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Pascal Lacroix1, Jocelyne Adjizian-Gérard5, Elise Beck2, Julie Dugdale3, Christelle Salameh1, Nada Saliba5, 

Rita Zaarour5 

Abstract 

The estimation of seismic damages and debris at the urban scale - at a building-by-building level- is challenging 

for several reasons. First, commonly used methodologies for seismic damage estimation rarely take into account 

the local site effects, precisely at the building-level. Second, the available methods for debris estimation fail to 

estimate at the same time the quantity of debris generated per building according to its damage level and the 

distribution of the debris (extent and height) around buildings. Finally, the lack of comprehensive data on the 

building stock and the relevant building properties and their taxonomy further increases the complexity of 

assessing possible earthquake consequences at an urban scale. This paper addresses these challenges and proposes 

improvements to the assessment of seismic damages and debris from building-level simulations, along with the 

development of a 3D building model based on satellite images and heterogeneous data. These developments, 
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applied to the city of Beirut, Lebanon, highlight the control of the site effects on the seismic damage’s spatial 

distribution throughout the city and the large volume and extent of debris to be expected in the city for a strong 

earthquake. 
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1 Introduction 

Earthquakes are one of the most devastating natural hazards that cause important loss of life and livelihood 

especially in dense urban areas located near seismic faults (e.g. Bam, 2003; Haiti, 2010; Christchurch, 2015) 

(Elnashai and Di Sarno, 2008). Seismic risk is usually evaluated in terms of physical damages and related economic 

and social losses from probable earthquake shaking. Approaches for assessing seismic damage can be divided into 

two main categories (Calvi et al., 2006): (1) empirical methods, such as the damage probability matrix (Braga et 

al., 1982; Whitman, 1973), which correlate the building damage to the macroseismic intensity; (2) mechanical 

methods, such as the Capacity Spectrum Method (CSM) (Chopra and Goel, 1999; Freeman et al., 2004), which 

relate the building damage to the building’s capacity curve and to the response spectrum, representing the building 

characteristics and the spectral acceleration as a function of the spectral displacement imposed by the earthquake, 

respectively. Empirical methods are commonly used for the estimation of seismic damages at the urban and 

regional scales (e.g. Lantada et al., 2010; Riedel and Guéguen, 2018; Sarris et al., 2010; Silva et al., 2015), as these 

methods only require a small amount of qualitative data that can be easily acquired at large scale. However, the 

spatial resolution of such empirical methods is usually restricted to the administrative-level rather than the 

building-level, due to the use of aggregated census data for building information and of shake-maps for inferring 

macroseismic intensity (e.g. Wald et al., 2022). Conversely, although analytical methods require more 

comprehensive data, they provide clear advantages compared to the empirical methods, due to their physics-based 

approach allowing the estimation of damages at the building-level (Calvi et al., 2006). Particularly, the 

applicability of the CSM to different characteristics of hazard and building properties made it very popular and it 

has been adopted in widely-used seismic risk assessment methodologies, such as HAZUS (FEMA, 2012) and Risk-

UE (Mouroux and Le Brun, 2006). In order to account for site effects in building damage aggravation, the CSM 

uses generic response spectra according to soil classifications based on time-averaged shear wave velocities 

(usually to a depth of 30 m). The use of such response spectra generally fails to represent the actual site 
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amplification (Luzi et al., 2011; Pitilakis et al., 2004), especially the aggravation of building damages due to the 

coincidence of the resonance frequency between soils and buildings – also called double-resonance effects – (e.g. 

Mexico 1985, Mexico 2017; Cetin et al., 2022; Mayoral et al., 2019; Takewaki, 1998). 

Recently, Salameh et al. (2017) proposed a seismic damage assessment approach that takes into account the effect 

of the spectral coincidence between soils and buildings. This approach was developed by simulating the structural 

displacement of buildings having various mechanical characteristics and typologies for different levels of ground 

motion and linear and non-linear site responses. To do so, a comprehensive data set of input seismic signals, soil 

profiles and single degree of freedom (SDOF) oscillators were used. From the structural displacement, a building 

damage index was defined based on the EMS98 damage levels (Grünthal, 1998), using a 0–4 scale following the 

RISK-UE project (Lagomarsino and Giovinazzi, 2006) for buildings located on outcropping rock or sediments 

(Salameh et al., 2017). This allowed calculating the damage increment between soil and rock conditions. Artificial 

