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Abstract

Instrumental variable methods, which handle unmeasured confounding by targeting the part
of the exposure explained by an exogenous variable not subject to confounding, have gained
much interest in observational studies. We consider the very frequent setting of estimating the
unconfounded effect of an exposure measured at baseline on the subsequent trajectory of an
outcome repeatedly measured over time. We didactically explain how to apply the instrumental
variable method in such setting by adapting the two-stage classical methodology with (1) the
prediction of the exposure according to the instrumental variable, (2) its inclusion into a mixed
model to quantify the exposure association with the subsequent outcome trajectory, (3) the
computation of the estimated total variance. A simulation study illustrates the consequences
of unmeasured confounding in classical analyses and the usefulness of the instrumental variable
approach. The methodology is then applied to 6,224 participants of the 3C cohort to estimate
the association of type-2 diabetes with subsequent cognitive trajectory, using 42 genetic poly-
morphisms as instrumental variables. This contribution shows how to handle endogeneity when
interested in repeated outcomes, along with a R implementation. However, it should still be
used with caution as it relies on Instrumental Variable assumptions hardly testable in practice.

Causality, Instrumental Variable, Repeated data, Cohort study, Mixed model
‘

1 INTRODUCTION

Observational studies are widely used in epidemiology to assess the relation between an exposure X
and an outcome Y, with the perspective to identify the causal effect of X on Y. Statistical techniques
[1, 2] have been used to derive causal interpretations in the presence of confounding. However, they
rely on the assumption that all the sources of confounding have been observed and controlled for.
Yet, in many contexts the assumption that all the confounders are observed is unrealistic, and
statistical analyses are likely to provide biased estimates of causal associations [3]. For instance,
when studying the relation between cardiometablic factors on cognitive aging, so many confounders
may intervene [4] that residual unobserved confounding is very likely. The issue of unmeasured
confounding relates to the more general problem of endogeneity that occurs when the covariate is
partly explained by the system under study. Beyond confounding, endogeneity also encompasses
reverse causation which occurs when the outcome or its underlying process may cause a change in
the exposure [5].

To handle endogeneity, instrumental variable analysis, first developed in Economics [6], was
applied in Public Health from the early 2000s[7]. This method consists in using an exogenous
variable, the ”Instrumental Variable” (IV), that is not subject to unmeasured confounding and
recreates the randomization framework. The principle of the IV methodology can be illustrated in
the cross-sectional framework (Figure 1 A). Let us denote Z the IV, X the endogenous exposure
variable, Y the outcome, and U the unobserved confounders. To be considered as valid, the IV needs
to satisfy 3 assumptions [7]: (1) Z is strongly associated with X; (2) Z is associated with Y only
through X; (3) Z is independent of U conditionally on X. Under these assumptions, Z can be used to
retrieve the causal association between X and Y. In epidemiology, genetic data have been considered
as promising IV since genes are determined from birth, thus not subject to confounding; in this
context, IV methodology is called Mendelian Randomization (MR) [8]. Finally, to be interpreted as
causal effects, IV analyses require a fourth assumption of homogeneity for the average causal effect
or monotonicity for the local average causal effect [9, 10].

The most widely used estimation technique in IV methodology is the two-stage approach, called
Two-Stage Least Square (2SLS) method [11]: first the endogenous exposure is regressed on the IV,
and second the derived prediction, which is independent of the unmeasured confounders due to the
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Figure 1: Directed Acyclic Graph for the IV methodology with a cross-sectional outcome Y (panel
A) or a longitudinal continuous outcome Y (panel B). X is the exposure, Z the instrumental variable
(with 1, 2, 3 the corresponding IV assumptions), and U the (partially) unobserved confounders. Int
and slope represent the underlying latent level of Y at baseline, the latent slope of Y over time,
respectively.

assumptions of Z, substitutes the exposure in the regression of the outcome to quantify the causal
relation between X and Y. First proposed in the cross-sectional framework where X and Y were
continuous variables measured at a single time point [11], it was adapted to handle binary exposures
and/or binary outcomes [12, 13], and to treat grouped data [14, 15].

Recently, the methodology was extended to handle longitudinal data. Two settings were ex-
plored: (i) an exposure repeatedly measured over time and its effect on the concomitant level of
a repeatedly measured outcome [16, 17] and (ii) a time-fixed exposure and its effect on the subse-
quent risk of an event [15, 18, 19]. Yet, another frequent setting encountered in longitudinal studies
concerns a time-fixed exposure and its effect on the subsequent trajectory of an outcome repeatedly
measured over time.

