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Highlights
Flash-back, blow-off, and symmetry breaking of premixed conical
flames

Christopher M. Douglas, Wolfgang Polifke, Lutz Lesshafft

• Relates axisymmetric flash-back and blow-off phenomena to saddle–
node bifurcations of a coupled flame/flow model.

• Identifies polyhedral and tilted flames as manifestations of three-dimensional
global instabilities that emerge at low Lewis numbers and high Damköh-
ler numbers, respectively.
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Abstract

Hydrodynamic and thermal-diffusive effects subject premixed flames to in-
trinsic instabilities that strongly influence their shape and propagation/stabi-
lization characteristics. However, the interaction and coupling of intrinsic
flame dynamics with background flow gradients and boundary conditions re-
main poorly understood. This paper presents a global nonlinear bifurcation
analysis of burner-stabilized laminar premixed conical flames with varying
reaction rates and reactant diffusivities, respectively parameterized by the
Damköhler number Da and the Lewis number Le. Using a dimensionless
formulation of the reacting, weakly-compressible Navier–Stokes equations,
the dynamics of flash-back, blow-off, and cellular instability are explored
in a fully-coupled framework. Our analysis identifies steady conical flame
states over a finite range of Da and Le, limited by saddle–node bifurcations
corresponding to spontaneous blow-off of the axisymmetric flame below a Le-
dependent lower critical Da value and spontaneous boundary-layer flash-back
beyond a higher critical Da value. Furthermore, the analysis reveals that the
conical flame loses its axisymmetry via circle–pitchfork bifurcations as Le
or Da decrease or increase beyond respective critical values. These bifurca-
tions are shown to correspond to stationary three-dimensional global modes
describing steady polyhedral or tilted flame structures, each associated with
distinct azimuthal periodicities.

Keywords: Bifurcation analysis, Flash-back, Blow-off, Hydrodynamic
instability, Thermal-diffusive instability, Polyhedral flames
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Novelty and Significance Statement

This work presents a bifurcation analysis of laminar premixed conical
flames within a fully-coupled flame/flow model. By considering variations
in reaction rate and reactant diffusivity, the analysis identifies saddle–node
bifurcations corresponding to spontaneous flash-back and blow-off of the ax-
isymmetric flame. It also identifies axisymmetry breaking bifurcations associ-
ated with transitions to steady three-dimensional polyhedral and tilted flame
states. These global instabilities indicate that hydrodynamic and thermal-
diffusive effects strongly influence a flame’s steady structure in the azimuthal
dimension even when no instabilities appear in the plane of symmetry. As
such, future analyses of flame dynamics should rule out symmetry-breaking
behaviors before adopting a two-dimensional computational framework.

Author Contributions

C.D. developed the methodology, performed the calculations, analyzed
and interpreted the results, created the figures, and drafted the manuscript.
W.P. and L.L. assisted with interpretation of results, contributed to the final
design of the figures and text, and supervised the project.

1. Introduction

Concerns surrounding climate change and energy security are motivating
major efforts to replace fossil fuel with renewable, carbon-neutral fuels. A
primary contender in this space is hydrogen, which can be generated sustain-
ably via electrolysis using excess renewable power. However, hydrogen fuel is
associated with many unique challenges in the lean-premixed operation mode
demanded by modern emissions regulations [1]. One key issue in this context
is the relative proclivity of hydrogen flames toward intrinsic flame instabil-
ity in comparison to hydrocarbon fuels such as methane. These instabilities
may lead to wrinkling of the flame front into cellular patterns, significantly
increasing the flame’s surface area and, therefore, its overall propagation
velocity. Further, premixed flames are not passive fronts, but are strongly
coupled to the flow within which they are embedded. Lean hydrogen flames
in particular are remarkably sensitive to flame curvature and stretch due to
hydrodynamic strain. Such couplings lead to complex system behavior that
is not generally identifiable when considering the hydrodynamics and ther-
modynamics of a reacting flow system in a decoupled manner. Therefore, a
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key contribution of this study will be to consider such behavior in a simple,
but fully-coupled, reactive flow model.

Laminar flame instabilities play a crucial role in the propagation of turbu-
lent flames, and their fundamental relevance to practical combustion prob-
lems is well-established [2, 3]. The mechanistic understanding of intrinsic
flame instability is rooted in analytical results obtained from perturbation
analysis of thin, freely-propagating planar flames. For example, the thermal-
diffusive mechanism [4, 5] amplifies a range of small-scale flame wrinkles
when the deficient reactant’s mass diffusivity exceeds the thermal diffusiv-
ity of the mixture, i.e. at sub-unity Lewis number (Le < 1). Conversely,
the hydrodynamic mechanism, which occurs due to thermal expansion [6, 7],
amplifies flame wrinkles even when the mass and thermal diffusivities are
equal (Le = 1). Additional mechanisms such as flame stretch [8, 9] and
heat loss [10, 11] also significantly contribute to the wave dispersion be-
havior, interacting to determine the growth rate for a given wrinkle length-
scale [3, 12, 13]. Such amplified wrinkles typically evolve into finite amplitude
cellular patterns along the flame front that may directly compete with tur-
bulence to control flame propagation behavior [14].

Though much of the community’s efforts toward understanding flame in-
stabilities is focused on geometrically simple arrangements involving freely-
propagating flat or spherical flames, these dynamics also appear in anchored
flames, such as conical (or “Bunsen”) flames. When the flame front is stabi-
lized by shear and/or confinement, additional thermal-diffusive and hydrody-
namic effects related to the background strain and boundary conditions arise
that further complicate the flame dynamics and affect its structure [8, 15].
A striking example of this, which will be explored in this study, is the spon-
taneous emergence of azimuthally-periodic polyhedral shapes from conical
Bunsen flames.

Polyhedral Bunsen flames were first reported by Smithells and Ingle [16]
in rich benzene, pentane, and hexane mixtures and subsequently described
and analyzed in progressively greater detail in a variety of experimental cir-
cumstances featuring sub-unity Lewis numbers [17, 18, 19, 20, 21, 22]. Unlike
free flat or spherical flames, Bunsen flames experience significant heat losses
to the burner and are strained by local velocity gradients that induce neg-
ative stretch (compression) near the flame tip and positive stretch near the
flame foot. These complications induce strong sensitivities of Bunsen flame
properties on the specific burner geometry [19], the flow rate [17], and the
fuel composition [20]. Such experiments demonstrate that chemistry, aero-
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dynamics, and heat transfer all significantly affect the flame’s axisymmet-
ric or polyhedral structure and, in the latter case, determine the number of
faces and whether the flame is stationary, rotates smoothly, or changes shape
chaotically in time.

