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The present work aims to encapsulate goby fish protein hydrolysate (GPH), endowed with antioxidant activity,
through ionic gelation process using blue crab chitosan (CH) and tripolyphosphate anions and to evaluate the
structural, thermal and antioxidant properties of the elaboratedmicroparticles (MPs). The GPH-loadedMPs pres-
ent spherical shape as seen by scanning electron microscopy (SEM) images and positive zeta potential. The in-
crease of loaded GPH concentration led to the increase of encapsulation efficiency (EE) and to the reduction of
the particle size. In fact, MPs, loaded with 2 and 5 mg/ml GPH, had EE values of 44 and 58% and mean particles
size of 4.81 and 3.78 μm, respectively. Furthermore, thermogravimetric analysis (TGA) profiles revealed the en-
hanced thermal stability of encapsulated biopeptides compared to the free ones. Release kinetic data showed a
Fickian diffusion behavior which follows swelling and a diffusion-controlled mechanism for peptides liberation.
Finally, as opposed to unloaded MPs, an improvement of the antioxidant activity of the loaded MPs with
biopeptides was observed.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

There is a great interest in the marine fish peptides, as dietary sup-
plements, based on their functional and biological activities that have
an impact on human health [1]. Indeed, derived fish bioactive peptides,
especially, those prepared by an enzymatic procedure, have led to an
enormous attention to nutraceutical and pharmaceutical industries,
owing to their broad spectrum of bioactivities, such as antihypertensive
[2], anti-inflammatory [3], anticoagulant [4], antioxidant [5,6], antidia-
betic [7] activities. In our previous study, goby protein hydrolysate
(GPH) prepared using triggerfish proteases were found to display an in-
teresting anti-ACE and antioxidant activities. Furthermore, its incorpo-
ration in turkey meat sausage efficiently reduced lipid peroxidation
[5]. Interestingly, oral administration of GPH to Wistar rats, fed a
hypercaloric diet, contributed to the prevention of renal toxicity and re-
stores the antioxidant parameters in both liver and kidney [8]. Taking
into consideration these finding, GPH could be used as a natural antiox-
idant dietary supplement in preventing oxidation reactions in food pro-
cessing. For instance, oral administration and delivery of bioactive
peptides were well studied and the potentiality of peptides, including
ngineering and Microbiology,
. 1173-3038, Sfax, Tunisia.
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antioxidant peptides, were proved in silico and in vivo works, which
make them a potential supplementary dietary product. However,
there are several technical limitations to overcome before the success-
fully delivered of bioactive proteins, such as their probable gastrointes-
tinal hydrolysis and their bitter taste [9].

Microencapsulation is an innovative method that permits bioactive
molecules to be entrapped within a polymer matrix. It is an effective
process to control the release of peptides and to avoid their degradation.
Several biopolymers had been described to be used as a wall matrix to
encapsulate peptides, such as lipids [10] and carbohydrates [11,12]. Nu-
merous reports described the efficiency of peptides encapsulation
through chitosan matrix [13,14]. Chitosan has been potentially used
for the development of particles owing to their biodegradability,
non-toxicity and biocompatibility. Characterized by its positive charge,
chitosan could form particles in acid conditions using the ionotropic ge-
lation techniquewith tripolyphosphate (TPP). The obtained systems are
closely investigated for their controlled release of bioactive molecules
and might, consequently, be employed as a promising carrier agent of
bioactive molecules [12].

Therefore, the present study focused primarily on the conception of
chitosanmicroparticles in order to encapsulate GPH peptides. The phys-
icochemical and structural characteristics of the elaborated microparti-
cles were investigated. Similarly, the encapsulation efficiency (EE),
in vitro release mechanism, and antioxidant activity of unloaded and
loaded CH-based MPs were determined.
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2. Materials and methods

2.1. Materials

Sodium tripolyphosphate (TPP) was purchased from Sigma-Aldrich.
DPPH (2, 2-diphenyl-1-picrylhydrazyl), ferrozine, FeCl2, ethylenedi-
aminetetraacetic acid (EDTA), butylated hydroxyanisole (BHA), NaOH
powder were procured from Sigma Chemical Co. (St. Louis, MO, USA).