In the present contribution, we aim to didactically explain how the IV methodology can be used
in observational cohort studies to assess the association between an exposure collected at baseline
and the trajectory of an outcome repeatedly measured over follow-up in the presence of potential
unmeasured confounding. Our solution consists in considering a mixed model for the repeated
marker in the second step of the two-stage IV approach. We show how this can solve situations of
unmeasured confounding and endogeneity, and we illustrate it in a simulation study considering both
a binary and a continuous exposure, and a continuous outcome. We finally apply the methodology
to assess the association between type-2 diabetes and cognitive aging in the French cohort ”Three
city” (3C) [20], by using genetic polymorphisms as the exogenous variable.

2 METHODS

2.1 Framework

Let us consider a classical longitudinal framework (Figure 1B) where X is the time-fixed exposure,
U is a r-vector of confounders and Z is a p-vector of exogenous (instrumental) variables, all defined
and measured at entry in the cohort while the continuous outcome Y is repeatedly measured over
time t after baseline. Without loss of generality, we assume E(U) = 0.

To ease the problem description, we first consider the case of a continuous exposure, and we
assume Y evolves linearly over time and can be summarized by its latent level at baseline and
its latent slope over time, on which the other variables can have an effect. The generalization
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to a nonlinear trajectory over time is straightforward by considering a more flexible basis of time
functions instead of only intercept and slope.

Let us assume that the true relations schematized in Figure 1B translate for each subject i
(i = 1, ..., N) of a sample and each occasion j (j = 1, ...ni) in a linear regression for the continuous
exposure (1) and a linear mixed model for the outcome (2):

Xi = α∗
0 + Z⊤

i α
∗
Z +U⊤

i α
∗
U + ϵX∗

i (1)

Yij =β∗
0 +Xiβ

∗
e +U⊤

i β
∗
U + b∗0i︸ ︷︷ ︸

Inti

+
(
β∗
t +Xiβ

∗
te +U⊤

i β
∗
tU + b∗1i

)
︸ ︷︷ ︸

Slopei

tij + ϵY ∗
ij

(2)

For the sake of readability, conditioning on covariates and random effects, although systematic,
is not made explicit in any of the linear regressions throughout the manuscript.

Following classical definitions of the linear mixed model [21, 22], b∗
i = (b∗0i, b

∗
1i)

⊤ ∼ N (0,B∗) is
the vector of individual random effects which accounts for the intra-individual correlation within
the repeated Y measures. The measurement error in the exposure regression ϵX∗

i is independent
of Zi and Ui and the measurement error at time tij in the outcome regression ϵY ∗

ij ∼ N (0, σY )

is independent of all the other measurement errors at different times ϵY ∗
ij′ with j′ ̸= j, and of Xi,

Ui and b∗
i . The random effects b∗

i are also independent of Xi and Ui. In Equations (1) and (2),
superscript * refers to the parameters and latent variables under the true model.

The parameters of interest are β∗
e and β∗

te corresponding to the effect of X on the level of Y
at inclusion and the effect of X on the subsequent change of Y over time, respectively. Since all
confounders are included through U in model (2), we can interpret these parameters in a causal way.
The fundamental problem is that this model and these parameters can not be directly estimated
when some of the confounders U are not observed. Let’s split U = (Uo,Um) with Uo the observed
confounders and Um the unobserved confounders.

2.2 Naive approach neglecting unobserved confounding

In the presence of unobserved confounding, a naive solution consists in estimating the association
between X and the trajectory of Y by considering the model which includes Uo but omits Um:

Yij =βN
0 + βN

e Xi + bN0i +Uo
i
⊤βN

Uo

+ (βN
t + βN

teXi +Uo
i
⊤βN

tUo + bN1i)tij + ϵNY
ij

(3)

The estimation of this model relies on the same distributions and independence assumptions
as defined for model (2). Yet, those are not satisfied anymore in the presence of unobserved con-
founding: the neglected confounders Um are absorbed by the individual random-effects: bN0i =
b∗0i +Um

i
⊤β∗

Um and bN1i = b∗1i +Um
i

⊤β∗
tUm, so that bN

i = (bN0i , b
N
1i)