Perhaps because of this complexity, quantitative theoretical understand-
ing about polyhedral flame behaviors is quite limited. Nonetheless, a hand-
ful of reduced order models have been put forward based on variations
of the Kuramoto–Sivashinsky flame equation [5]. For example, Buckmas-
ter [23] proposed a weakly-nonlinear model, further developed by Olagunju
and Matkowsky [24], to explain how interactions of two linearly unstable
polyhedral flame shapes could lead to apparent rotation of cellular struc-
tures via transient mode switching. This proposal has since been disputed
by Michelson [25] and Class [26], who argue based on slightly different ODE
models that the onset of polyhedral flame rotation instead follows a primary
bifurcation directly from an axisymmetric state to a rotating state. Nonethe-
less, Gutman et al. [27] were unable to find any rotating solutions in their
simulations, suggesting such solutions might be unstable. Using Frankel’s
coordinate-free variation of the flame equation [28], Denet [29] performed
further simulations in a PDE framework. His results, which also did not
identify rotating flames, revealed significant sensitivities to flame holding
and boundary layer thickness parameters in a qualitatively similar manner
to experiments [19]. Overall, however, these studies are all based on heavily
simplified flame models that neglect density changes, stretch effects, flame
thickness effects, and several other fundamental aspects of reacting flow.

The purpose of this paper is to consider the dynamics of conical laminar
flames from a more comprehensive model that preserves the strongly nonlin-
ear flame-flow coupling known from first principles. The remainder of this
paper is organized as follows. In §2, we describe the configuration (§2.1) and
formulation (§2.2) of the model and outline the bifurcation theory (§2.3) and
numerics (§2.4) used in the analysis. We then present and discuss the main
results of our study in §3. The results begin with an overview of the model’s
axisymmetric behavior in the case of varying Damköhler number (Da) and
unity Le (§3.1.1) as well as the converse case of variable Le and constant Da
(§3.1.2). From here, we extend the analysis to consider non-axisymmetric
effects over the Da–Le plane in §3.2. Finally, we close with a summary of
this investigation and some concluding remarks in §4.
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Figure 1: Meridional schematic of the axisymmetric burner configuration (not to scale).

2. Model

2.1. Burner Configuration
This study models a round jet of premixed reactants undergoing com-

bustion while venting from a long pipe into a large semi-open domain. The
resulting laminar conical flame, which we refer to as a Bunsen flame, is
considered in a cylindrical coordinate system defined by x = (x, r, θ), as
shown in Figure 1. The boundary conditions are specified in Table 1 and
described below. The inflow condition along the inlet Γi is a Poiseuille ve-
locity profile with a uniform temperature and reactant concentration. The
boundary Γw along the inlet pipe and dump plane is an isothermal no-slip
wall held at the inlet reactant temperature. The central axis Γa is a symme-
try boundary where three-dimensional continuity conditions are enforced for
each azimuthal Fourier component m of each flow variable (see section 2.3
below). Finally, the open boundary Γo along the lateral and downstream
edges of the domain is modeled with free-outflow conditions. Throughout
this paper, all quantities are expressed as dimensionless numbers scaled by
the pipe diameter D, the volume-averaged velocity of the incoming flow U ,
and the reference physical properties of the incoming reactants.

2.2. Governing Equations
The dimensionless, reactive equations governing the evolution of the present

flame/flow system are derived in Appendix A from the full conservation equa-
tions given by Poinsot & Veynante [30, Ch. 1]. Nonetheless, a number of
simplifying approximations are invoked to obtain the form used here. Only
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Table 1: List of boundary conditions. Here, n is the unit normal vector along the border.

Name Constraints
Inlet, Γi: ux = 2− 8r2, ur = uθ = 0, Y = T = 1,
Wall, Γw: ux = ur = uθ = 0, n · ∇Y = 0, T = 1,

Axis, Γa:

{ m = 0: ∂rux = 0, ur = uθ = 0, ∂rY = ∂rT = 0,
|m| = 1: ux = 0, ∂rur = ∂ruθ = 0, Y = T = 0,
|m| ≥ 2: ux = ur = uθ = Y = T = 0,

Open, Γo: Re−1n · ∇u− pn = 0, n · ∇Y = n · ∇T = 0.

the essential aspects of this reduction are summarized here, as complete de-
tails are given in Appendix A. A low Mach number approximation is used to
simplify acoustics and focus on thermal compressibility effects. Chemistry is
modeled using Arrhenius’ law for a single-step, irreversible, fuel- or oxidizer-
limited (very lean or rich, respectively) reaction. Thermal and mass diffusion
are modeled by Fick’s Law, with temperature-dependent diffusivity (and vis-
cosity) coefficients modeled by a power-law relation with an exponent of 2/3.
The resulting dimensionless system governing the velocity, deficient reactant
mass fraction, temperature, and pressure fields (u, Y , T , and p, respectively)
is,

1

T

(
∂u

∂t
+ u · ∇u

)
= −∇p+

1

Re
∇ ·

[
T 2/3

(
∇u+ (∇u)T

)]
, (1a)

1

T

(
∂Y

∂t
+ u · ∇Y

)
= −ω̇ +

1

RePrLe
∇ ·

(
T 2/3∇Y

)
, (1b)

1

T

(
∂T

∂t
+ u · ∇T

)
= ∆T ω̇ +

1

RePr
∇ ·

(
T 2/3∇T

)
, (1c)

0 = ∆T ω̇ +
1

RePr
∇ ·

(
T 2/3∇T

)
−∇ · u, (1d)

where ω̇ = Da Y T−1 exp
[
Ze

(
1 + ∆T−1

)
[1− (1 + ∆T )T−1]

]
is the reaction

rate. The six dimensionless parameters that appear in (1) include the adi-
abatic temperature change ∆T , the Zeldovich number Ze, the Damköhler
number Da, the Reynolds number Re, the Prandtl number Pr , and the Lewis
number Le, which are all defined in Appendix A. In this study, we focus on
how Le and Da influence the flame behavior and fix the other parameters to
constant values of Re = 1000, Pr = 0.7, Ze = 10, and ∆T = 4. These values
are selected to qualitatively model a generic lean premixed laminar flame
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burning in air, rather than to quantitatively match the model to any spe-
cific fuel or operating condition. However, provided the model assumptions
are justified, the dimensionless parameters can be quantitatively deduced
from experimental conditions or computations with more complex chemistry
models in a straightforward way. For example, Re, Pr , and Le may all be
inferred from the gas properties of the unburned mixture; ∆T may be deter-
mined from the adiabatic flame temperature of the mixture; and Da and Ze
may be identified by matching an observed flame speed and thickness to the
model parameters using either an analytical relationship (e.g. [31, Ch. 5]) or
a one-dimensional flame calculation.