Neural Networks (ANN) were then trained to predict the damage index and damage increment from easily 

accessible proxies related to input ground motion, soil and building characteristics. The best predictors for building 

damages were found to be the Peak Ground Acceleration (PGA) on outcropping rock, the ratio between building 

and site (fstruct/fsoil) frequencies and the H/V amplitude (A0HV), which can be considered as a proxy for the 

impedance contrast. The trained ANNs constituted therefore a simple and robust tool to estimate building damages 

while combining both the spectral content of the ground motion and the dynamic behaviors of the buildings and 

soils. This approach can be used to estimate damages at the building-scale in large urban areas. The ANNs were 

tested and applied to the city of Beirut, in Lebanon, which allowed to establish damage index and damage 

increment maps for different levels of seismic shaking (Salameh et al., 2017). However, the limitations of this 

approach come from (i) the quantification of the damages in terms of the damage index and damage increment, 

inconsistent with standard metrics commonly used for the evaluation of building damages (e.g. Lantada et al., 

2009), (ii) the limited exploration of input variables related to the seismic motion, as only the PGA was considered, 

although several studies have found the Peak Ground Velocity (PGV) to be a better proxy for macroseismic 

intensity than the PGA (e.g. Kästli and Fäh, 2006; Wald et al., 1999). Moreover, another major limitation in the 

application to Beirut came from the building data set being incomplete. This meant that only damages on the 

eastern and the north-western parts of the city were calculated, leaving a gap of building damage in the central 

area of Beirut. The lack of comprehensive datasets containing relevant information on building properties is a 

common challenge for many countries threatened by seismic risk (Liuzzi et al., 2019). Although building-by-

building surveys are usually considered the most complete source for building characterization (Polese et al., 

2019), these surveys are often undertaken within limited spatial areas due to their high time and cost demands 

(Nievas et al., 2022). Recently, novel approaches relying on satellite images and/or open-accessible geospatial 

data have been developed to set up seismic exposure models (Geiß et al., 2017; Gomez-Zapata et al., 2022; Krayem 

et al., 2021; Nievas et al., 2022; Sousa et al., 2017; Wieland et al., 2012). Particularly, in countries with limited 

census data and incomplete building datasets, such as Lebanon, volunteered geographic information, such as the 

data provided by OpenStreetMap (OSM) are valuable resources for the development of up-to-date building 

exposure models (e.g. Tumurbaatar et al., 2021). 
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Moreover, for earthquakes, debris are generated from structural and non-structural components of damaged 

buildings (Lu et al., 2019). Falling debris can lead to injuries that need hospitalization (Peek-Asa, 2003) and piles 

of debris on the road network can block vehicle traffic and even pedestrian evacuation paths slowing down the 

response of emergency services (Gehl et al., 2022; Mesta et al., 2020). While the estimation of debris volume, 

extent around buildings and height is of critical importance for improving emergency management plans, only a 

few studies have focused on the estimation of earthquake-generated debris. HAZUS proposes a methodology to 

estimate the quantity of generated debris considering the building’s typology and damage level; however, this 

methodology does not investigate the spatial distribution of debris outside the building's right-of-way. The spatial 

distribution of debris is still an open research question (Castro et al., 2019). The most common practice is to 

estimate the extent of debris around a building as a function of the building height (H). The extent of the debris 

around buildings when there is a full collapse is usually assumed to follow a triangular distribution with minimum, 

maximum and mode equal to H/8, H/2 and H/4 respectively (Nishino et al., 2012). In other works, debris is 

assumed to form an angle of 20° between the front wall and a line that connects the top of the front wall to the 

farthest point of the debris (Ravari et al., 2016). Argyroudis et al. (2015) proposed a simplified geometrical model 

to estimate the debris resulting from collapsed buildings, assuming that the debris form a volume with the shape 

of a triangular prism having its maximum height next to the building. Furthermore, experimental approaches have 

also been developed to analyze the debris formation due to an earthquake. Domaneschi et al. (2019) used numerical 

simulations to study different collapse scenarios of masonry buildings. The numerical simulations were validated 

by experimental tests on a shaking table, allowing deriving a simplified formula relating the geometric properties 

of the building with the area occupied by debris. However, the main limitation of this study is that it can only be 

applied for masonry buildings in the case of full building collapse. Santarelli et al. (2018) relied on machine 

learning tools to identify correlations between the extent of ruins on the streets outside masonry buildings observed 

in post-earthquake satellite images, and the buildings’ vulnerability, seismic magnitude and ratio between the 

building’s height and street width. By relating the debris extent to the building’s vulnerability and the seismic 

magnitude, this approach is one of the few approaches that takes into account the building’s damage level for 

estimating the debris extents. However, the results are expressed in terms of the fraction of the street that is covered 

by debris, instead of an absolute debris extent, which is difficult to generalize and to apply to studies in which 

knowing the width of streets is not a viable option. 