2.2. Elaboration of goby protein hydrolysate

GPHwas prepared as described in our previous work [4]. First of all,
goby proteins were digested using triggerfish digestive proteases at
50 °C and pH 10.0, with enzyme/protein ratio of 1:3 (U/mg). During
the reaction, the pH was adjusted to the desired value by the addition
of NaOH solution (4 N). Then, the enzymatic reaction was stopped by
the heat treatment of the sample at 80 °C for 10 min. Finally, GPH was
recovered after centrifugation at 10,000g for 20 min and then freeze-
dried (Moduloyd-230, Thermo-Fisher Scientific, USA).

2.3. Extraction of chitosan from blue crab shell

Chitosan (CH)was obtained fromblue crab Portunus segnis shells fol-
lowing the method of Hamdi et al. [15]. First, chitin was extracted
through enzymatic deproteinization of dried blue crab shell using
Purafect®, and then by the chemical demineralization step (three suc-
cessive HCl (0.55 M) baths at 4 °C during 30 min for each bath). After-
wards, the extracted chitin was converted to CH by the alkaline
treatment with 12.5 M NaOH at a ratio of 1:10 (w/v) for 4 h at 140 °C.
The average molecular weight of the obtained CH was estimated to be
125 kDa and with an acetylation degree of 11%.

2.4. Preparation of GPH-loaded chitosan microparticles

GPH-loaded CHmicrocapsules were elaborated by the ionic gelation
technique as described byHosseini et al. [6]. Briefly, CH solution (50ml)
was prepared at a concentration of 1% in 0.15 M (v/v) acetic acid at
pH 4.0 for 24 h. GPHwas then added to the CH solution at different con-
centrations (2 and 5 mg/ml). Afterwards, the TPP solution was added
dropwise into the CH solution under a magnetic stirring at 300 rpm to
reach a CH/TPP weight ratio of 1/0.22. Subsequently, the resultant mi-
croparticles (MPs) were recuperated after centrifugation at 3000g for
30 min and at 4 °C. The MPs were rinsed with ultrapure water, freeze-
dried, and stored at−20 °C. TheMPs, enriched with GPH concentration
of 2 and 5 mg/ml, are named, respectively, GPH2- and GPH5-loaded
MPs. The unloaded chitosan microparticles (unloaded MPs), used as a
blank, were prepared following the samemethodology without the ad-
dition of GPH.

2.5. Characterization of GPH-loaded MPs

2.5.1. Particle size and zeta-potential measurements
Measurements of mean particles size, size distribution and zeta po-

tentials of the CH-basedMPswere determined by a laser scattering par-
ticles size distribution Litesizer 500 (Anton Paar, GmbH, France) based
on dynamic light scattering. Each sample (10 mg/ml) was analyzed in
triplicate and the mean value was reported.

2.5.2. Fourier transform infrared measurement
Fourier transform infrared (FTIR) analyses of the CH, GPH and MPs

were performed in transmission mode using a FTIR spectroscopy
(NEXUS of ThermoFisher, Germany) containing a diamond/ZnSe crystal.
Measurements were achieved at ambient temperature and were re-
corded in the range of 4000–700 cm−1. Data analysis and treatment
were carried out through the OMNIC Spectra software (ThermoFisher
Scientific).
2

2.5.3. Scanning electron microscope analysis
The morphological characterization of GPH-loaded MPs was re-

corded using a scanning electron microscopy (SEM, Hitachi S-4800)
under an accelerating voltage of 2.0 kV and an absolute pressure of
60 Pa, after sputter coating with a 5 nm thick gold.

2.5.4. Thermogravimetric analysis (TGA)
Thermal stability analyses of GPH, CH and MPs were recorded using

Thermogravimetric analyzer (TGA, Q500 High Resolution, TA Instru-
ments), operating under nitrogen flow (60 ml/min). TGA analysis is
based on the assessment of the progressive change in mass, expressed
in percentage (%), as function of temperature. Samples were heated
from 25 to 700 °C at a heating rate of 20 °C/min and their weight,
which, initially, was around 4mg, was constantly measured with an ac-
curacy of 0.01 mg. Thermograms were analyzed using the TA Universal
V4.5A software.