As a technical note, it should be pointed out that the strong statement
of the governing equations given by (1) possesses an apparent singularity at
r = 0 due to the properties of the Laplace operator in cylindrical coordinates.
However, in practice, the numerical approach (described in Section 2.4) lever-
ages a weak (integral) formulation of (1) that is non-singular on the axis [32,
Ch. 18.3]. In the weak form, the apparent singularity is removed following
(1) multiplication by r arising from the differential volume dV = r dθdrdx
and (2) projection of the problem onto an analytic function space.

2.3. Bifurcation Analysis
For ease of presentation, Equation (1) can be rewritten in the form,

M (q)
∂q

∂t
+R (q) = 0, (2)

where M is the mass operator, R is the steady residual operator, and
q = (u, Y, T, p)T is the state vector. Owing to the temporal and azimuthal
invariance of the system and boundary conditions, the base states of this
system are both steady and axisymmetric. Hence, the base solutions qb(x, r)
to (2) satisfy,

R0 (qb) = 0, (3)

where the subscript refers to the Fourier component of the operator – i.e., in
this case, the axisymmetric (zero azimuthal wavenumber) component of the
3-D operator R. Such solutions, whether stable or unstable, are identified
via Newton iteration until ∥R0∥ < 10−13 using the time-invariant linearized
system,

J0 (qb)∆q0 = R0 (qb) , (4)
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with updates qb ← qb − ∆q0 where J = ∂R/∂q is the steady Jacobian
operator. Once such base states are identified at one point in the parame-
ter space, they are then traced along the various parameters using the tan-
gent predictor–Moore–Penrose corrector scheme presented in [33, Sec. 3.2.1],
thereby allowing continuation around turning points and identification of un-
stable solution branches. This methodology therefore offers a distinct advan-
tage over conventional time integration approaches, which cannot converge
to unstable solutions.

The asymptotic stability of base states is determined from the eigen-
spectrum of the global linearized reactive flow system. Each eigenvalue is
associated with a global eigenvector representing infinitesimal perturbations
of the form,

q′ (x, r, θ, t) ∝ q̂m (x, r) exp [(σ + iω) t+ imθ] + c.c. (5)

where σ is the linear growth/decay rate, ω is the pulsation frequency, m
is the azimuthal wavenumber, and c.c. denotes the complex conjugate. We
note that since the base states are steady and axisymmetric, this form of the
perturbation given by (5) does not imply any loss of generality associated
with the so-called “BiGlobal” assumption [34]. The generalized eigenvalue
problem governing the long time evolution of such disturbances is,

(σ + iω)M (qb) q̂m + Jm (qb) q̂m = 0, (6)

where (σ + iω) is the eigenvalue and q̂m is the global eigenvector. If maxσ <
0 for all wavenumbers m at a given qb, the state is linearly globally stable.
Conversely, if maxσ > 0 for any m, the state is linearly globally unstable and
will spontaneously express self-excited dynamics. For a review of the connec-
tions between the global stability analysis approach used here and classical
local stability analysis techniques, we refer the reader to [35]. Thus, the crit-
ical (marginally stable) state consists of a qb, q̂m pair that simultaneously
satisfy (3) and (6) with σ = 0. Such points represent local bifurcations that
are identified to machine precision (σ < 10−13) and traced along the neutral
curves using the block Newton schemes presented in [33, Sec. 3.2.3] with a
convergence tolerance of 10−13 on the norm of the residual.

2.4. Discretization and Numerics
The axisymmetric burner configuration described above is discretized us-

ing triangulations of the meridional plane and an azimuthal Fourier expan-
sion. In order to properly resolve the flow and flame field without requiring
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unnecessary computational effort, an adaptive meshing procedure is used
where each meridional mesh is adapted specifically to the global solution at
each distinct state using the adaptmesh function in FreeFEM [36] with a P1

interpolation error tolerance of 1%. For each mesh, FreeFEM is also used to
project the system and flow variables onto a Taylor–Hood-type mixed finite
element space, consisting of P2 spaces for u, Y , T , and the corresponding
momentum, species, and energy conservation equations (1a-1c), combined
with a P1 space for p and the mass conservation equation (1d). For the cho-
sen P1 interpolation accuracy threshold, this projection yields a state vector
with approximately 5× 105 to 106 degrees of freedom per azimuthal Fourier
component depending on the flame shape. As indicated by the mesh con-
vergence study presented in Appendix B, this error tolerance is sufficient to
determine values for the critical parameters and flame length with up to four
digits of precision. Following the abstraction of the operators and boundary
conditions by FreeFEM, the resulting linear algebra objects are manipulated
and solved in parallel using PETSc [37] and SLEPc [38]. On a laptop com-
puter with six 4.8 GHz processors and 32 GB of memory, the wall clock
time per Newton iteration is approximately 10-20 seconds, and convergence
is typically achieved in fewer than 10 iterations.

3. Results and Discussion

3.1. Axisymmetric flame dynamics
We begin our analysis with a study of the axisymmetric flame behavior

and postpone discussion of non-axisymmetric dynamics to §3.2.