⊤ is not independent of Xi any-
more, and is not homoscedastic anymore. Of note, Um

i induces a correlation between bN0i and bN1i
even when b∗0i and b∗1i were initially independent.
When Um is not a confounder, (β̂N

e , β̂N
te ) is an unbiased estimate of (β∗

e , βte
∗) from Equation (2),

and under the assumption that E(Um) = 0, E(Yij |Xi,Zi,Ui, tij) = E(Yij |Xi,Zi,U
o
i , tij). However,

whenUm includes confounders, E(Yij |Xi,Zi,Ui, tij) ̸= E(Yij |Xi,Zi,U
o
i , tij) since E(bN0i |Xi,Zi,U

o
i , tij)

̸= 0 and E(bN1i |Xi,Zi,U
o
i , tij) ̸= 0, and (β̂N

e , β̂N
te ) is not an unbiased estimator of (β∗

e , β
∗
te) anymore.
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2.3 Instrumental variable approach

The two-stage IV methodology aims at correcting the bias due to residual unmeasured confounding.
We show here how it can be adapted to the longitudinal framework described above by replacing
the second-stage least square regression by a second-stage linear mixed model.

For clarity, we distinguish below the case of a continuous endogenous exposure from the case of
a binary endogenous exposure. The method relies on the independence between the regressors (Z,
Uo) and the unobserved variables Um. As this assumption may likely be violated between Um and
Uo, we consider below the total vector U = (Um,Uo) as being unobserved to ensure independence.

X continuous

With a continuous endogenous exposure, the two-stage methodology is defined as follows:

Xi = α0 + Z⊤
i αZ + eXi (4)

Yij = β0 + E(Xi|Zi)βe + b0i

+ (βt + E(Xi|Zi)βte + b1i)tij + ϵYij
(5)

This model relies on the same distributions and independence assumptions as model (2).
From the IV conditional independence assumption (3), the conditional expectation E(Xi|Zi) =

X̃i = α∗
0 + Z⊤

i α
∗
Z and the residual Xi − E(Xi|Zi) = U⊤

i α
∗
U + ϵX∗

i .

When rewritting Equation (2) according to E(Xi|Zi), one obtains:

Yij = β∗
0 +Xiβ

∗
e +U⊤

i β
∗
U + b∗0i+(

β∗
t +Xiβ

∗
te +U⊤

i β
∗
tU + b∗1i

)
tij + ϵY ∗

ij

= β∗
0 + E(Xi|Zi)β

∗
e + (Xi − E(Xi|Zi))β

∗
e +U⊤

i β
∗
U + b∗0i+(

β∗
t + E(Xi|Zi)β

∗
te + (Xi − E(Xi|Zi))β

∗
te +U⊤

i β
∗
tU + b∗1i

)
tij + ϵY ∗

ij

(6)

And using that Xi − E(Xi|Zi) = U⊤
i α

∗
U + ϵX∗

i from model (1),

Yij = β∗
0 + E(Xi|Zi)β

∗
e + (U⊤

i α
∗
U + ϵX∗

i )β∗
e +U⊤

i β
∗
U + b∗0i+(

β∗
t + E(Xi|Zi)β

∗
te + (U⊤

i α
∗
U + ϵX∗

i )β∗
te +U⊤

i β
∗
tU + b∗1i

)
tij + ϵY ∗

ij .
(7)

which reduces to:

Yij = β∗
0 + E(Xi|Zi)β

∗
e + b0i + (β∗

t + E(Xi|Zi)β
∗
te + b1i) tij + ϵY ∗

ij (8)

with b0i = U⊤
i (α

∗
Uβ∗

e + β∗
U)+ϵX∗

i β∗
e+b∗0i and b1i = U⊤

i (α
∗
Uβ∗

te + β∗
tU)+ϵX∗

i β∗
e+b∗1i. By definition,

E(Xi|Zi) and Ui are independent so bi = (b0i, b1i)
⊤ is independent of the covariates in the model,

as required in a linear mixed model. The model defined in Equation (5) is thus equivalent to the
target model in Equation (2), except that the variance of the random-effects is not homoscedastic
anymore.

