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Abstract
Abstraction is key to human and artificial intelligence as it allows one to see common structure

in otherwise distinct objects or situations and as such it is a key element for generality in AI. Anti-
unification (or generalization) is the part of theoretical computer science and AI studying abstraction.
It has been successfully applied to various AI-related problems, most importantly inductive logic
programming. Up to this date, anti-unification is studied from a syntactic perspective in the literature.
The purpose of this paper is to initiate an algebraic (i.e. semantic) theory of anti-unification within
general algebras. This is motivated by recent applications to analogical reasoning in the form of
similarity and analogical proportions.

1. Introduction

Abstraction is key to human and artificial intelligence (AI) as it allows one to see common structure
in otherwise distinct objects or situations (Giunchiglia & Walsh, 1992; Saitta & Zucker, 2013) and as
such it is a key element for generality in computer science and artificial intelligence (McCarthy, 1987;
Kramer, 2007). It has been studied in the fields of theorem proving (e.g. Plaisted, 1981) and knowl-
edge representation and reasoning (KR&R) by a number of authors (e.g. Knoblock, 1994; Sacerdoti,
1974), and it has recently gained momentum in answer set programming (Saribatur & Eiter, 2020;
Saribatur, Eiter, & Schüller, 2021), one of the most prominent formalisms in the field of KR&R (see
e.g. Brewka, Eiter, & Truszczynski, 2011; Lifschitz, 2019). Saribatur et al. (2021) contain a very rich
bibliography for readers interested in the literature on abstraction.

Anti-unification (or generalization) (cf. Cerna & Kutsia, 2023) is the field of mathematical logic
and theoretical computer science studying abstraction. It is the “dual” operation to the well-studied
unification operation (cf. Baader & Snyder, 2001). More formally, given two terms s and t, unification
searches for a substitution — the most general unifier — σ satisfying sσ = tσ, whereas syntactic
anti-unification searches for the least general generalization u such that s = uσ and t = uθ, for some
substitutions σ, θ. Notice the difference between the two operations: while unification computes a
substitution, anti-unification computes a term. Therefore saying that the two operations are “dual” —
as it is often done in the literature — is a bit misleading.

Syntactic anti-unification has been introduced by Plotkin (1970) and Reynolds (1970), and it has
found numerous applications in theoretical computer science and artificial intelligence, as for example
in inductive logic programming (Muggleton, 1991) (cf. Cropper & Morel, 2021; Cropper, 2022),
programming by example (Gulwani, 2016), library learning and compression (Cao et al., 2023), and,
in the form of E-generalization (i.e. anti-unification modulo theory) (Heinz, 1995; Burghardt, 2005),
and in analogy-making (Weller & Schmid, 2007; Schmidt et al., 2014) (for further applications, see
e.g. Barwell et al., 2018; de Sousa et al., 2021; Vanhoof & Yernaux, 2019).

The purpose of this paper is to initiate an algebraic theory of anti-unification within general
algebras. More formally, given two algebras A and B in the sense of universal algebra (cf. Burris &
Sankappanavar, 2000, §II), we shall define the set of minimally general generalizations (or mggs) of
two elements of algebras (instead of terms). That is, given a in A and b in B, the set a ⇑AB b of mggs

©submitted AI Access Foundation. All rights reserved.



will consist of all terms s such that a and b are within the range of the term function induced by s in A
and B, respectively, and s is minimal with respect to a suitable algebraic generalization ordering (see
§3). Notice that this operation has no “dual” in the theory of unification since it makes no sense to
try to “unify” two elements (constant symbols) a and b by finding a substitution σ such that aσ = bσ
(which holds iff a = b).

The initial motivation for studying algebraic anti-unification as proposed in this paper are two
recent applications to AI, which we shall now briefly recall:

Similarity Detecting and exploiting similarities between seemingly distant objects is at the core of
artificial general intelligence utilized for example in analogical transfer (Badra, Sedki, & Ugon,
2018; Badra & Lesot, 2023). The author has recently introduced an abstract algebraic notion of
similarity in the general setting of universal algebra, the same mathematical context underlying
this paper (Antić, 2023a). There, the set ↑A a of all generalizations of an element a inA naturally
occurs since similarity is roughly defined as follows: two elements a in A and b in B are called
similar in AB iff either (↑A a) ∪ (↑B b) consists only of trivial generalizations generalizing
all elements of A and B; or a ↑AB b is ⊆-maximal with respect to a and b (separately). The
intuition here is that generalizations in ↑A a encode properties of a; for example, the term 2x is a
generalization of a natural number a ∈ N with respect to multiplication — that is, 2x ∈ ↑(N,·,N) a
— iff a is even. While the role of the set of all generalizations of elements is immanent from
the definition of similarity, the role of the set of minimally general generalizations as defined
here is more mysterious and the content of ongoing research.