3.1.1. Case of Le = 1

By varying the Damköhler number (i.e. the dimensionless ratio of the
chemical timescale to the flow timescale) at unity Le and monitoring the
flame length, Lf = x|ω̇(x, 0) = maxx (ω̇(x, 0)), we compute the bifurcation
diagram shown in figure 2, revealing three distinct branches of solutions that
are stable to axisymmetric disturbances. These stable branches are connected
by two unstable branches of saddle solutions. Additionally, visualizations
of the flame are presented at various points along the bifurcation diagram
using streamlines to show the velocity field, heat release rate contours to
show the reaction zone, and contours of the flame indicator Y (T −1) to show
the preheat zone. The diagram shows that steady conical flames (points 3
and 4) exist over a relatively limited interval of intermediate Damköhler
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number. As Da is decreased, the chemical timescale becomes slower relative
to the flow timescale, elongating the flame and weakening its anchor. At
a certain critical value (Da = 2.459 × 103 for the chosen parameters), the
chemistry becomes too slow for the flame to maintain a kinematic balance
with the flow, and a saddle–node bifurcation occurs. For Da smaller than this
critical value, a solution corresponding to a steady conical flame does not exist
– such an initial condition spontaneously undergoes axisymmetric blow-off.
Conversely, as Da is increased, the flame speed becomes comparatively fast,
and the solution eventually experiences a saddle–node bifurcation associated
with spontaneous axisymmetric flash-back at Da = 11.91× 103.

This dynamics is qualitatively consistent with the seminal observations of
Lewis and von Elbe [39], who studied the stability limits of burner-stabilized
laminar premixed natural gas flames (Le ≈ 1) under variations in flow rate
and fuel mixture fraction. Their results can be related to ours by recognizing
that varying the flow rate corresponds to a proportional variation of Re and
an inversely proportional variation of Da (see Table A.2). However, a direct
comparison is not possible since achieving an adiabatic flame temperature
of ∆T = 4 from room temperature natural gas would require a fuel per-
centage ≈ 4.5% (i.e. an equivalence ratio ≈ 0.53), which is below the lean
flammability limit identified in their study.

In addition to this limited steady branch of conical flame solutions, the
bifurcation diagram also reveals two other equilibrium solutions that are
stable to axisymmetric disturbances. First, since the system is well-posed
at Da = 0, it possesses a nontrivial solution in this limit associated with a
nonreacting jet. This branch of solutions continues to exist as Da is increased,
where it represents an “un-ignited” (or “post-blow-off”) state (thick blue curve
and point 1 in figure 2). This state physically corresponds to an unlit burner,
where Lf is not well-defined. As such, no numerical value of Lf could be
reported and solutions are instead plotted in a gray shaded region on Figure 2.
The un-ignited solution exists for a very large, but finite, range of Da in this
system. This is because, despite the reaction’s exponential dependence on
temperature, for large enough Da values, the reaction proceeds sufficiently
rapidly to induce autoignition. The mechanics of this autoignition process
is not expected to be well-captured by the simple 1-step reaction chosen,
but the overall implication is physically valid: nonreacting flow cannot be
sustained as Da → ∞. Instead, a saddle–node bifurcation must occur at
a high Da value (not determined in this study – hence the gray shading
in Figure 2), where the un-ignited solution curve folds onto an unstable
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Figure 2: Bifurcation diagram for the Le = 1 system with streamline visualizations and
heat release rate and flame indicator contours (both scaled to vary from 0 to 1) illustrating
the axisymmetric flame shape at various points along the curve. Stable (saddle) branches
are indicated by thick (thin) lines, and saddle–node (SN) bifurcation points are labeled.

solution branch (thin dark blue curve). Physically, this saddle branch, which
is unstable to infinitesimal axisymmetric perturbations, delimits a tipping
point for axisymmetric blow off that divides the basins of attraction of the
conical flame and un-ignited jet solutions. For example, depending on the
perturbation, an initial condition corresponding to the saddle flame indicated
at point 2 may stabilize by propagating upstream until it reaches the stable
conical flame state 3, or it may blow off to reach state 1.

Second, in the Da →∞ limit, the reaction cannot be prevented and oc-
curs instantly along the domain inlet. This solution branch (thick red curve
in figure 2) persists as Da decreases from infinity, where it represents a “post-
flash-back” state stabilized by the Dirichlet conditions on the inlet reactant
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mass fraction. In this case, the solution possesses well-defined negative Lf

values, but these values are not reported quantitatively in Figure 2 since the
post-flash-back branch is not a focus of this study. The post-flash-back state
depends upon chemistry and cannot exist at Da = 0. Consequently, the
post-flash-back state undergoes a saddle–node bifurcation at a minimum Da
value of Da = 9.906× 103. At this bifurcation point, the flame in the “post-
flash-back” solution can no longer be stabilized along the inlet and undergoes
spontaneous blow-out towards a burner-stabilized flame. The bifurcation as-
sociated with blow-out of the post-flash-back flame state and the bifurcation
associated with flash-back of the conical flame state are connected by an
intermediate saddle branch (thin dark red curve) that separates the basins
of attraction for the conical flame and post-flash-back solutions. For exam-
ple, in a similar manner to the blow-off saddle, an infinitesimal axisymmetric
perturbation to the flash-back saddle flame at point 5 could tip the system
back to the stable conical flame at point 4 or trigger flash-back to the state
at point 6.

3.1.2. Case of Da = 4000

We now consider the effect of varying Lewis number (i.e. the dimen-
sionless ratio of the mixture’s thermal diffusivity to the deficient reactant’s
mass diffusivity) at constant Da = 4000. Representative flame visualiza-
tions from these results are presented in Figure 3. In agreement with earlier
experiments and computations, we find that the Lewis number has a pro-
found effect on the steady, axisymmetric flame shapes. Owing to the effect
of differential diffusion, Le < 1 mixtures (e.g. points 7 and 8) experience
enhanced burning near the flame foot, where the flame is convex towards the
reactants, while Le > 1 mixtures (e.g. point 9) favor burning at the concave
flame tip [40, 41]. These Le-dependent, curvature-sensitive changes in reac-
tant consumption and heat release yield local burning rate preferences along
the curved flame front that drive the observed changes in the overall flame
structure.