Maximum likelihood estimates of the fixed effects in a mixed model being unbiased even when
the covariance structure is misspecified (following the same principle as with generalized estimating
equations [23]), β̂e and β̂te are unbiased estimators of β∗

e and β∗
te; they may be used to quantify

the causal relation between X and Y. However, their variance needs to be corrected for the het-
eroscedasticity and the use of an IV. By applying the same principle of robust variances [24, 25] as
in IV methods for cross-sectional studies (e.g. in ivtools R package [26]), we define the following
sandwich estimator:
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V2-S

(
β̂
)
=

(
N∑
i=1

ŴT
i V̂

−1
i Ŵi

)−1( N∑
i=1

ŴT
i V̂

−1
i ViV̂

−1
i Ŵi

)(
N∑
i=1

ŴT
i V̂

−1
i Ŵi

)−1

(9)

where Ŵi is the matrix of variables associated with the vector of fixed effects β (in our example
in equation (5), Ŵi is a ni × 4- matrix with intercept, time, E(Xi|Zi) and its interaction with
time, and β = (β0, βt, βe, βte)

⊤), V̂i = MiB̂MT
i + σ̂2

yIni with Mi the matrix of variables related to
the random effects (in our example a ni × 2 with intercept and time), Ini is the identity matrix
and, β̂, B̂, σ̂ are the estimates obtained in the second-stage model (5). Finally Vi is the empirical
covariance matrix of Y , that is Vi = Cov(Yi −W⊤

i β̂,Yi −W⊤
i β̂) where Wi is the ni × 4 matrix

with intercept, time, Xi and its interaction with time.

The robust variance V2-S

(
β̂
)

quantifies the second stage variability in the estimates but it

neglects the first-stage uncertainty. To compute the total variance that accounts for the variability
in the two stages, we use a parametric bootstrap [27]: instead of running the 2nd-stage analysis
once from the maximum likelihood estimates α̂, the 2nd-stage is replicated M times from 1st-stage
parameters αm (m = 1, ..,M) randomly drawn from their asymptotic normal distribution with

mean α̂ and variance V̂ (α̂). The total variance estimate of β̂ can then be derived with the Rubin’s
rule [28] from the M 2nd-stage estimates β̂m as:

Vtot(β̂) =
1

M

M∑
m=1

̂
V2-S(β̂m) +

(M + 1)(M − 1)

M

M∑
m=1

(
β̂m − β̂m

)(
β̂m − β̂m

)⊤

X binary

The absence of bias demonstrated for the continuous exposure comes from the use of additive mod-
els in both stages. Although not frequent, a linear model could also be considered for a binary
exposure. Called linear probability model [13], it translates into the exact same inference technique
as described for the continuous exposure with E(Xi|Zi) derived from a linear model for X and
included into the second-stage linear mixed model, and the same variance estimator.

Alternatively, the more classical logistic model can also be considered:

logit(E(Xi|Zi)) = α0 + Z⊤
i αZ (10)

with the derived E(Xi|Zi) included in the second-stage linear mixed model in (5), and the same
total variance estimator used. However, due to the nonlinear nature of the logistic regression,
E(Xi|Zi, Ui) does no longer equal E(Xi|Zi), and the convergence of the estimates of βe and βte
to β∗

e and β∗
te in (2) is not ensured anymore. To further account for the residual effect of the

unmeasured confounders, some authors recommended to replace the substitution of X by E(Xi|Zi)
by the combination of X and the residual X − E(Xi|Zi) in the second-stage. We call these three
options linear/substitution, logistic/substitution and logistic/residual-inclusion, respectively.

2.4 Software

The IV estimation technique for a binary or continuous time-fixed exposure and a continuous
repeatedly measured outcome is implemented in the R package IVmm available at url of the
package - blinded version. It relies on the hlme function of lcmm R package for the linear mixed
model estimation [29].
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3 SIMULATION STUDY

We ran a simulation study to illustrate the behaviour of the naive approach and of the IV methods
in the presence of unmeasured confounding.

3.1 Simulation design

The simulation setting followed the DAG of Figure 1 B. The procedure of data generation in-
cluding parameters values considered are fully summarized in supplementary Table S1. For each
individual i in a sample of size N , we first generated an exogenous instrumental variable Zi and
an unobserved confounder Ui according to standard Gaussian distributions, and random visit times
tij = j+uij around theoretical annual visits j (with j = 1, .., 6) with uij a visit-and-subject-specific
random Gaussian departure (N (0, 0.05)). We then generated the endogenous continuous exposure
Xi according to model (4) (for a binary, a logistic version of (4) was considered) and the repeated
measures of the outcome Yi according to model (2).

We considered scenarios with different sample sizes (N=2000, 6000 or 20,000) and different
strengths of association between the IV and the exposure αz resulting in different strengths of the
instrumental variable. As common in the IV literature, the strength of association between the
IV and the exposure was quantified with the F-statistic (ratio of the explained variance and the
residual variance) [30] and the Nagelkerke R2 for a continuous and binary exposure, respectively.
For each scenario, 500 datasets were simulated.