Analogical proportions Analogical proportions are expressions of the form “a is to b what c is to
d” — written a : b :: c : d — at the core of analogical reasoning with numerous applica-
tions to artificial intelligence such as computational linguistics (e.g. Lepage, 1998, 2001, 2003),
image processing (e.g. Lepage, 2014), recommender systems (e.g. Hug et al., 2019), and pro-
gram synthesis (Antić, 2023c), to name a few (cf. Prade & Richard, 2021). The author has
recently introduced an abstract algebraic framework of analogical proportions in the general
setting of universal algebra, the same setting as the notion of algebraic anti-unification of this
paper (Antić, 2022). It is formulated in terms of arrow proportions of the form “a transforms
into b as c transforms into d” — written a→ b : · c→ d — and justifications of the form s→ t
generalizing the arrows a → b and c → d. Thus, the sets of generalizations ↑A (a → b) and
↑B (c → d) naturally occur in the framework and its role is evident from the definition of pro-
portions. However, the role of the set of minimally general generalizations is more mysterious
and the content of ongoing research — it has already been shown by Antić (2023d), however,
that least general generalizations are key to term proportions in free term algebras which is a
strong indication that algebraic anti-unification as proposed in this paper ought to play a key
role for analogical proportions in the general setting (the role of anti-unification for analogi-
cal proportions has been recognized for E-anti-unification in other frameworks of analogical
proportions by Weller and Schmid (2007)).

Antić (2023c) has recently studied (directed) logic program proportions of the form P → Q :
·R → S for automated logic programming. In the process, so-called logic program forms
(Antić, 2023b) where introduced as proper generalizations of logic programs. Given two pro-
grams P and R, computing the all common forms P ↑ R and the minimally general forms P ⇑ R
appears challenging given the rich algebraic structure of logic programs and thus challenging.
As in the abstract setting of analogical proportions above, the role of ↑P (P → Q) is evident
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from the definition of logic program proportions, whereas the role of minimally general forms
is the content of ongoing research.

We do not claim to obtain any deep results — the purpose of this paper is rather to introduce the
framework of algebraic anti-unification and to initiate its study. Moreover, We focus here primarily on
foundational issues, not on applications (but see the potential applications to similarity and analogical
proportions briefly discusses above).

Algebraic anti-unification as proposed in this paper is related to E-generalization or anti-unification
modulo equational theory (Burghardt, 2005). In fact, if the underlying algebra has an equational ax-
iomatization E, then algebraic and E-generalization are two sides of the same coin. This line of work
is not pursued in this paper and therefore remains an interesting line for future research.

2. Preliminaries

We expect the reader to be fluent in basic universal algebra as it is presented for example in Burris and
Sankappanavar (2000, §II).

A language L of algebras is a set of function symbols1 together with a rank function r : L→ N,
and a denumerable set X of variables distinct from L. Terms are formed as usual from variables and
function symbols. The set of variables occurring in a term s are denoted by Xs and s has rank k iff
Xs = {x1, . . . , xk}. The rank of s is denoted by rs.

An L-algebra A consists of a non-empty set A, the universe of A, and for each function symbol
f ∈ L, a function f A : Ar f → A, the functions of A (the distinguished elements of A are the 0-ary
functions). We will not distinguish between distinguished elements and their 0-ary function symbols.
An algebra is injective iff each of its function is injective. Notice that every distinguished element a
of A is a 0-ary function a : A0 → A which maps some single dummy element in A0 to a and thus is
injective.

Every term s induces a term function sA on A in the usual way. In this paper, we shall not
distinguish between terms inducing the same function on the underlying algebra, which is common
practice in mathematics where one does usually not distinguish, for example, between the terms 2x2

and (1 + 1)x2 in arithmetic.

Fact 1. Every term function induced by injective functions is injective.

The term algebra TLX over L and X is the algebra we obtain by interpreting each function symbol
f ∈ L by

f TLX : T r f
LX → TLX : s1 . . . sr f 7→ f s1 . . . sr f .

A substitution is a mapping σ : X → TLX , where σx := x for all but finitely many variables,
extended from X to terms in TLX inductively as usual, and we write sσ for the application of σ to the
term s. For two terms s, t ∈ TLX , we define the syntactic generalization ordering by

s ≲ t :⇔ s = tσ, for some substitution σ.

A homomorphism is a mapping H : A→ B such that for any function symbol f ∈ L and elements
a1, . . . , ar f ∈ A,

H f Aa1 . . . ar f = fBHa1 . . .Har f .

An isomorphism is a bijective homomorphism.

1. We omit constant symbols since constants are identified with 0-ary functions.
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3. Algebraic anti-unification

This is the main section of the paper. Here we shall introduce algebraic anti-unification and derive
some elementary observations.

In the rest of the paper, let A and B be L-algebras over some joint language of algebras L, and let
AB be a pair of L-algebras. We will always write A instead of AA.