Figure 3 also illustrates the dynamics of the steady flame under varying
Le. As in §3.1.1, the results reveal three branches of axisymmetric-stable so-
lutions associated with the un-ignited jet, conical flame, and post-flash-back
states. However, compared to the case of Le = 1 and varying Da considered
previously, the mechanisms governing the relationships among these branches
are distinct in the case of fixed Da and varying Le. The first and most obvi-
ous difference is that the un-ignited branch is completely disconnected from
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Figure 3: Bifurcation diagram for the Da = 4000 system with streamline visualizations and
flame indicator and heat release rate contours (both scaled to vary from 0 to 1) illustrating
the axisymmetric flame shape at various points along the curve. Stable (saddle) branches
are indicated by thick (thin) lines, and saddle–node (SN) bifurcation points are labeled.

the other solution branches at this Damköhler number and exists for all
Lewis numbers. Hence, for the chosen Da, there is no Le associated with
spontaneous blow-off. Second, the conical flame solution branch encounters
a saddle–node bifurcation corresponding to flash-back as the Lewis number
decreases. As discussed in the previous paragraph, this dynamics physically
originates from the flame curvature near the wall at the base of the flame,
which leads to locally enhanced burning at sub-unity Lewis numbers. At the
critical Le = 0.4144, the resulting stretched flame speed matches the local
flow velocity in the laminar boundary layer, resulting in spontaneous flash-
back. This stretch-coupled flash-back mechanism under varying Le should be
contrasted to the flash-back situation described in §3.1.1, which precipitates
when Da variations sufficiently accelerate the global burning rate indepen-
dently of flame stretch. Visualizations of the flame shape via contours of ω̇
at the node (7) and saddle (8), which are, respectively, stable and unsta-
ble to axisymmetric disturbances, are included in figure 3 to illustrate this
explanation.
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Finally, we remark that our analysis considered a range of Le far greater
than what is shown in Figure 3, though no interesting dynamics were iden-
tified for Le > 2 for the chosen parameters. In particular, our eigenvalue
calculations did not detect any evidence of an axisymmetric pulsating flame
instability at high Le. Rather, the transport of Y in (1b) becomes completely
advection-dominated in the high-Le limit, and the flame length asymptoti-
cally approaches a constant value of Lf ≈ 0.8.

3.2. Non-axisymmetric flame behavior
Having characterized the Bunsen burner system’s axisymmetric dynam-

ics, our main results focus on capturing and characterizing the symmetry-
breaking phenomena observed in experiments. To this end, three-dimensional
linear stability calculations are performed along the conical flame solution
branches described in §3.1. These calculations reveal unstable eigenvalues for
many m values over a significant portion of the parameter space. All of the
identified unstable eigenvalues are found to be purely real (i.e. ω = 0), mean-
ing that they are associated with unstable, non-oscillatory, non-axisymmetric
eigenmodes. Rather than studying the properties of these unstable eigen-
modes, which cannot be correctly described in a linear framework due to
nonlinear effects, our study will instead focus on describing the properties of
their critical points (σ = 0), where the assumption of linearity is still justi-
fied. For such stationary eigenmodes with zero frequency and ±m azimuthal
periodicities, the critical points represent circle–pitchfork (CP) bifurcations,
i.e. zero-frequency Hopf bifurcations. (Note that, for systems such as ours
in the O(2) symmetry group, zero-frequency Hopf bifurcations are analogous
to pitchfork bifurcations with continuous rotational symmetry.)

Once identified, these CP bifurcation points are then traced within the
Da–Le plane to define neutral CP curves that divide the parameter space into
stable and unstable regions. These critical curves are presented in Figure 4
alongside the SN curves associated with the spontaneous blow-off and flash-
back events discussed in §3.1. The resulting stability map reveals that the
steady conical flame spontaneously loses its axisymmetry through CP bifur-
cations associated with a range of |m| values as the Lewis number decreases
or as the Damköhler number increases. Further, these non-axisymmetric
dynamics appear at parameter values within the limits identified for axisym-
metric flashback. As detailed below, the primary instability for Le ≲ 1 is
associated with large |m| values, leading to the spontaneous formation of
polyhedral deformations along the flame front. Conversely, for Le ≳ 1, the
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Figure 4: Stability map summarizing the dynamics of the conical flame in the Da–Le
plane.

primary instability is associated with |m| = 1, leading to a spontaneous
tilting of the flame along a particular direction.

These results suggest that symmetry breaking is a prominent character-
istic of premixed conical flames as the limits for axisymmetric flash-back are
approached. Hence, standalone axisymmetric analyses such as the one per-
formed in §3.1 are generally insufficient for describing flash-back dynamics of
Bunsen flames unless three-dimensional behavior can be ruled out.

3.2.1. Polyhedral Flames
Figure 4 illustrates that, for the chosen parameters, a loss of axisymmetry

through CP bifurcations characterized by |m| ≥ 8 appears for Le ≲ 1.01.
Here, we focus on the representative case of Da = 4000, where the critical
Lewis number for the onset of three-dimensional behavior is Le = 0.8454, and
the wavenumber of the associated CP bifurcation is |m| = 11. Nonetheless,
Figure 5 indicates that |m| = 11 is just the first of many wavenumbers to
become unstable as Le decreases. The exact critical values of Le and |m|
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Figure 5: Bifurcation diagram at Da = 4000 showing the critical points, growth rates, and
azimuthal wavenumbers associated with the bifurcating steady modes under varying Le.
Here, CP and SN respectively denote circle–pitchfork and saddle–node bifurcation points.

differ across Da, but the qualitative trend that the primary instability is
triggered by a CP bifurcation of moderate wavenumber, followed by further
CP bifurcations with lower and higher |m|, remains consistent across Da for
all Le ≲ 1. This behavior is consistent with physical intuition derived from
the classical dispersion relation for free flat flames, where the destabilizing
role of differential diffusion at small scales makes the critical wavenumber
relatively large for Le < 1 [5, 12]. Unlike the qualitative wavenumber scalings
that follow from the analytic dispersion relation for a flat flame (for example,
see the recent analysis of Weng et al. [22, Fig. 5a]), however, the present
model enables quantitative predictions of which azimuthal wavenumbers may
be unstable for a conical flame associated with a given set of parameters.

Though sub-unity Le certainly promote polyhedral flame instabilities,
since Figure 4 identifies a leading CP bifurcation with |m| = 8 even at and
slightly above Le = 1, the thermal-diffusive mechanism is certainly not the
only contributor to destabilization of small scales. Further, such behavior
cannot be attributed to any destabilization from flame stretch [9] or heat
loss [10, 11], as both are insignificant at Le = 1 with single-step chemistry.
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Figure 6: (left) Planar visualization of the critical eigenmode’s in-plane streamlines and
[Y (T − 1)]′ contours at x = 0.25, (center) linear approximation of the computed |m| = 11
polyhedral flame structure via three-dimensional isosurface of Y (T − 1) at (Da,Le) =
(4000, 0.8454), and (right) experimental photograph of a similar polyhedral flame provided
by Lulic et al. [21].