3.2 Simulation results

Table 1: Simulation results for continuous exposure (over 500 replicates) for the association between
the exposure and the trajectory of Y (summarized by the effect on the baseline level and the slope
over time) according to the sample size, and strength of the instrumental variable (αZ).

αZ = 0.5 αZ = 1

baseline slope baseline slope
level over time level over time

N Methods Strength* RB CR RB CR Strength* RB CR RB CR

2000 Naive - 44.3 0.0 44.3 0.0 - 33.3 0.0 33.2 0.0
IV 251 -0.1 93.6 0.3 95.6 1003 0.1 96.8 0.1 95.6

6000 Naive - 44.5 0.0 44.5 0.0 - 33.4 0.0 33.3 0.0
IV 757 0.9 95.4 0.4 95.0 3003 -0.1 96.8 -0.1 96.2

20000 Naive - 44.4 0.0 44.5 0.0 - 33.3 0.0 33.3 0.0
IV 2503 0.08 96.2 -0.0 94.6 10009 -0.0 95.2 0.0 93.4

*

Strength of association is assessed with the F-statistic for continuous X
Abbreviations: N=sample size, RB=Relative bias (defined as the average percentage of difference
between the estimate and the true parameter value), CR=Coverage rate of the 95% confidence

interval

The results of the naive and the IV approaches are reported in Tables 1 and 2; they are also
displayed in Figure 2 for the slope with time (and in Supplementary Figure S1 for the initial level).

As expected, whatever the sample size and the strength of the IV association with the exposure,
the naive method showed very large bias and null coverage rate for the association between the
exposure and the change over time in all cases. In contrast, the 2-stage IV methods retrieved the
true causal association without any bias for the continuous exposure, and for the binary exposure
when using the linear/substitution and logistic/substitution methods, even for the scenarios with
a weak instrument. In contrast, the logistic/residual methodology for a binary exposure showed
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Table 2: Simulation results for binary exposure with naive method, linear/substitution and logis-
tic/substitution IV methods (over 500 replicates) for the association between the exposure and the
trajectory of Y (summarized by the effect on the baseline level and the slope over time) according
to the type of exposure, the sample size, and strength of the instrumental variable (αZ).

αZ = 2 αZ = 3 αZ = 4

baseline slope baseline slope baseline slope
level over time level over time level over time

N Methods Str* RB CR RB CR Str* RB CR RB CR Str* RB CR RB CR

2000 Naive - 135.9 0.0 135.5 0.0 - 106.9 0.0 106.7 0.0 - 67.6 0.0 67.7 0.0
Log/Res 14.3 100.3 0.0 100.2 0.0 35.0 82.7 0.0 82.5 0.0 58.6 67.9 0.0 67.7 0.0
Log/Sub 14.3 -1.6 94.6 -2.0 95.2 35.0 -0.8 94.8 -1.4 95.4 58.6 -0.4 94.6 -1.0 95
Lin/Sub 10.3 -1.0 95.4 -1.4 95.4 25.1 -0.1 96.0 -0.1 93.8 41.6 0.0 94.0 0.2 94.0

(229) (676) (1406)
6000 Naive - 135.9 0.0 135.5 0.0 - 106.7 0.0 106.3 0.0 - 68.0 0.0 67.8 0.0

Log/Res 14.3 100.4 0.0 100.2 0.0 35.0 82.4 0.0 81.8 0.0 58.6 -21.6 0.0 16.2 0.0
Log/Sub 14.3 -1.3 94.6 -1.2 93.8 35.4 -1.0 94.6 -0.9 94.0 58.6 -0.7 94.0 -0.7 94.4
Lin/Sub 10.3 -1.0 94.8 -0.1 95.4 25.1 -0.6 96.8 -0.4 96.4 41.6 -0.1 93.0 0.2 96.0

(692) (2025) (4218)
20000 Naive - 135.7 0. 135.7 0.0 - 106.7 0.0 106.8 0.0 - 67.9 0.0 67.9 0.0

Log/Res 14.3 100.4 0.0 100.4 0.0 35.0 82.2 0.0 82.3 0.0 58.6 67.4 0.0 67.4 0.0
Log/Sub 14.3 -0.3 93.8 0.0 95.6 35.4 -0.6 93.8 -0.3 95.6 58.6 -0.5 94.0 -0.4 95.4
Lin/Sub 10.3 -0.6 94.0 -0.2 95.0 25.1 0.2 93.8 0.2 94.6 41.6 -0.2 94.6 -0.1 94.6

(2301) (6763) (14037)

* Strength of association is assessed with the R2 expressed in % (and F-statistic) for the linear
regression, and the R2 of Nagelkerke for the logistic regression also expressed in %.