Definition 2. Given an L-term s, define

↓A s :=
{
sAo ∈ A

∣∣∣ o ∈ Ars
}
.

In case a ∈ ↓A s, we say that s is a generalization of a and a is an instance of s.

Fact 3. Every distinguished element a ∈ A is an instance of itself2 since

a ∈ ↓A a = {a}. (1)

Definition 4. Define the (semantic) generalization ordering for two L-terms s and t in AB by

s ⊑AB t :⇔ ↓A s ⊆ ↓A t and ↓B s ⊆ ↓B t,

and

s ≡AB t :⇔ s ⊑AB t and t ⊑AB s.

Example 5. 0x ≡(N,·,0) 0.

Fact 6. The generalization ordering ⊑AB is a pre-order between L-terms, for any pair of L-algebras
AB, that is, it is reflexive and transitive.

Fact 7. For any distinguished element a ∈ A, we have by (1):

a ⊑A s ⇔ a ∈ ↓A s

and

s ⊑A a ⇔ s ≡A a ⇔ sA is a constant function with value a.

For two distinguished elements a, b ∈ A, we have

a ⊑A b ⇔ ↓A a ⊆ ↓A b ⇔ {a} ⊆ {b} ⇔ a = b ⇔ a ≡A b.

Remark 8. Notice that our semantic generalization ordering ⊑ differs from the usual one in syntactic
anti-unification ≲ where a term s is said to be more general than a term t iff there is a substitution σ
such that t = sσ.

Definition 9. For any element a ∈ A, we define

↑A a := {s ∈ TLX | a ∈ ↓A s},

extended to elements a ∈ A and b ∈ B by

a ↑AB b := (↑A a) ∩ (↑B b).

2. More precisely, of the constant symbol denoting it.
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We shall now introduce the main notion of the paper:

Definition 10. Define the set of minimally general generalizations (or mggs) of two elements a ∈ A
and b ∈ B in AB by

a ⇑AB b := min
⊑AB

(a ↑AB b),

In case a ⇑AB b = {s} contains a single generalization, s is called the least general generalization (or
lgg) of a and b in AB.

Here min⊑AB is the function computing the set of minimal generalizations with respect to ⊑AB (not
a single minimal generalization), which means that in case there are no minimal generalizations, the
computed set is empty. Notice that in case a ∈ A is a distinguished element, we always have3

a ∈ a ⇑A a.

Example 11. Let BOOL := ({0, 1},∨,¬, {0, 1}) be the 2-element boolean algebra with disjunction
and negation (and therefore with all boolean functions) where both truth values are distinguished
elements. Notice that terms in T{∨,¬,0,1}(X) are propositional formulas with variables from X in the
usual sense. We have

↑BOOL 0 = {s ∈ T{∨,¬,0,1}(X) | s is falsifiable},

↑BOOL 1 = {s ∈ T{∨,¬,0,1}(X) | s is satisfiable},

0 ↑BOOL 1 = {s ∈ T{∨,¬,0,1}(X) | s is satisfiable and falsifiable}.

We clearly have

0 ⇑BOOL 1 = 0 ↑BOOL 1.

4. Generalization type

The following definition is an adaptation of the nomenclature in Cerna and Kutsia (2023, Definition
5) (triviality is new):

Definition 12. The generalization type of a pair of L-algebras AB is called

• nullary iff a ⇑AB b = ∅, for some a ∈ A and b ∈ B;

• unitary iff |a ⇑AB b| = 1, for all a ∈ A and b ∈ B;

• finitary iff

– |a ⇑AB b| < ∞, for all a ∈ A and b ∈ B;

– |a ⇑AB b| > 1, for some a ∈ A and b ∈ B;

• infinitary iff |a ⇑AB b| = ∞, for some a ∈ A and b ∈ B;

• trivial iff a ⇑AB b = TLX , for all a ∈ A and b ∈ B.

3. More precisely, the constant symbol for the element a is in a ⇑A a.
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Fact 13. ↑A a = {x} implies a ⇑AB b = {x}, for all b ∈ B. Hence, algebras containing elements having
only the trivial generalization x cannot be nullary.

Fact 14. a ↑AB b = {x} implies a ⇑AB b = a ↑AB b , ∅.

Fact 15. In any pair of algebras AB with |A| = |B| = 1, we have a ⇑AB b = a ↑AB b , ∅. Hence,
algebras consisting of a single element cannot be nullary.

Proof. Every generalization s ∈ a ↑AB b has to satisfy ↓A s = {a} and ↓B s = {b}, which means that
there cannot be a generalization t such that ↓AB t ⊊ ↓AB s. □

Fact 16. The algebra (A) consisting only of its universe is unitary and trivial.