2.6. Determination of encapsulation efficiency (EE) and loading
capacity (LC)

EE, which described the amount of peptides entrapped into theMPs,
was estimated by subtracting the free biopeptides present in the super-
natant from the initial GPH concentration used for the chitosan-based
MPs preparation. The unloaded peptides, present in the supernatant,
were estimated by the Lowrymethod [16]. The LC is the amount of pep-
tides loaded per unit weight of the nanoparticle.

The EE and LC were calculated by the following equations,

EE %ð Þ ¼ WT−WFð Þ=WTð Þ � 100

LC %ð Þ ¼ WT−WFð Þ=WMPsð Þ � 100

where WT and WF represent the weights of the total and the unloaded
GPH peptides, respectively. WMPs represents the weight of recovered
MPs after freeze-drying.

2.7. In vitro biopeptides release study

Biopeptides, released from MPs, were determined as follows: GPH-
loadedMPs (20mg) were dispersed in 10ml of phosphate buffer saline
(PBS, pH 7.4) and incubated at room temperature. At different time in-
tervals (1–16 h), 1 ml of the release medium was taken out, and an
equal volume of fresh buffer was added. The amount of released pep-
tides at each time point was determined by the colorimetric method
of Lowry et al. [16]. The absorbance was converted into percentage re-
lease using a standard calibration curve and experiments were per-
formed in triplicates in order to ensure accuracy. The release profiles
of biopeptides from chitosan MPs were analyzed by applying the zero
order (cumulative percent drug release vs time), first order (log cumu-
lative percent drug release vs time), Higuchi's kinetics (cumulative per-
cent drug release vs √time), and Korsmeyer-Peppas equation (log
cumulative percentage of drug release vs log time):

Zero order model : Qt=Q∞ ¼ Kt;

First order model : Qt=Q∞ ¼ 1−e− Kt;

Higuchi model : Qt=Q∞ ¼ Kt1=2t;

Korsmeyer−Peppas model : Qt=Q∞ ¼ Ktn:

where Qt represents the percentage of biopeptides released at time t,
and Q∞ represents the total percentage of biopeptide released; Qt/Q∞
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Fig. 1. Particles size distribution of unloaded and GPH-loaded microparticles.
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is the fractional release of drug at time t. k is the release rate constant
and n is the diffusional exponent which could indicate the biopeptides
release mechanism and t is the time.

2.8. Determination of antioxidant activities

The DPPH free radical-scavenging activity of MPswas determined as
described by Bersuder, Hole & Smith [17], with slight modifications.
Briefly, 10 mg of MPs sample were added to 500 μl distilled water,
375 μl of 99.5% ethanol and 125 μl of 0.02% DPPH that was dissolved in
95% ethanol. The mixture was homogenized, vigorously and then kept
for 4 h in the dark; the absorbance was recorded at 517 nm. Lower ab-
sorbance of the reaction mixture indicated higher DPPH free radical-
scavenging activity. DPPH radical-scavenging activity was calculated
as follows:

Scavenging activity %ð Þ ¼ A controlþ A blank−A sample
A control

where Acontrol is the absorbance of the reaction containing all reagents
except theMPs, Ablank is the absorbance of the reaction containing all re-
agents except the DPPH and Asample is the absorbance of the reaction
mixture. The experiment was carried out in triplicate and the results
are mean values.

The chelating activity of samples towards ferrous ion (Fe2+)was de-
termined according to the method of Decker & Welch [18], with slight
modifications. 10 mg of MPs was mixed with 4.7 ml of distilled water.
The mixture was then reacted with 0.1 ml of 2 mM FeCl2, 4H2O and
0.2 ml of 5 mM 3-(2-pyridyl)-5,6-bis(4-phenyl-sulfonic acid)-1,2,4-tri-
azine (ferrozine) for 20 min at room temperature. The absorbance was
then read at 562 nm. The controlwas conducted in the samemanner ex-
cept that distilled water was used instead of the sample. The blank was
conducted in the samemanner except the ferrozine. The chelating activ-
ity (%) was calculated as follows:

Ferrous chelating activity %ð Þ ¼ A contolþ A blank−A sample
A control

� 100

2.9. Statistical analysis

All experiments were carried out at least in three replicates and
mean values with standard deviation errors (SD), were stated. Mean
separation and significance were analyzed using the SPSS software
package ver. 17.0 professional edition (SPSS, Inc., Chicago, IL, USA)
using the ANOVA analysis. Differences were considered significant at
p < 0.05.