Abbreviations: N=sample size, RB=Relative bias expressed in % (defined as the average
percentage of difference between the estimate and the true parameter value), CR=Coverage rate
expressed in % of the 95% confidence interval, Str = Strength, Log/Sub = Logistic/Substitution

Method, Lin/Sub = Linear/Substitution Method

large bias and null coverage rate. In the following, we thus did not investige this method further.
The simulation study also validated the proposed estimate of variance with reported coverage rate
of the 95% confidence interval very close the nominal value in both the continuous and binary case.
However, although correct, the 2-stage IV method showed substantial variability in the estimates
when the IV was weaker.
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Figure 2: Association estimates (over 500 replicates) of the continuous exposure or the binary
exposure with the change of the outcome over time using the naive or the IV approaches (logis-
tic/residual, linear/substitution and logistic/substitution in the binary case) for different sample
sizes (N) and different intensities of association (through the regression coefficient α). In the bi-
nary case only, the Nagelkerke R2 is also reported to further illustrate the strength of the IV in
comparison with the application setting.

4 APPLICATION

We aimed to assess the relation between type-2 diabetes measured at baseline and subsequent cog-
nitive trajectory in the elderly population. Indeed, biological mechanisms suggest an implication of
type-2 diabetes on cognitive aging [31] but unmeasured confounders can interfere with this process.
To handle this, we used a genetic instrumental variable defined by the 42 single nucleotide polymor-
phisms (SNP) (listed in supplementary materials) that were previously identified in genome-wide
association studies of type-2 diabetes [32, 18].

4.1 The Three-City study

The 3C study is a population-based prospective cohort which aimed at assessing the relation between
vascular diseases and dementia in the elderly [20]. Participants, aged 65 years and older, were
randomly selected in 1999 from the electoral lists of three French cities. In total, 9,294 participants
underwent an in-depth examination of their health and risk factors at baseline, and were then
followed every 2-3 years for up to 20 years with an extensive interview and a neuropsychological
battery. Among them, 6,948 participants have been typed on genome-wide genotyping arrays and
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further imputed from Haplotype Reference Consortium panel [33]. Genotype data were retained in
the study are those with an imputation quality greater than 0.70. Type-2 diabetes was determined
from blood glucose level (fasting glucose level≥ 7.0 mmol/L) or the use of antidiabetic treatment
at baseline. We studied the cognitive trajectory through the Isaacs Set test (IST), which measures
verbal fluency and has been shown to differentiate early in the pathological process towards dementia
[34]. The score is the total number of words given in four semantic categories in 15 seconds.

The final sample size included 6,224 participants whose type-2 diabetes was ascertained at
baseline, who were genotyped, and had at least one IST measure during the follow-up. Participants
were 74 years old at baseline on average, 61 % were women and 38% had an educational level
higher than secondary school (Table 3). Among them, 598 (9.6 %) were ascertained with diabetes
at baseline; those with diabetes were more often male, more likely to have a low educational level.
Participants were followed up for 8 years on average with a mean of 4 repeated measures of IST.

Table 3: Characteristics of the 6224 participants of 3C sample according to their type-2 diabetes
and overall

Characteristics Diabetics (N=598) No diabetics (N=5626) Overall (N = 6224)
Number (%) Mean (SD) Number (%) Mean (SD) Number (%) Mean (SD)

Sex
female 285 (47.7) 3498 (62.2) 3783 (60.8)
male 313 (52.3) 2128 (37.8) 2441 (39.2)

Education level
no education 78 (13.0) 458 (8.1) 536 (8.6)
primary school 112 (18.7) 924 (16.4) 1036 (16.7)
secondary school 218 (36.5) 2086 (37.1) 2304 (37.0)
high school 99 (16.6) 1138 (20.2) 1237 (19.9)
university 91 (15.2) 1020 (18.1) 1111 (17.9)

Age at entry 74.44 (5.4) 74.29 (5.5) 74.31 (5.5)
IST score at baseline 30.48 (6.8) 32.24 (7.0) 32.08 (7.0)
Number of IST 4.06 (1.8) 4.47 (1.9) 4.42 (1.9)
measures/subject
Years of follow-up 7.08 (4.6) 8.12 (4.8) 8.02 (4.7)

