitigate those effects, we made some tests using two of the Hausdorff alternatives defined
in Karimi and Salcudean (2019) and based respectively on distance maps and erosion, to
no avail.
Third, the proposed criteria LMSDd, weights all raters equally for all connected components,
unlike the STAPLE algorithm. It is possible to extend the MACCHIatO framework by
attributing weights to raters based on their precision and recall (as those measures are
independent of background size), either at the local or global level. Yet, this extension would
require additional optimization steps, since the weights depend on the current estimate of
the consensus.

Extending the MACCHIatO method to generate consensuses from K (soft) probability
maps instead of binary segmentations is not straightforward. Indeed, while minimizing the
Fréchet variance of Eq. 7 is well-posed, we can no longer restrict its computation to the set ES
and define subcrowns as optimization blocks. An alternative method that we have explored
in our prior workAudelan et al. (2020), is to map probabilities to real values through a link
function (e.g. a logit function) and then use robust parametric models (t-distributions) to
fuse the probability maps.

5. Conclusion

In this paper, we have shown that the STAPLE method is impacted by the image back-
ground size and the choice of prior law. We have also introduced a new background-size
independent method to generate a consensus based on Jaccard and Dice-based distances,
thus extending the Majority Voting and mean consensus methods. More precisely, the gen-
erated masks minimize the average squared Jaccard or Dice distance between the consensus
and each rater segmentation. The MACCHIatO algorithms are efficient and provide consis-
tent masks by taking into account local morphological configurations between rater masks.
The consensus masks are usually larger than those generated by the majority voting or
mask averaging methods but smaller than those issued by STAPLE. Therefore, based on
the experiments performed on three datasets, we believe that the hard and soft MACCHI-
atO algorithms are good alternatives to MV-based and STAPLE-based methods to define
consensus segmentation.
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Côte d’Azur for providing resources and support. We also thank Alexandre Allera, Malek
Ezziane, Anna Luzurier, Raphaelle Quint and Mehdi Kalai for providing prostate segmen-
tations, Yann Fraboni and Etrit Haxholli for insightful discussions, and Federica Cruciani
and Lucia Innocenti for feedback.

This paper is dedicated to the memory of our dear colleague Olivier Commowick who
has been very active and innovative in the domain of data fusion.

Ethical Standards

The work follows appropriate ethical standards in conducting research and writing the
manuscript, following all applicable laws and regulations regarding treatment of animals or
human subjects.

Conflicts of Interest

We declare we do not have conflicts of interest

References

P. Aljabar, R.A. Heckemann, A. Hammers, J.V. Hajnal, and D. Rueckert. Multi-atlas based
segmentation of brain images: Atlas selection and its effect on accuracy. NeuroImage, 46
(3):726–738, 2009. ISSN 1053-8119. doi: 10.1016/j.neuroimage.2009.02.018.

Andrew Asman and Bennett Landman. Formulating Spatially Varying Performance in the
Statistical Fusion Framework. Medical Imaging, IEEE Transactions on, 31:1326–1336,
06 2012. doi: 10.1109/TMI.2012.2190992.

Andrew J. Asman and Bennett A. Landman. Non-local statistical label fusion for multi-
atlas segmentation. Medical Image Analysis, 17(2):194–208, 2013. ISSN 1361-8415. doi:
10.1016/j.media.2012.10.002.
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Appendix A. Influence of background size in STAPLE

We can see that by definition un is impacted by the value of wn and, through TNk, by the
background size BS = |{n|∀k, Sk

n = 0}| (i.e. the number of voxels that no rater segmented).
In the following subsections we will characterize the dependence of the produced consensus
to those parameters.

A.1 STAPLE dependence on background size at fixed foreground

By definition, when the background size increases TNk also increases whereas TPk, FPk

and FNk remain constants. So, qk → 1 when BS →∞ and we can write

logit (un) ∼ logit (wn) +
∑

k,Sk
n=1

(ln (pk)− ln (1− TNk

TNk + FPk
)) +

∑
k,Sk

n=0

ln (1− pk)

∼ logit (wn) +
∑

k,Sk
n=1

(ln (pk)− ln (
FPk

N −Bk
)) +

∑
k,Sk

n=0

ln (1− pk)

∼ logit (wn) +
∑

k,Sk
n=1

(ln (N −Bk) + ln (
pk
FPk

)) +
∑

k,Sk
n=0

ln (1− pk)

with Bk=TPk+FNk.