3. Results and discussion

3.1. Characterization of microparticles

3.1.1. Zeta potential and particle size of MPs
In the CH-based MPs were elaborated using the ionic-crosslinking

204 gelation process among an amino group of glucosamine ring of
CH and the negative charged 205 groups of TPP [19,20]. The zeta
Table 1
Zeta potential, mean particle size, encapsulation efficiency (EE) and loading capacity (LC) of M

MPs GPH concentration (mg/ml) Z-potential (mV)

Unloaded MPs 0 51.43 ± 0.7a

GPH2-loaded MPs 2 35.43 ± 1.6b

GPH5-loaded MPs 5 50.00 ± 2.3a

Data are presented asmean± SD (n= 3). Different letters within a column indicate significant
tosan; GPH: goby protein hydrolysate prepared using triggerfish digestive proteases.
⁎ g per 100 g of GPH concentration.
⁎⁎ g per 100 g of MPs.

3

potential analysis is gaining information about the surface charge and
the dispersion stability of MPs. So, particles with zeta potential values
above +30 mV or below −30 mV are considered as a stable system,
owing to mutual electrostatic repulsion and overcoming the aggrega-
tion of particles [21]. Overall, all microparticles presented zeta potential
values that were higher than 30 mV, indicating that CH-based MPs
could be considered as stable system (Table 1). The occurrence of posi-
tive surface charge could be due to the contribution of cationic groups
(NH3

+) of both chitosan and biopeptides. Furthermore, results, reported
in Table 1, reveal that loading 2 mg/ml of GPH into CH solution signifi-
cantly decreased the zeta potential value of MPs (p < 0.05) [12]. Thus,
the reduction of theMPs surface chargewith the addition of biopeptides
could be explained by the involvement of the amino groups in electro-
static interactions. However, the zeta potential of MPs increased once
again, when the biopeptides contents of MPs were increased from 2 to
5 mg/ml, indicating that GPH5-loaded MPs were more stable than
GPH2-loaded MPs. Wang et al. [22] reported that positively charged
MPs could easily adhere to the epithelial cells through electrostatic in-
teractions with the negatively charged mucin glycosyl, which allows
the prolongation of their retention time to the absorption site, and im-
proved thereby their oral bioavailability. Indeed, Du et al. [12] stated
that the addition of peptide fractions in the chitosan solution may
have huge influence on the zeta potential of the nanoparticles.

The particle size is an important parameter that affects the proper-
ties and the biodistribution of MPs. Particle size distribution curves, il-
lustrated in Fig. 1, show a monomodal distribution with one peak
representing a predominant size. It can also be shown in Table 1 that
the mean particles size significantly decreased from 7.26 μm for
unloadedMPs to 4.81 and 3.77 μm for GPH2- andGPH5-loadedMPs, re-
spectively. The obtained results could be explained by the fact that the
addition of peptides into CH solution enhances the formation of electro-
static interactions between their charged groups, and also, as a result,
the decrease of MPs volume and diameter. In contrast, Anandhakumar
et al. [21] stated that chitosan nanoparticles size increasewith the colla-
gen peptides content increases. Du et al. [12] found that the mean par-
ticle size increased with the increase of peptides content.
Ps.