Abbreviations: N=sample size, IST=Isaacs Set Test, SD=standard deviation

4.2 The IV analysis

We primarily used the logistic/substitution method. The R² of 4.8% showed a weak association
between type 2 diabetes and genetic polymorphisms. The linear mixed model for the IST trajectory
included a basis of four natural cubic splines on the time from baseline to account for the nonlinear
trajectories over time. Diabetic status (in the naive model) or its expectation based on the 42
polymorphisms (in the IV model) was included in interaction with each spline function. For the
naive model, we considered both no adjustment or adjustment on measured potential confounders
(educational level, age at baseline). Parameter estimates are given in Supplementary Table S2.
Predicted trajectories of IST according to diabetic status are displayed in Figure 3(a) (corresponding
differences over time between groups in Figure 3(b)).

The naive method, whether it was adjusted or not for potential confounders, highlighted a
difference at inclusion according to the type-2 diabetes but no differential change over time. At any
time, the mean IST score was lower for participants with type-2 diabetes than for those without
type-2 diabetes (mean difference in the adjusted model of -1.20 [-1.77;-0.64], -1.36 [-1.94;-0.79], -
1.31 [-1.84;-0.78] points at 0, 5 and 10 years). In contrast, the logistic/substitution IV method did
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not show evidence of substantial difference in cognitive trajectory according to the type-2 diabetes
although the point estimates suggested a higher level at baseline for participants with type-2 diabetes
(mean difference of 1.26 [-2.66;5.18] points at baseline) and a steeper cognitive decline in the first
years for participants with type-2 diabetes (mean difference of -1.20 [-5.50;3.10], -0.48 [-5.51;4.55]
points at 5 and 10 years, respectively). Results were similar when using the linear/substitution IV
model (see Supplementary Figure S3).
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Figure 3: (a). Predicted trajectories of IST score according to type-2 diabetes at baseline and
associated 95% confidence interval. (b). Estimated difference in IST score over time for diabetic
compared to non-diabetic using the naive method (not adjusted or adjusted on gender, educational
level and age) and the logistic/substitution instrumental variable method
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5 DISCUSSION

The IV method has gained interest in observational studies to address unmeasured confounding.
Yet, although the framework is very common in observational longitudinal studies, an IV solution
for the assessment of an exposure collected at baseline on the subsequent trajectory of a repeated
outcome had not been previously described in the medical statistics literature. We showed in this
work how the two-stage approach frequently used in IV methodology for cross-sectional or survival
outcomes [11, 18] could be adapted to study the association between a time-fixed exposure and the
subsequent trajectory of an outcome using the mixed model theory. Previous contributions dealing
with repeated data over time had systematically focused on time-dependent exposures (rather than
time-fixed) and associations with either the level of a time-fixed outcome [35] or the level of a
repeated outcome at a given time using distributed lag models [16, 17]. To our knowledge, the
use of a mixed model with an instrumental variable approach in epidemiology was limited to the
analysis of a complex clinical trial to treat non-compliance over time [36], the issue of measurement
error of time-dependent exposures with regression calibration [37] and the issue of between/within
unmeasured confounding in cross-sectional grouped data [15].

The conducted simulation study emphasized the highly biased estimations obtained when ig-
noring unmeasured confounding. They also showed the correct inference our IV solution could
provide for assessing the causal association between a time-fixed continuous or binary exposure and
a continuous longitudinal outcome in the presence of endogeneity. However, we noticed a very high
variance for moderate sample sizes (a few thousand subjects) when the IV was weakly associated
with the exposure. For simplicity of result reporting, we focused in the methodology and in the
simulations on scenarios with a linear trajectory for the outcome. However, the methodology applies
equivalently to any scenario with a nonlinear trajectory provided the mixed model remains linear
in the fixed and random effects, and random effects are included for each time function. This is
what was done in the application considering natural splines to approximate the nonlinear cognitive
trajectory.

The IV methodology highly relies on additive model properties to eliminate the association with
the unmeasured confounders. The use of nonlinear models may prevent from a total elimination
of this association and induce biased estimates. When considering a binary exposure, we explored
linear and nonlinear regressions. Our simulations showed that the causal association could be cor-
rectly retrieved when using the linear probability model for the binary exposure but also when
using the nonlinear logistic model combined with a substitution method in the second-stage. In the
application, both methods also gave the same results. In contrast, the logistic regression combined
with the residual inclusion in the second stage [12] showed large bias in our simulation setting with
a linear mixed model in the second stage and was not further investigated. Regarding the outcome,
we restricted our framework to continuous longitudinal outcomes with linear mixed models and
leave extensions to other types of outcomes to future research.