A.2 Impact of the consensus prior wn on the limit

In Warfield et al. (2004), they proposed to set wn as a spatially uniform value wn = w
where w is either a constant (typically w = 0.5) or defined as the average occurrence ratio
(w = 1

NK

∑
n,k S

k
n). We further consider more general priors of the form w = A

Nα , with A a

constant independent of the image size BS, thus having logit(wn) = − ln (N
α−A
A ).

From there, we can write

lim
BS−→∞

logit (un) = − ln (
Nα −A

A
) +

∑
k,Sk

n=1

ln (N −Bk) +
∑

k,Sk
n=1

ln (
pk
FPk

) +
∑

k,Sk
n=0

ln (1− pk)

=
∑

k,Sk
n=1

ln (N −Bk)− ln (Nα −A) + ln (A) +
∑

k,Sk
n=1

ln (
pk
FPk

) +
∑

k,Sk
n=0

ln (1− pk)

∼
∑

k,Sk
n=1

ln (N)− α ln (N) + ln (A) +
∑

k,Sk
n=1

ln (
pk
FPk

) +
∑

k,Sk
n=0

ln (1− pk)

And

lim
BS−→∞

un =
1

1 +
(
1
A

∏
k

FP
Sk
n

k

p
Sk
n

k (1−pk)1−Sk
n

)
Nα−

∑
k Sk

n
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Table 10: Mean soft consensus entropy and volume comparisons on Prostate 3D between
STAPLE on the full image (Full size STAPLE) and on a bounded box surrounding the
organ (Focused STAPLE).

Dataset Measure Full size STAPLE Focused STAPLE

Prostate 3D
Entropy 2019 10992
Size 300534 285329

SCGM-SC
Entropy 74 269
Size 11406 11275

SCGM-GM
Entropy 71 118
Size 1854 1838

Appendix B. Proof of Majority Voting as a Fréchet Mean

With S1, S2, ..., SK ∈ {0, 1}N binary segmentation maps and T their Fréchet mean with
regards to the function

√
A△B =

√
|(A ∪B) \ (A ∩B)|, we have

T = arg min
M∈{0,1}N

∑
k

(√
|(Sk ∪M) \ (Sk ∩M)|

)2
= arg min

M∈{0,1}N

∑
k

(√
|(Sk ∪M) \ (Sk ∩M)|

)2
= arg min

M∈{0,1}N

∑
k

(
∑
n

(Sk
n +Mn − Sk

nMn)− Sk
nMn) = arg min

M∈{0,1}N

∑
k,n

Sk
n
2
+Mn

2 − 2Sk
nMn

= arg min
M∈{0,1}N

∑
n

(∑
k

(Sk
n −Mn)

2
)
= (δ(

∑
k

Sk
n >

K

2
))n(the Majority Voting consensus).

Appendix C. Inter-rater variability

(a) Prostate dataset

(b) MSSEG

(c) SCGM-SC (d) SCGM-GM

Figure 8: Example of the inter-rater variability between the raters for the different datasets.
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Appendix D. Comparison between 2.5D and 3D neighborhoods

Table 11: Size comparisons for hard MACCHIatOs between the 2.5D and 3D neighborhood
on SCGM-SC (top) and SCGM-GM (bottom)

Avg. size variation w.r.t MV Direct size comparisons

Method 3D 2.5D |3D| > |2.5D| |3D| < |2.5D|
Jaccard +2.37% +1.66% 32.5% 65%

Dice +2.3% +1.6% 37.5% 55%

(a) SCGM-SC

Avg. size variation w.r.t MV Direct size comparisons

Method 3D 2.5D |3D| > |2.5D| |3D| < |2.5D|
Jaccard +16.9% +15.8% 77.5% 15%

Dice +14.7% +14.9% 67.5% 27.5%

(b) SCGM-GM

Figure 9: Examples of hard consensuses on SCGM with 2.5D and 3D neighborhoods.
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