Mean particles size (μm) EE (%)⁎ LC (%)⁎⁎

7.26 ± 0.01a – –
4.81 ± 0.06b 44 ± 0.2a 38.6 ± 0.2a

3.78 ± 0.01c 57.8 ± 1.0b 82.6 ± 1.5b

differences among GPH concentrations (p < 0.05). MPs:microparticles. CH: Blue crab chi-
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Fig. 2. FTIR spectra of GPH, CH and microparticles.
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3.1.2. FT-IR analysis
The freeze-dried GPH, CH and microcapsules were also character-

ized using FT-IR spectroscopy. Characteristic bands of chitosan at
3402 cm−1, 2935–2884 cm−1, 1689 cm−1, 1586 cm−1 and 1432 cm−1

assigned to O\\H stretching bands, C\\H stretching bands, amide I
(C=O), amide II (-NH2 vibrations) and -CH2 binding [23], respectively,
were presented in the infrared profile of CH powder (Fig. 2). In addition,
specific absorption peaks of chitosan assigned to asymmetrical defor-
mation of CH3 groups at 1351 cm−1, anti-symmetric stretching of C-
O-C and C\\H stretching at 1101 cm−1 and pyranoside ring stretching
vibration at 596 cm−1 were detected.

For FT-IR peptides spectrum, characteristic peaks of proteins at
3167 cm−1 (N\\H stretching), 2926 cm−1 (C\\C asymmetric stretch),
1548 cm−1 (amide II, C\\N and N\\H stretching) and 1385 cm−1

(C\\H bending) were observed in Fig. 2. Regarding GPH-charged MPs
profiles, the wavenumber at 3402 cm−1 in CH curve, ascribed to the
amide A band, was shifted to 3293 cm−1 and 3165 cm−1 for GPH2-
and GPH5-loaded CH MPs, respectively. Besides, it became broader in
MPs containing 5mg/ml of peptides, suggesting the stronghydrogen in-
teractions involved in the formation of the MPs subsequent to ionic ge-
lation. The same trends were stated by Hosseini et al. [6], Leonida et al.
[24] and Rampino et al. [25]. Compared to the freeGPH spectrum, a dou-
ble stretching at 1639 and 1536 cm−1 was evident in the spectra of
loadedMPs; thismay be assigned to the formation ofα-helix conforma-
tion [26]. Furthermore, a decrease in the frequency of amide II of loaded
MPs to 1536 cm−1 was noted, indicating therefore the formation of
GPH2-loaded MPs

Fig. 3. SEM images of GPH-

4

electrostatic interactions between biopeptides, chitosan and TPP
through their charged groups [5,23,27].

3.1.3. Microstructure investigation
Fig. 3 presents themorphology of theMPs obtained by SEM.MPs had

a spherical form with an average diameter (<1 μm) smaller than that
measured by Zetasizer. This finding could be due to the aggregation of
theMPs during the drying step. It should be pointed out that the particle
size obtained by the DLS method is a hydrodynamic diameter. Similar
observations were described by Hosseini et al. [6], Du et al. [12] and
Piras et al. [28]. Nevertheless, the initial concentration of peptides did
not affect the morphology of chitosan-based MPs.

3.1.4. Thermogravimetric analysis
The thermogravimetric analysis is widely applied to assess the ther-

mal stability ofmicrocapsules, inwhich themass losswasmeasured as a
function of temperature. The TGA thermograms, plotted in Fig. 4a, show
that the weight loss of the samples decreased with the increase of tem-
perature. The residual weights of CH and peptides after incubation at
700 °C were 26% and 25%, respectively. It is interesting to note that
the interaction and crosslinking of chitosan with TPP increased the sta-
bility of CH against temperature (residual weight of 47.55% at 700 °C).
The encapsulated peptides show higher thermal stability than that of
free peptides with residual weights of 48.36% and 40.62% for GPH2-
and GPH5-loaded MPs, respectively. The degradation temperatures
(Td), which correspond to the highest amount of weight loss, are
3GPH5-loaded MPs

loaded microparticles.
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depicted through DTG thermograms (Fig. 4b). The spectrum of GPH
shows twomajor degradation phases. The firstweight losswas detected
at 100 °C, linked to the water evaporation and the second slope of
weight loss was detected at temperatures ranging from 220 to 420 °C,
attributed to the decomposition of peptides. On the other hand, CH
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Fig. 5. In vitro release profiles of biopeptide from GPH2- and GPH5-loaded MPs (37

5

degradation curve reveals that the main dehydration and degradation
of chitosan rings was detected at 320 °C.