Proof. A direct consequence of a ⇑(A) b = {x}, for all a, b ∈ A (notice that a ⇑(A) a , {a} since a is not
a distinguished element of (A) and thus cannot be used to form terms). □

Fact 17. s ∈ a ⇑AB b for any term s satisfying ↓A s = {a} and ↓B s = {b}.

Example 18. In the monounary algebra A = ({a, b}, S ) given by

a b
S

S

we have

↑A a = {x}

and thus by Fact 13 we have

a ⇑A b = {x}.

This shows that A is unitary.

Fact 19. The generalization type of (N, S ), where S x := x + 1 is the successor function, is unitary by
the forthcoming Corollary 35.

Notice that in term algebras, syntactic and semantic generalization orderings (and thus anti-
unification) coincide:

Lemma 20. For any L-terms s, t ∈ TLX , we have

s ≲ t ⇔ s ⊑TLX t.

Proof. We have the following equivalences:

s ≲ t ⇔ s = to, for some o ∈ T rt
LX

⇔ ↓TLX s ⊆ ↓TLX t

⇔ s ⊑TLX t.

□
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Fact 21. Term algebras are unitary.

Proof. A direct consequence of Lemma 20 and the well-known fact that term algebras are unitary by
Plotkin’s (1970) and Reynolds’s (1970) classical results, and their original algorithms (plus Huet’s
(1976) simple algorithm) can be used to compute the least general generalization of two terms. □

Theorem 22. In every injective algebra A, we have a ⇑A b , ∅, for all a, b ∈ A. Consequently,
injective algebras cannot be nullary.

Proof. We have a ⇑A b = ∅ iff for each s ∈ a ↑A b there is some t ∈ a ↑A b such that t ⊏ s, which is
equivalent to ↓A t ⊂ ↓A s. Since tA is injective by assumption (Fact 1), we must have tAo , tAu for
every o,u ∈ Art, which means that

| ↓A t | = |{tAo | o ∈ Art}| = |Art|

and, analogously,

| ↓A s | = |Ars|.

Since ↓A t ⊊ ↓A s, we have

| ↓A t | < | ↓A s |,

thus

|Art| < |Ars|,

and hence

rt < rs.

Since the rank of every function is finite, we have rs < ∞ and thus there can be only finitely many t’s
with rt < rs. Hence, there must be some t′ ∈ a ↑ b for which there can be no t′′ ∈ a ↑ b with t′′ ⊏ t′

— we thus conclude t′ ∈ a ⇑A b and a ⇑A b , ∅. □

5. Characteristic generalizations

Anti-unifying an element with itself yields the set of minimal general generalizations of that element
which, in a sense, “characterize” that element since generalizations encode properties of elements (for
example, 2x is a genearlization of a natural number a iff a is even). This motivates the following
definition:

Definition 23. Define the set of characteristic generalizations of a ∈ A in A by

⇑A a := min
⊑A
↑A a = a ⇑A a.

Example 24. Recall the situation in Example 11. We have

⇑BOOL 0 = {s ∈ T{∨,¬,0,1}(X) | s is unsatisfiable},

⇑BOOL 1 = {s ∈ T{∨,¬,0,1}(X) | s is valid},

0 ⇑BOOL 1 = ∅.
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Definition 25. We call a set G of generalizations a characteristic set of generalizations of a in A iff

1. G ⊆ ⇑A a ∈ A;

2. G ⊈ ⇑A b for all b , a.

In case G = {s} is a singleton, we call s a characteristic generalization of a in A.

Example 26. X ∪ Xc is a characteristic generalization of U in (2U ,∪).

Example 27. x + (−x) is a characteristic generalization of 0 in (Z,+).

6. Homomorphisms

In this section, we show that algebraic anti-unification is compatible with structure-preserving map-
pings.

Lemma 28 (Homomorphism Lemma). For any homomorphism H : A→ B, any L-term s, and any
elements a, b ∈ A,

H ↓A s ⊆ ↓B s, (2)

a ↑A b ⊆ Ha ↑B Hb. (3)

In case H is an isomorphism, we have

H ↓A s = ↓B s, (4)

a ↑A b = Ha ↑B Hb. (5)

Proof. Since H is a homomorphism by assumption, we have

H ↓A s =
{
HsAo

∣∣∣ o ∈ Ars
}
=
{
sBHo

∣∣∣ o ∈ Ars
}
⊆
{
sBo
∣∣∣ o ∈ Brs

}
= ↓B s.

In case H is an isomorphism, we have “=” instead of “⊆” in the above computation.
We shall now prove (3) by showing that every term s ∈ a ↑A b is in Ha ↑A Hb. Since s ∈ a ↑A b

holds by assumption, we have

a = sAo and b = sAu,

for some o,u ∈ Ars. Since H is a homomorphism, we thus have

Ha = HsAo = sBHo and Hb = HsAu = sBHu,

which shows (3).
It remains to show that in case H is an isomorphism, we have

Ha ↑B Hb ⊆ a ↑A b.