Rather, these Le ≈ 1 results emphasize that the hydrodynamic mechanism
plays an important role in the growth of polyhedral flame structures.

Examination of the critical |m| = 11 eigenmode reveals that the CP bi-
furcation corresponds to the emergence of a stationary (i.e., non-rotating)
azimuthal deformation of the conical flame. As shown in Figure 6, the three-
dimensional mode structure indicates the formation of 11 elongated ridges
distributed azimuthally along the flame front. Visualization of the resulting
polyhedral flame’s approximate structure based on the superposition of the
critical state and its critical eigenmode at arbitrary amplitude is also provided
in Figure 6. This approximation does not account for nonlinear distortions
resulting from the finite amplitude of the three-dimensional structure. For
qualitative comparison, a photograph from the experimental work of Lulic et
al. [21] is also shown for a polyhedral Bunsen flame produced by a 50/50 vol%
CH4/H2 fuel mixture at an equivalence ratio of 0.8 and an initial tempera-
ture of 300 K. In terms of the dimensionless parameters used in our study,
this experimental condition correlates to Le = 0.859, ∆T = 5.80, Ze = 8.54,
Re = 8.28 × 103, Da ≈ 1.99 × 104, and Pr = 0.701. Note that, since their
work is experimental, the Damköhler number has been estimated based on
the flame speed and other parameters using Williams’ analytical flame speed
relation [31, Ch. 5.3, Eq. 75]. The other parameters are either given explic-
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Figure 7: Visualizations of the critical |m| = 1 perturbation associated with the tilted
flame CP bifurcation at (Da,Le) = (9129, 1.1) via contours of [Y (T − 1)]′ and projected
streamlines within (left) the x = 0.25 axial slice plane and (right) the meridional plane
of reflective symmetry. The horizontal black lines in the right (left) panel indicates the
location of the axial (meridional) slice plane.

itly by Lulic et al. or are determined from the properties of the gas mixture.
Hence, this experimental case has a significantly higher flame temperature
and Reynolds number than our study, and the reaction parameters are dif-
ferent. Nonetheless, the striking resemblance in terms of the flame length,
the wrinkle pattern, and Lewis number suggests that our model captures all
of the physical elements necessary for describing polyhedral flames.

3.2.2. Tilted Flames
In contrast to the case of Le ≲ 1, where symmetry breaking is associated

with a range of relatively high wavenumbers, Figure 4 indicates that, within
the chosen set of parameters, symmetry breaking for Le > 1.01 is triggered
by CP bifurcation with |m| = 1. As such, this bifurcation does not manifest a
polyhedral flame (which must have at least |m| = 3 faces along the reaction
front), but instead evinces a “tilted flame” that is asymmetrically slanted
along one meridional plane as shown in Figure 7. Here, we investigate the
case of Le = 1.1, which is qualitatively representative of other super-unity
Lewis numbers.

Figure 8 shows that |m| = 1 is the first wavenumber to destabilize as
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Figure 8: Bifurcation diagram at Le = 1.1 showing the critical points, growth rates, and
azimuthal wavenumbers associated with the bifurcating steady modes under varying Da.

Da increases, but not the only one. The same is also true at higher Lewis
numbers not shown in Figure 4. However, the range of higher wavenumbers
that actually bifurcate from the conical flame solution branch is significantly
smaller than was observed for Le < 1 in §3.2.1. This behavior may be
attributed to the stabilizing role of differential diffusion at small scales for
Le > 1, which exerts a strong selective effect on the wavenumbers that may
be amplified by other mechanisms [5, 12]. In other words, since the |m| = 1
periodicity has the longest azimuthal wavelength, it is the first to bifurcate
because it is the least damped by thermal-diffusive effects at the critical
point.

4. Conclusion

A bifurcation analysis of premixed laminar conical flames, with varying
Damköhler and Lewis numbers, has allowed us to retrieve the occurrence of
flash-back, blow-off and symmetry breaking. The analysis is based on a sys-
tem of equations that models three-dimensional reacting flow in the limit of
vanishing Mach number, in a dimensionless formulation where the Damköhler
number, the Lewis number, and four other physical control parameters can
be varied independently from one another. Such a formulation facilitates the
discussion of the influence of characteristic flame and flow properties, such
as flame speed, flame thickness, and reactant diffusivity, as opposed to ex-
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periments or dimensional simulations with detailed chemistry models, where
it is usually difficult or impossible to vary one parameter without changing
others.

The model yields steady conical flame states over a finite range of the
Damköhler number, limited by blow-off below one critical value of Da, and by
flash-back above another higher critical value. This model prediction is fully
consistent with the expected behavior of real axisymmetric Bunsen flames.
For unity Lewis number, and with a fixed choice of all other parameters, the
limits in Da of the conical anchored flame regime have been quantified. It
has further been shown that the end points of this regime are connected,
via saddle branches, to two distinct families of axisymmetric flow solutions,
which represent the post-blow-off and the post-flash-back steady states.

The most important result of the present analysis is the identification of
three-dimensional instabilities, which are predicted to grow in conical steady
flames at sufficiently low Lewis number or sufficiently high Damköhler num-
ber. At a fixed Damköhler number, this destabilization is therefore the direct
result of differential diffusion, as it exists in hydrogen flames. The link be-
tween experimental and numerical observations of polyhedral flame shapes
and low Lewis number has been made before using isothermal flame models
based on the Kuramoto–Sivashinsky equation in one or two spatial dimen-
sions. However, the shapes are shown here for the first time to arise as global
linear instabilities that break the axisymmetry of a three-dimensional conical
flame described by the low-Mach number reacting Navier–Stokes equations.
In agreement with earlier experimental works, we find such instabilities to
occur as the Lewis number drops below a critical value, thereby indicat-
ing the destabilizing role of thermal–diffusive mechanism at sub-unity Lewis
number. However, our results also reveal that, with sufficiently high Da,
instability can appear even for Le ≥ 1. This highlights that the hydrody-
namic mechanism can be sufficient to trigger the growth of polyhedral or
asymmetric flame structures even without differential diffusion. In any case,
the instability follows from a circle–pitchfork type bifurcation, which means
that the resulting non-axisymmetric flame shape is again steady, at least
as long as the amplitude of the instability remains small. Determining the
amplitude-saturated non-axisymmetric flame shape, and eventually its ro-
tation, as reported from experiments, will require further three-dimensional
nonlinear analysis. Nonetheless, the findings show that symmetry break-
ing prior to flame flash-back is a notable behavior of conical flames, even for
thermodiffusively stable reactant mixtures. As such, future characterizations
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of conical flame behaviors should rule out any symmetry-breaking behaviors
before adopting a strictly axisymmetric computational framework.
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Appendix A. Derivation of Governing Equations