The DTG curve of unloaded MPs shows a single weight loss peak at
260 °C, which could be assigned to the decomposition of the CH/TPP
(Fig. 4b). Similarly, GPH-chargedMPs curves reveal the vanishing of chi-
tosan and peptides degradation peaks and the emergence of the only
degradation peak at 260 °C. This proves, once again, the entrapment ef-
ficiency of GPH peptides into the chitosan-TPP capsules and their pro-
tection against decomposition at high temperatures.

3.2. Encapsulation efficiency and loading capacity of MPs

The EE and LC of MPs are shown in Table 1. GPH5-loaded MPs had
higher EE (57.83%) than GPH2-loaded MPs (43.95%), indicating that
the EE increases with the increase of initial peptides concentration
added to CH solution. The improvement of EE as a function of peptides
concentration could be explained by the increase of hydrogen interac-
tions between the peptides and TPP. Reports focused on the
evaluation of the effect of peptides content on their EE are inconclusive.
According to Keawchaoon & Yoksan [29], the EE of carvacrol into CH/
TPP systems increased with increasing bioactive molecules content.
Gan & Wang [30] reported the increase of the EE of albumin in CH/TPP
microparticles from 38.7 to 72.5%when the initial concentration of pro-
tein increased from0.25 to 1.50mg/ml. In contrast, Piras et al. [28] dem-
onstrated that low concentration of peptides led to a high encapsulation
degree.

Additionally, we may notice the increase of the LC of MPs, when in-
creasing the amount of peptides (p < 0.05), as mentioned in Table 1. In
fact, the LC values increased from 38.68% for GPH2-loaded MPs to
82.62% for GPH5-loaded MPs. Similar results have also reported the in-
crease of LC as a function of protein or peptides content [29,30]. Accord-
ing to Dunn et al. [31], the content of loadedmolecules in nanoparticles
is highly dependent on the non-covalent and covalent interactions
established between biomolecules and the surface functional group.
Moreover, the increase in the amount of peptide encapsulated in the
GPH5-loadedMPsmay be related to their zeta potential which is higher
than that of GPH2-loaded MPs.

3.3. Release profiles of peptides from MPs

The encapsulated biopeptides can be released from the colloidal par-
ticles through a variety of mechanisms, including changes in molecular
interactions and increased pore size of particles, as well as diffusion and
8 10 12 14 16

 (h)

GPH2-loaded MPs

GPH5-loaded MPs

°C; PBS buffer). Release percentages are expressed as the mean ± SD (n = 3).
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Table 2
Kinetic parameters obtained through fitting to several mathematical kinetic models of peptides release profiles.

Microparticles Kinetic models

Zero order First order Higuchi model Korsmeyer-Peppas model

R2 k R2 k R2 k R2 k n

GPH2-loaded MPs 0.973 0.024 0.9928 0.0009 0.981 0.620 0.996 0.106 0.783
GPH5-loaded MPs 0.9736 0.032 0.995 0.0005 0.981 0.825 0.995 0.151 0.772
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erosion [14]. The in vitro biopeptides release profiles from CH-based
MPs in PBS buffer can be described as a biphasic process (Fig. 5). Indeed,
the release profiles showed a fast-initial release stage within the first
12 h, possibly attributed to the diffusion of peptides loaded to MP's ex-
ternal layer. At the second stage, a slow biopeptides release was oc-
curred till 14 h, which can be accredited to the diffusion of peptides
after the swelling and/or degradation of the wall matrix of chitosan/
TPP MPs [14]. A similar release profile was reported by Hosseini et al.
[6] for the release of common kilka antioxidant peptides.

In terms of percentage, GPH5-loadedMPs released 60.84% of the en-
capsulated biopeptides, while accumulative biopeptides release ofmore
than 80% was obtained with GPH2-loaded MPs after 14 h of incubation
(Fig. 5). Hosseini et al. [6] also reported that the percentage of released
peptides decreased when their initial concentration increased from 1 to
5 mg/ml. The particle size of MPs influences the peptides delivery rate.