For this, let
s ∈ Ha ↑B Hb
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be a generalization of Ha and Hb in B which by definition means that there are some o,u ∈ Brs such
that

Ha = sBo,

Hb = sBu.

Since H is an isomorphism, its inverse H−1 is an isomorphism as well, which yields

a = H−1sBo = sAH−1o,

b = H−1sBu = sAH−1u.

This shows

s ∈ a ↑A b.

□

Theorem 29 (Isomorphism Theorem). For any isomorphism H : A→ B and elements a, b ∈ A,

a ⇑A b = Ha ⇑B Hb. (6)

Proof. (⊆) We show that each

s ∈ a ⇑A b (7)

is contained in Ha ⇑B Hb for the isomorphism H. By Lemma 28, we have a ↑A b ⊆ Ha ↑B Hb. It
thus remains to show that s is ⊑B-minimal.

Suppose there is some t ∈ Ha ↑B Hb such that t ⊏B s, that is,

↓B t ⊊ ↓B s. (8)

Since t ∈ Ha ↑B Hb, we have

Ha = tBo,

Hb = tBu,

for some o,u ∈ Brt. Now since H is an isomorphism, its inverse H−1 is an isomorphism as well, and
we thus have

a = H−1tBo = tAH−1o

b = H−1tBu = tAH−1u,

which shows

t ∈ a ↑A b.

Now we have by (4) and (8),

↓A t = H−1 ↓B t ⊊ H−1 ↓A s = ↓A s,

which is equivalent to

t ⊏A s,

a contradiction to (7) and thus to the ⊑A-minimality of s.
(⊇) Analogous. □
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7. The (k, ℓ)-fragments

Since computing the set of all generalizations is rather difficult in general, it is reasonable to study
fragments of algebraic anti-unification. For this, we introduce in this section the (k, ℓ)-fragments:

Definition 30. Let Xk := {x1, . . . , xk}, for some k, ℓ ∈ N ∪ {∞} so that X∞ = X. Define

↑
(k,ℓ)
A

a := (↑A a) ∩ {s(x1, . . . , xk) ∈ TLXk | each of the k variables in Xk occurs at most ℓ times in s}.

We write k instead of (k,∞) so that

↑k
A

a = (↑A a) ∩ TLXk .

The simplest fragment — namely, the (1, 1)-fragment — contains only monolinear generalizations
containing exactly one occurrence of a single variable x. We denote the monolinear generalization
and instantiation operations in A by ↑m

A
and ↓A,m, respectively, and the so-obtained anti-unification

relation by ⇑A,m.

As a simple demonstration of fragments, we compute monolinear algebraic anti-unification in the
set domain:

Proposition 31. For any universe U and A, B ⊆ U, we have

A ⇑m
(2U ,∪,2U ) B =

{X ∪ (A ∩ B)} A , B,
{A} A = B,

A ⇑m
(2U ,∩,2U ) B =

{X ∩ (A ∪ B)} A , B,
{A} A = B,

A ⇑m
(2U ,.c,2U ) B =

{X, Xc} A , B,
{A} A = B.

Proof. Given two sets C,D ⊆ U, we define

[C,D] := {E ⊆ U | C ⊆ E ⊆ D}.

1. First, we work in (2U ,∪, 2U) and omit the explicit reference to the algebra. We have

A ↑m B = {X ∪C | ∅ ⊆ C ⊆ A ∩ B} ∪ {A | if A = B}

and

↓m (X ∪C) = [C,U].

This implies

X ∪C ⊑ X ∪ D ⇔ [C,U] ⊆ [D,U] ⇔ D ⊆ C.

Hence

A ⇑m B =

{X ∪ (A ∩ B)} A , B
{A} A = B.
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2. Second, we work in (2U ,∩, 2U) and omit the explicit reference to the algebra. We have

A ↑m B = {X ∩C | A, B ⊆ C} ∪ {A | if A = B}

and

↓m (X ∩C) = [∅,C].

This implies

X ∩C ⊑ X ∩ D ⇔ [∅,C] ⊆ [∅,D] ⇔ C ⊆ D.

Hence

A ⇑m B =

{X ∩ (A ∪ B)} A , B
{A} A = B.

3. Third, we work in (2U , .c, 2U) and omit the explicit reference to the algebra. We have

A ↑m B = {X, Xc} ∪ {A | if A = B}

and

↓m Xc = 2U = ↓ X.

This implies

Xc ≡ X.

Hence

A ⇑m B =

{X, Xc} A , B
{A} A = B.

□

8. Monounary algebras

In the rest of this section, let A = (A, S ) be a monounary algebra with S : A → A the only unary
function (we can imagine S to be a generalized “successor” function).