The governing equations for reacting flows consist of mass, species, mo-
mentum, and energy conservation equations and equations of state. We begin
by assuming a Newtonian mixture of thermally perfect gases and recall the
equations from Table 1.8 of [30]. Following the approach taken in [42, Ap-
pendix A], a series of approximations are made to simplify these equations.
First, the chemistry is modeled by a single-step, irreversible reaction with a
rate determined by the Arrhenius law and limited by the most deficient reac-
tant. Note that this assumption, which applies to very lean or very rich mix-
tures, eliminates the equivalence ratio parameter from the analysis. Second,
Soret, Dufour, and pressure gradient diffusion effects are all neglected such
that the diffusion velocity is determined directly from Fick’s Law. Third, the
products and reactants are assumed to have equal molecular weights, equal
but temperature-dependent viscosity/diffusivity coefficients, and equal, con-
stant heat capacities. A detailed explanation of these assumptions is given
in [30, Ch. 2]. With these assumptions and no external forces or energy
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sources/sinks, our dimensional governing equations are,

∂ρ⋆

∂t⋆
+∇⋆ · (ρ⋆u⋆) = 0, (A.1a)

∂ρ⋆Y ⋆

∂t⋆
+∇⋆ · (ρ⋆u⋆Y ⋆) = −A⋆ρ⋆Y ⋆ exp

(
−E⋆

a

R⋆T ⋆

)
+∇⋆ · (ρ⋆D⋆∇⋆Y ⋆) ,

(A.1b)
∂ρ⋆u⋆

∂t⋆
+∇⋆ · (ρ⋆u⋆u⋆) = −∇⋆p⋆ +∇⋆ · τ ⋆, (A.1c)

∂ρ⋆E⋆

∂t⋆
+∇⋆ · (ρ⋆u⋆E⋆) = ∆h⋆cA⋆ρ⋆Y ⋆ exp

(
−E⋆

a

R⋆T ⋆

)
+∇⋆ · (k⋆∇⋆T ⋆ + u⋆ · τ ⋆ − u⋆p⋆) , (A.1d)

p⋆ = ρ⋆R⋆T ⋆, (A.1e)
e⋆s = c⋆vT

⋆, (A.1f)

τ ⋆ = µ⋆
(
∇⋆u⋆ + (∇⋆u⋆)T

)
+

(
κ⋆ − 2µ⋆

3

)
I (∇⋆ · u⋆) ,

(A.1g)

where stars are used to denote dimensional variables. Here, ρ⋆ is the density,
u⋆ is the velocity vector, Y ⋆ is the mass fraction of the deficient species, A⋆

is the Arrhenius frequency factor, E⋆
a is the Arrhenius activation energy, R⋆

is the specific gas constant, T ⋆ is the temperature, D⋆ is the species mass
diffusivity, p⋆ is the static pressure, E⋆ = e⋆s+

1
2
u⋆·u⋆ is the sum of the specific

sensible energy es and specific kinetic energy, ∆h⋆c is the specific enthalpy of
combustion, k⋆ is the thermal conductivity, c⋆v is the mixture specific heat at
constant volume, µ⋆ is the total dynamic shear viscosity, and κ⋆ is the total
second (volume) viscosity.

To further simplify, the dimensional variables that have been used in the
previous equations are scaled by the reference properties of the reactants
at the inlet (subscript R) and the velocity and length scale of the flow (U⋆

and D⋆, respectively, see §2.1). These reference quantities are chosen such
that the dimensionless quantities remain O(1) for a Mach number defined by
M ≡ U⋆

√
ρ⋆R/

√
γp⋆R (where γ =

c⋆p
c⋆v

is the specific heat ratio). The scaled,
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dimensionless quantities are defined by

ρ =
ρ⋆

ρ⋆R
, Y =

Y ⋆

Y ⋆
R

, u =
u⋆

U⋆
, E =

ρ⋆RE
⋆

p⋆R
, p =

p⋆

p⋆R
, T =

T ⋆

T ⋆
R

,

x =
x⋆

D⋆
, t =

U⋆t⋆

D⋆
, τ =

D⋆τ ⋆

µ⋆
RU

⋆
, µ =

µ⋆

µ⋆
R

, κ =
κ⋆

µ⋆
R

, D =
D⋆

D⋆
R

, k =
k⋆

k⋆R
.

Note that, with this normalization, the constant specific heats are given by
cp = γ/(γ − 1) and cv = 1/(γ − 1). Substituting these definitions into (A.1)
yields the dimensionless equations,

∂ρ

∂t
+∇ · (ρu) = 0, (A.2a)

∂ρY

∂t
+∇ · (ρuY ) = −BρY exp

(
−T a

T

)
+

1

RePrLe
∇ · (ρD∇Y ) , (A.2b)

∂ρu

∂t
+∇ · (ρuu) = − 1

γM 2∇p+
1

Re
∇ · τ , (A.2c)

∂ρE

∂t
+∇ · (ρuE) = γB∆T

γ − 1
ρY exp

(
−T a

T

)
+∇ ·

(
γk

(γ − 1)RePr
∇T +

γM 2

Re
u · τ − up

)
,

(A.2d)
p = ρT, (A.2e)

es =
T

γ − 1
, (A.2f)

τ = µ
(
∇u+ (∇u)T

)
+

(
κ− 2µ

3

)
I (∇ · u) , (A.2g)

where the following dimensionless parameters have been defined: the Ar-
rhenius pre-exponential factor, B ≡ A⋆D⋆/U⋆; the adiabatic temperature
change, ∆T ≡ Y ⋆

R∆h
⋆
c/(c

⋆
p,RT

⋆
R); the Arrhenius activation temperature, T a ≡

E⋆
a/(R

⋆T ⋆
R); the Prandtl number, Pr ≡ c⋆p,Rµ

⋆
R/k

⋆
R; the Lewis number, Le ≡

k⋆R/(ρ
⋆
Rc

⋆
p,RD⋆

R); the Reynolds number, Re ≡ ρ⋆RU
⋆D⋆/µ⋆

R. Note that the
Mach number also appears in the dimensionless non-chemical energy, where
E = es +

1
2
γM 2u · u.