3.4. Determination of release mechanisms

Mathematical modeling of release process is primordial to get a bet-
ter idea of the delivery phenomenon. The release kinetics of peptides
from chitosan MPs was evaluated by fitting the biopeptides release
data to four mathematical models (e.g. zero order, first order, Higuchi
and Korsmeyer-Peppas models). The analysis of correlation coefficients
(r2) of linear relationship between biopeptides liberation and time was
established for the sake of the evaluation of the release mechanism.

The best kinetic model of MPs was evaluated through the determi-
nation of the highest r2 value, as shown in Table 2. Overall, the release
kinetics of biopeptides from chitosan MPs fitted well with the first-
order (0.992–0.995) and Korsmeyer–Peppas (0.995–0.996) models.

The release mechanism of biopeptides from chitosan MPs was car-
ried out using the Korsmeyer–Peppasmodel, in which the release expo-
nent “n”was related to the releasemechanism and it illustrated the type
of drug transport. Regarding spherical system, n < 0.43 is assigned to
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significant differences in the release of peptides at the same time among the MPs (p < 0.05).
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Fickian diffusion of drug from microcapsules. A release exponent rang-
ing from 0.43 to 0.85 indicates an anomalous transport, and the drug re-
lease, in this case, ismonitored by diffusion- and swelling processes. The
value n > 0.85 is considered as case II transport, which is involved in
polymer relaxation during swelling diffusion and matrix erosion [32].

As seen in Table 2, peptides release data is fitted to the Korsmeyer-
Peppas model, with n values around 0.77 and 0.78 for peptides released
from GPH2- and GPH5-loaded MPs, respectively. The obtained values
reveal that the release mechanism of GPH peptides from the blue crab
chitosan system follows non-Fickian diffusion (anomalous transport),
indicating that the peptides release rate depends simultaneously on
the swelling and on the diffusion processes.

The mechanism of peptides release from chitosan MPs in water
could be divided into two stages: i) the first stage consists in the passive
diffusion of peptides located near the surface of the microcapsules; ii)
during the second part, the chitosan MPs absorb water and swell, lead-
ing to the amplification of diffusion spaces and to the release of the pep-
tides located in the MPs.

3.5. Antioxidant activity of loaded MPs

The DPPH method measures hydrogen atom donating ability of
biopeptides. The DPPH radical-scavenging activity of unloaded and
loaded MPs was investigated and presented in Fig. 6. It is worthy to
note a positive correlation between the biopeptides concentrations
and the radical-scavenging potential of loaded MPs. In fact, GPH5-
loaded MPs manifested high antioxidant activity (54%) compared to
GPH2-loadedMPs (44%);while unloadedMPs displayed only 28% of an-
tioxidant activity. These findings clearly indicate that loaded-
biopeptides significantly improved the antioxidant capacity of the MPs
(p < 0.05).

The evaluation of the metal chelating activity of unloaded and
loadedmicroparticles was also carried out. As shown in Fig. 6, all loaded
-loaded MPs GPH5-loaded MPs

Chelating effect

a
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MPs exhibited an interesting chelating effect, which was similar to
unloaded MPs. The obtained results indicated the potential of chitosan
MPs to catch iron ion.

4. Conclusion

A chitosan-based MPs encapsulating antioxidant biopeptides were
successfully produced via ionic gelation method. FT-IR spectra reported
an effective ionic cross-linking between CH and peptides as a function of
peptide concentrations, which could be considered as driving force for
GPH-loaded MPs elaboration. The particles had spherical form as con-
firmed by SEM. By increasing the concentration of biopeptides into chi-
tosan solution, EE is increased. The in vitro release analysis showed that
the concentration of biopeptides in the MPs influenced its release rate.
The release mechanism of GPH peptides from the chitosan system fol-
lows non-Fickian diffusion, indicating that the biopeptides release rate
depends simultaneously on the swelling and diffusion processes.
Hence, GPH-loaded MPs exhibited a potent antioxidant activity com-
pared to unloaded MPs.
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