Example 32. We show that the generalization type of the monounary algebra

a

S

11



is infinitary and trivial. We have

↑A a =
{
S mx

∣∣∣ k ≥ 0
}
.

Since

↓A S mx = ↓A S nx = {a}, for all m, n ≥ 0,

we have

S mx ≡A S nx, for all m, n ≥ 0,

and thus

a ⇑A a =
{
S mx

∣∣∣ k ≥ 0
}
= T{S }({x}).

This shows that the generalization type of A is infinitary and trivial.

Example 33. We show that the generalization type of the monounary algebra

a b
S

is infinitary and trivial. Since

↑B a =
{
S mx

∣∣∣ k ≥ 0
}
= ↑B b

and

↓B S mx = ↓B S nx = {a, b}, for all m, n ≥ 0,

implies

S mx ≡B S nx, for all m, n ≥ 0,

and thus

a ⇑B a = b ⇑B b = a ⇑B b =
{
S mx

∣∣∣ k ≥ 0
}
= T{S }({x}).

We define

m(a) :=

max {m ≥ 0 | S mx ∈ ↑A a} if the maximum exists,
∞ otherwise,

m(a, b) := min(m(a),m(b)) ∈ N ∪ {∞}.

Theorem 34. Let A = (A, S ) be a monounary algebra. For any a, b ∈ A, we have

a ⇑A b =


{
S m(a,b)x

}
m(a, b) < ∞

∅ otherwise.

Proof. Suppose m(a, b) < ∞, which means that either m(a) < ∞ or m(b) < ∞, that is, there is some
maximal k such that S mx ∈ ↑A a or S mx ∈ ↑A b. We then have

S k+ℓx < (↑A a) ∩ (↑A b) = a ↑ b, for all ℓ ≥ 1,

which implies a ⇑A b = {S mx}— notice that k = m(a, b) by definition.
Now suppose m(a, b) = ∞, which means that m(a) = m(b) = ∞. In that case, we clearly have

max≤(a ↑A b) = ∅. □

Corollary 35. Let (N, S ) be the infinite monounary algebra where S x := x + 1 denotes the successor
function. For any a, b ∈ N, we have a ⇑(N,S ) b =

{
S min(a,b)x

}
. This means that the generalization type

of (N, S ) is unitary.
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9. Finite unary algebras aka semiautomata

In this section, we study algebraic anti-unification in finite unary algebras, which can be seen as
semiautomata, and show that we can use well-known methods from the theory of finite automata to
compute sets of (minimally general) generalizations.

In the rest of this section, let

A = (A,Σ := { f1, . . . , fn}),

for some n ≥ 1, be a finite unary algebra with finite universe A. We shall now recall that every such
algebra is essentially a semiautomaton.

Recall that a (finite deterministic) semiautomaton (see e.g. Holcombe, 1982, §2.1) is a construct

S = (S ,Σ, δ),

where S is a finite set of states, Σ is a finite input alphabet, and δ : S ×Σ→ S is a transition function.
Every semiautomaton can be seen as a finite unary algebra in the following well-known way: every
symbol σ ∈ Σ induces a unary function σS : S → S via σS := δ(x, σ). We can now omit δ and define

S
′ := (S ,ΣS := {σS | σ ∈ Σ}).

It is immediate from the construction thatS andS′ represent essentially the same semiautomaton and
that every semiautomaton can be represented in that way — the difference is that S′ is a finite unary
algebra!

Recall that a (finite deterministic) automaton (see e.g. Sipser, 2013, §1.1) is a construct

A := (Q,Σ, δ, q0, F),

where (Q,Σ, δ) is a semiautomaton, q0 ∈ Q is the initial state, and F ⊆ Q is a set of final states. The
behavior of A is given by

||A|| := {w ∈ Σ∗ | δ∗(q0,w) ∈ F},

where δ∗ : Q × Σ∗ → Q is defined recursively as follows, for q ∈ Q, a ∈ Σ,w ∈ Σ∗:

δ∗(q, ε) := q,

δ∗(q, aw) := δ∗(δ(q, a),w).

Notice that since automata are built from semiautomata by adding an initial state and a set of final
states, and since every semiautomaton S = (S ,Σ, δ) can be represented in the form of a finite unary
algebra S′ = (S ,ΣS) as above, we can reformulate every automaton A = (Q,Σ, δ, q0, F) as A′ =

(Q,ΣA, q0, F), where ΣA := {σA | σ ∈ Σ} and σA := δ( . , σ) : Q → Q. In other words, given a finite
unary algebra (semiautomaton)

A = (A,Σ),

we can construct a finite automaton

Aa→F = (A,Σ, a, F)

by designating a state a ∈ A as the initial state, and by designating a set of states F ⊆ A as final states.