Our motivating application aimed at evaluating the causal association between type-2 diabetes
and cognitive decline by using 42 genetic polymorphisms associated with type-2 diabetes as IV.
While the classical (naive) regression ignoring unmeasured confounders highlighted a lower cognitive
level for type-2 diabetics at all times, the IV methodology which handles unobserved confounding
suggested a different and time-varying association. However, the analysis by IV does not allow to
reach a conclusion as the confidence intervals were excessively large because of the limited sample
size for an IV application with a binary exposure (N=6224), and the weakness of the association
between genetic polymorphisms and type-2 diabetes (R2 = 4.8%). These results were similar when
considering logistic and linear models in first step.

MR studies had already been conducted to assess the causal association between type-2 diabetes
and cerebral aging. Cross-sectional studies had focused on cognitive level [38] and dementia risk
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[39, 40], and one longitudinal survival study had investigated the association with dementia risk
[18]. None had identified a causal association between genetically-predicted type-2 diabetes and
cerebral aging. Our work goes one step further by considering the association with prospective
cognitive decline. Although in accordance with the literature, the highly variable results call for a
replication in a much larger sample to overcome a potential lack of power. Additional simulations
based on a similar instrument as in our application (Supplementary Figure S2) showed the sub-
stantial the gain in accuracy when considering for instance 20,000 subjects rather than 6000 subjects.

The method we proposed relies on assumptions coming from both the IV theory and the mixed
model theory. First, the method is based on the fundamental assumptions that define valid instru-
ments: (1) Z is strongly associated with X; (2) Z is associated with Y only through X; (3) Z is
independent of U conditionally on X (Figure 1). In our application as in many MR analyses, the
genetic IV explains only a small part of the exposure (assumption (1)) leading to a weak instrument,
high variances and need for very large sample sizes. The simulation study did not reveal any issue
of bias or coverage rate with weak instruments. However, it showed a huge variability that can
make the IV method inconclusive, except when carried out on very large samples (20,000 subjects
for instance in our case). To better address assumption (1) and not rely on a pre-determined set of
IVs, Fan and Zhong [41] proposed an adaptive lasso technique that simultaneously selects the IV
variables from a high-dimensional set of candidates. Developed for cross-sectional data, an extension
to longitudinal outcome data using our mixed modeling strategy could be possible.

As fixed at birth, the genetic IV can not be affected by the confounders (Assumption 3). How-
ever, to guarantee assumptions (2) and (3), we further need to assume that the SNPs associated
with type-2 diabetes are not associated with other diseases (pleiotropy). Moreover, the use of ge-
netic variants as an IV for a later in life study relies on the implicit assumption that the genetic
variants are not associated with the probability to be alive at the timing of eligibility definition,
exposure and outcome collection [42, 43]. Our application was performed under the assumption
that genetic polymorphisms and type-2 diabetes were not associated with mortality prior to cohort
entry. Finally, causal interpretation of the IV analysis requires a fourth assumption, either the
homogeneity for the average causal effect or monotonicity for the local average causal effect [9, 10].

Note that with binary exposures, the interpretation of IV analyses may not be straightforward,
especially when the binary exposure reflects an underlying continuous process that should be consid-
ered instead [44]. This is however unlikely the case with diabetes. In particular its definition differs
from blood glucose since a diabetic person under treatment may be controlled for hyperglycemia.

Our methodology also relies on classical assumptions of longitudinal analyses. We considered
the linear mixed model theory rather than marginal models as they better handle selection over
time for etiological studies [45]. Our methodology is robust to missing data under the missing at
random mechanism (i.e., missingness can be fully determined by the observations) [46] for both
the intermittent missing outcome and study dropout. In case of informative dropout linked to the
outcome process, the methodology can be easily extended by jointly modeling the risk of dropout
according to the trajectory of the outcome [47]. In the application, we performed such a sensitivity
analysis where death and dropout from the study were modelled along with the cognitive decline
(Supplementary Table S3); it showed concordant results.

To conclude, we provided a full methodology and associated software solution to apply the IV
technique to the frequent framework of an exposure measured at baseline and the subsequent trajec-
tory of a continuous marker. It must be used with caution due to the strong and hardly controllable
assumptions IV methods must satisfy. However, as illustrated with the causal association between
type-2 diabetes and cognitive decline, it constitutes a useful statistical tool to take into account
unobserved confounders in prospective cohort studies.
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