To derive the low-Mach number form of the equations, each flow variable
is expanded in orders of the Mach number, i.e.

ψ = ψ(0) + Mψ(1) + M 2ψ(2) +O(M 3). (A.3)
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Here, ψ represents an arbitrary flow variable. Substituting the asymptotic
expansion (A.3) into (A.2) and collecting only the equations which do not
vanish in the limit of zero Mach number yields,

∂ρ(0)
∂t

+∇ ·
(
ρ(0)u(0)

)
= 0, (A.4a)

∂ρ(0)Y(0)
∂t

+∇ ·
(
ρ(0)u(0)Y(0)

)
= −Bρ(0)Y(0) exp

(
−T a

T(0)

)
+

1

RePrLe
∇ ·

(
ρ(0)D(0)∇Y(0)

)
, (A.4b)

0 = −∇p(0), (A.4c)
∂ρ(0)u(0)

∂t
+∇ ·

(
ρ(0)u(0)u(0)

)
= −∇p(2) +

1

Re
∇ · τ (0), (A.4d)

∂ρ(0)E(0)

∂t
+∇ ·

(
ρ(0)u(0)E(0)

)
=
γB∆T
γ − 1

ρ(0)Y(0) exp

(
−T a

T(0)

)
+∇ ·

(
γk(0)

(γ − 1)RePr
∇T(0) − u(0)p(0)

)
,

(A.4e)
p(0) = ρ(0)T(0), (A.4f)

E(0) =
T(0)
γ − 1

, (A.4g)

τ (0) = µ(0)

(
∇u(0) +

(
∇u(0)

)T)
+

(
κ(0) −

2µ(0)

3

)
I
(
∇ · u(0)

)
. (A.4h)

Upon examination of (A.4), it is apparent that the O(M−2) momentum
equation (A.4c), constrains the leading-order pressure to be spatially uni-
form. Using the equation of state (A.4f), this requires that the product
ρ(0)T(0) must also be spatially uniform. With these constraints, p(2) now rep-
resents a hydrodynamic component of pressure that is fully decoupled from
the spatially-uniform thermodynamic pressure at leading order in M . Addi-
tionally, the leading-order non-chemical energy must be directly proportional
to the temperature. Applying these restrictions to (A.4) and dropping the
subscripts denoting the expansion orders for all variables except the pressure
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returns,
∂ρ

∂t
+∇ · (ρu) = 0, (A.5a)

∂ρY

∂t
+∇ · (ρuY ) = −BρY exp

(
−T a

T

)
+

1

RePrLe
∇ · (ρD∇Y ) , (A.5b)

∂ρu

∂t
+∇ · (ρuu) = −∇p(2) +

1

Re
∇ ·

[
µ
(
∇u+ (∇u)T

)
+

(
κ− 2µ

3

)
I (∇ · u)

]
,

(A.5c)
1

γ

dp(0)
dt

+ p(0)∇ · u = B∆TρY exp

(
−T a

T

)
+

1

RePr
∇ · (k∇T ) , (A.5d)

p(0) = ρT. (A.5e)

In the open flow considered in our analysis, the thermodynamic pressure is
subject to time-invariant boundary conditions. This necessitates that p(0)
is everywhere identically one, which simplifies the energy equation (A.5d)
and the equation of state (A.5e). A significant simplification to the viscous
stress tensor in the momentum equation can also be realized by redefining the
hydrodynamic pressure as p = p(2) − Re−1 (κ− 2µ/3) (∇ · u). This substi-
tution is possible because the normal viscous stresses act along the gradient
with the hydrodynamic pressure, and can thus be absorbed into the hy-
drodynamic pressure term without any other changes. Next, the numerical
properties of the reaction rate terms are improved by defining the Damköh-
ler number Da = B exp (−Ze(1 + ∆T )/∆T ) using the Zeldovich number
Ze = T a∆T/(1 +∆T )2. This effective re-scaling of the pre-exponential fac-
tor does not change any physics of the model, but conveniently normalizes
the exponential terms such that rounding errors due to finite-precision arith-
metic do not significantly affect the floating-point numerics at high Zeldovich
numbers. Finally, the temperature-dependencies of the dimensionless viscos-
ity µ, the thermal conductivity k and mass diffusion coefficient ρD are taken
to be equal on the basis of Chapman–Enskog gas kinetic theory [43, Ch. 10],
with a power law scaling of T 2/3. Incorporating these simplifications, (A.5)
is reduced to (1). The final parameters that appear in (1) are summarized
in Table A.2.

Appendix B. Mesh convergence study

This appendix assesses the robustness of the results to variations in com-
putational mesh resolution. Additional computations were performed on
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Adiabatic temperature change: ∆T =
Y ⋆
R∆h

⋆
c

c⋆p,RT
⋆
R

=
T ⋆

ad − T ⋆
R

T ⋆
R

Zeldovich number: Ze =
E⋆

a (T
⋆
ad − T ⋆

R)

R⋆
u (T

⋆
R)

2

Damköhler number: Da =
A⋆D⋆

U⋆
exp

(
− E⋆

a

R⋆
uT

⋆
ad

)
Reynolds number: Re =

ρ⋆RU
⋆D⋆

µ⋆
R

Prandtl number: Pr =
µ⋆
Rc

⋆
p,R

k⋆R

Lewis number: Le =
k⋆R

c⋆p,Rρ
⋆
RD⋆

R

Table A.2: Definitions of dimensionless parameters appearing in (1). Stars denote dimen-
sional variables. Here, T ⋆

ad = T ⋆
R + Y ⋆

R∆h⋆
c/c

⋆
p,R is the adiabatic flame temperature.

adapted meshes obtained with smaller P1 error tolerances equal to 0.5% and
0.3%. Since our results are discretized on second-order Taylor–Hood ele-
ments (see §2.4), these tolerances respectively correspond to solutions that
are roughly four and ten times more accurate (and computationally intensive)
than the reference solutions. In Table B.3, the new Lf values and critical pa-
rameter values obtained on these meshes are compared to the results given in
§3. Based on the agreement across all cases, the 1% error tolerance is deter-
mined to be sufficient to retrieve accurate results with up to four significant
digits of precision.
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