13



We want to compute the set of generalizations ↑A a. Notice that we can identify each term in
T{ f ,g}({x}) with a word over the alphabet Σ = { f , g}: for example, the term f g f x can be identified with
the word f g f ∈ Σ∗ since the variable x contains no information. We denote the function induced by a
word w ∈ Σ∗ inA by wA— for example, ( f g)A is the function on A which first applies g and then f . We
shall now show that in any finite unary algebra (semiautomaton) A = (A,Σ), the set of generalizations
↑A a can be computed by some finite automaton as illustrated by the following example:

Example 36. Consider the finite unary algebra (semiautomaton)

A = ({a, b},Σ := { f , g})

given by

a b.

f

f

g g

We can identify the set of all generalizations of a in A with

↑A a =
{
w ∈ Σ∗

∣∣∣ δ∗(a,w) = a
}
∪
{
u ∈ Σ∗

∣∣∣ δ∗(b, u) = a
}
.

Now define the automaton Aa→{a} by adding to the semiautomaton A the initial state a and the set of
final states {a} (we use here the standard pictorial notation for automata)

astart b

g
f

f

g

and the automaton Ab→{a} by

a b start

g
f

f

g

We then clearly have

↑A a = ||Aa→{a}|| ∪ ||Ab→{a}||.

It is straightforward to generalize the construction in Example 36:

Definition 37. Given a finite unary algebra (semiautomaton) A = (A,Σ), the automaton Ab→{a} is the
automaton induced by the functions in Σ with start state b and single final state a given by

Ab→{a} := (A,Σ, b, {a}).

14



Fact 38. Given any finite4 unary algebra (semiautomaton) A = (A,Σ) and a ∈ A, we have

↑A a =
⋃
b∈A

||Ab→{a}||. (9)

We are now ready to prove the main result of this section:

Theorem 39. Let A = (A,ΣA) and B = (B,ΣB) be finite unary algebras (semiautomata) over the
same set of function symbols (input alphabet) Σ. We have the following:

1. For any element (state) a ∈ A, ↑A a is a regular language.

2. For any elements (states) a ∈ A and b ∈ B, a ↑AB b is a regular language.

3. For any elements (states) a ∈ A and b ∈ B, a ⇑AB b is computable.

Proof. Since A is finite and since regular languages are known to be closed under finitely many unions,
we conclude by (9) that ↑A a is a regular language.

Since regular languages are known to be closed under finitely many intersections and since we
already know that ↑A a and ↑B b are regular languages, we conclude that

a ↑AB b = (↑A a) ∩ (↑B b)

is a regular language.
Given some word w ∈ a ↑AB b (recall that we identify the term wx ∈ TΣ({x}) with the word w ∈ Σ∗

since x bears no information), we have w ∈ a ⇑AB b iff the term wx ∈ TΣ({x}) is ⊑A-minimal and ⊑B-
minimal, which amounts to deciding whether there is some term ux ∈ TΣ({x}) such that u ∈ a ↑AB b
and

{uAa ∈ A | a ∈ A} ⊊ {wAa ∈ A | a ∈ A} or {uBb ∈ B | b ∈ B} ⊊ {wBb ∈ B | b ∈ B}.

In a finite algebra, this is clearly a computable relation. Hence, a ⇑A b is computable in finite unary
algebras (semiautomata). □

10. Finite algebras

In this section, let A be a finite algebra which means that its underlying universe A is a finite set and it
contains finitely many functions. For k ≥ 1, let Xk := {x1, . . . , xk}.

Recall that a (frontier-to-root) tree automaton (see e.g. Gécseg & Steinby, 2015)

Tk,α,F(A) := (A, L, Xk, α, F)

consists of

• a finite L-algebra A,

• an initial assignment α : Xk → A, and

• a set F ⊆ A of final states.

4. Finiteness is required since regular languages are not closed under infinite union.
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The regular tree language recognized by Tk,α,F(A) is given by

||Tk,α,F(A)|| :=
{
s ∈ TLXk

∣∣∣ sAα ∈ F
}
.

We have (recall the definition of ↑k
A

a from §7)

↑k
A

a =
⋃
α∈AXk

||Tk,α,{a}(A)||.

Since AXk is a finite set and tree automata are closed under finite union, the set ↑k
A

a is a regular
tree language. Moreover, since tree automata are closed under finite intersection, there is some tree
automaton Tk,a,b(A) such that

a ↑k
A

b = (↑k
A

a) ∩ (↑k
A

b) = ||Tk,a,b(A)||.

For the computation the set of minimally general k-generalizations a ⇑k
A

b it therefore remains to
check for each s ∈ a ↑k

A
b = ||Tk,a,b(A)|| whether s is ⊑A-minimal among the k-generalizations of a

and b in A.

11. Generalized algebraic anti-unification

In this section, we introduce the following generalization of element-wise anti-unification from above
to set-wise anti-unification. In the rest of this section, C is a subset of the universe A of A, and D is a
subset of the universe B of B.

Definition 40. Define

↑A C :=
⋂
a∈C

↑A a

C ↑AB D := (↑A C) ∩ (↑B D)

C ⇑AB D := min
⊑AB

(C ↑AB D)

⇑A C := C ⇑A C.

Proposition 41. C ↑AB D =
⋂

a∈C,b∈D[a ↑AB b].

Proof.

C ↑AB D = (↑A C) ∩ (↑B D)

=

⋂
a∈C

↑A a

 ∩
⋂
b∈D

↑B b


=
⋂
a∈C

⋂
b∈D

[(↑A a) ∩ (↑B b)]

=
⋂

a∈C,b∈D

[a ↑AB b].

□

Fact 42. We have the following:
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• ↑A {a} = ↑A a.

• C ⊆ ↓A s ⇔ s ∈ ↑A C.

• C = ↓A s ⇒ s ∈ ⇑A C.

• s ∈ C ↑A D ⇔ C ∪ D ⊆ ↓A s.

Example 43. We wish to compute ⇑N 2N in N = (N,+, ·, 1). The generalization 2x defines exactly
the even numbers in the sense that

↓N 2x = 2N,

which means that

2x ∈ ⇑N 2N.

Every other generalization s ∈ ⇑N 2N thus has to satisfy

↓N s = ↓N 2x = 2N.

12. Conclusion

This paper introduced algebraic anti-unification in the general setting of universal algebra thus com-
plementing the purely syntactic theory of anti-unification from the literature as initiated in the seminal
works of Reynolds (1970) and Plotkin (1970).

The framework of this paper is unilingual in the sense that the underlying language of the algebras
involved in anti-unification are the same. This is common practice in universal algebra. However,
one can easily imagine practical scenarios in theoretical computer science and artificial intelligence,
where different underlying languages are desired. A major line of future theoretical research therefore
is to generalize the notions and results of this paper from a unilingual to a bilingual setting where
the underlying languages LA and LB of A and B may differ. One possibility is to use the well-known
notion of interpretability of one theory into another (see e.g. Hinman, 2005, §2.6) (recall that an
algebra is a structure in the logical sense without relations other than equality).

From a practical point of view, the main line of future research is to study computability and
complexity issues. Recall that in §9, we have shown that in finite unary algebras (aka semiautomata),
minimally general generalizations can be computed using standard techniques from the theory of finite
automata. Moreover, in §10, we have shown that more generally, in any finite algebra, we can use
tree automata to compute minimally general k-generalizations, for any k. This is closely related to
finite model theory (see e.g. Ebbinghaus & Flum, 1999; Libkin, 2012). However, since in practice we
often encounter finitely representable infinite structures (Blumensath & Grädel, 2000, 2004), obtaining
analous computability results is mandatory.

Another important line of applied future research is to develop efficient algorithms for the compu-
tation of minimally general generalizations in finite and infinite structures and to provide implemen-
tations which can be used in practice.
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Lepage, Y. (2014). Analogies between binary images: application to Chinese characters. In Prade,
H., & Richard, G. (Eds.), Computational Approaches to Analogical Reasoning: Current Trends,
Studies in Computational Intelligence 548, pp. 25–57. Springer-Verlag.

Libkin, L. (2012). Elements of Finite Model Theory. Springer-Verlag, Berlin/Heidelberg.

Lifschitz, V. (2019). Answer Set Programming. Springer Nature Switzerland AG, Cham, Switzerland.

McCarthy, J. (1987). Generality in artificial intelligence. Communications of the ACM, 30(12), 1030–
1035.

Muggleton, S. (1991). Inductive logic programming. New Generation Computing, 8(4), 295–318.

Plaisted, D. A. (1981). Theorem proving with abstraction. Artificial Intelligence, 16(1), 47–108.

Plotkin, G. D. (1970). A note on inductive generalization. Machine Intelligence, 5, 153–163.

Prade, H., & Richard, G. (2021). Analogical proportions: why they are useful in AI. In Zhou, Z.-H.
(Ed.), IJCAI 2021, pp. 4568–4576.

Reynolds, J. C. (1970). Transformational systems and the algebraic structure of atomic formulas.
Machine Intelligence, 5(1), 135–151.

Sacerdoti, E. D. (1974). Planning in a hierarchy of abstraction spaces. Artificial Intelligence, 5(2),
115–135.

Saitta, L., & Zucker, J.-D. (2013). Abstraction in Artificial Intelligence and Complex Systems.
Springer.

Saribatur, Z. G., & Eiter, T. (2020). Omission-based abstraction for answer set programs. Theory and
Practice of Logic Programming, 1–51.

Saribatur, Z. G., Eiter, T., & Schüller, P. (2021). Abstraction for non-ground answer set programs.
Artificial Intelligence, 300, 103563.

19
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