Given the aforementioned limitations, the objectives of the paper are first to improve the seismic damage prediction 

of Salameh et al. (2017) by quantifying the building damage in terms of the mean damage instead of the damage 

index. The performance of the ANNs to predict the mean damage will also be further explored using various 

combinations of damage predictors. This part will be covered in section 2 of this paper (Fig. 1). Second, a 

methodology to estimate damage-dependent height and extent of debris around each building is developed and 

presented in section 3. Finally, from a new 3D building stock model in Beirut derived using volunteered geographic 

information, satellite images and machine learning tools (section 4), building mean damage and debris maps are 

estimated at the scale of the city for different seismic scenarios (section 5). 
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Fig. 1 Pipeline of the framework and organization of the paper 

2 Method for estimating seismic damages building by building 

A similar approach as in Salameh et al. (2017) was adopted for the estimation of urban seismic damages. The 

assessment is considered to be at the building level (building by building) because we take into account the spectral 

contents of both the building and the soil for the estimation of the building damage. We use the same dataset of 

Salameh et al. (2017) composed of 887 1-D multi-layered soil profiles from worldwide available profiles, 60 

synthetic base rock accelerations ranging from 0.02 to 8.6 m/s2 mimicking accelerations produced by earthquakes 

with magnitude ranging from 3 to 7 and epicentral distances from 5 to 100 km. Finally, 87 single-degree-of-

freedom (SDOF) oscillators exhibiting an elastoplastic behavior and possessing realistic properties were taken into 

account based on the findings of the Risk-UE European project. In this project, Lagomarsino and Giovinazzi 

(2006) gathered the principal characteristics of various building types in the Euro-Mediterranean region, including 

fundamental periods, elastic yield displacement (dy), and ductility ratios (du/dy), where du represents the ultimate 

displacement. Although these structures were classified by Lagomarsino and Giovinazzi (2006) into five primary 

building classes encompassing different typologies, in this study we only considered the building classes that can 

be found in Beirut (Salameh et al., 2017), namely: masonry (Class 1), non-designed reinforced concrete (Class 2), 

designed reinforced concrete with low ductility (DCL) (Class 3). A comprehensive description of the dataset’s 

characteristics can be found in Salameh (2016). 

2.1 Simulation of non-linear site response 

Several observations after large earthquakes have found that under strong ground shaking, the soil’s behavior 

becomes nonlinear as it manifests by the shift of the soil’s resonance frequency to lower frequencies and the 
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reduction of the soil’s amplification (e.g. Beresnev and Wen, 1996). The soil’s nonlinear behavior is a result of 

the reduction of the soil’s shear modulus and the increase in damping that occur when the soil undergoes high 

deformation levels (Finn, 1991). The soil’s nonlinear behavior has also been demonstrated by laboratory tests on 

different types of soils, which resulted in laws that can be applied for the simulation of the soil’s nonlinear behavior 

(Hardin and Drnevich, 1972a, 1972b). These laws, called degradation curves, relate the loss in shear modulus and 

the increase in damping to the level of shear strain in the soil. The dynamic soil response can be simulated by fully 

nonlinear models, such as NOAH (Bonilla, 2001), in which the dynamic equation of motion is integrated in the 

time-domain at small incremental steps. The computation of the nonlinear soil response can be simplified by an 

Equivalent Linear (EL) site response analysis, in which the nonlinear soil behavior is simulated by a linear elastic 

model, with dynamic values of the shear modulus and damping updated iteratively to correspond to the level of 

strain achieved by the soil according to given degradation curves. Although the EL site response analysis is an 

approximation of the actual nonlinear response of the soil, this approach has proved to be computationally efficient, 

capable of providing reasonable results for many practical problems and is widely used by the earthquake-

engineering community (e.g. Assimaki et al., 2011; Kaklamanos et al., 2015; Kim et al., 2016). 

As the EL approach is less computationally demanding than the full nonlinear method, we have simulated the EL 

site response of the sites to the input accelerograms. The simulations were performed in SHAKE (Schnabel et al., 

1972) that computes the response to vertically propagating plane shear waves of a layered soil profile overlying a 

uniform half-space. In SHAKE, the soil profile is defined in terms of each sublayer’s shear wave velocity, damping 

ratio, shear modulus and damping degradation curves, total unit weight and thickness. The degradation curves of 

Darendeli (2001) were used as they are generic curves composed of simple equations, which makes them easy to 

adapt to any soil type. Nevertheless, the application of Darendeli’s relationships requires values of plasticity index 

and overconsolidation ratios, parameters that are not provided in the soil profiles dataset. Due to the absence of 

this site-specific information, all the soils were assumed to be dry sand, which yields to values of both plasticity 

index and overconsolidation ratio equal to 0. The assumption of dry sand is at first order well suited to the study 

case of Beirut according to the known surface geology (Dubertret, 1945). However, it should be noted that this 

assumption leads to an exaggeration of the soil’s nonlinearity. 

The non-linear surface ground motion synthetics were analyzed by calculating the site’s transfer function (TF) as 

the ratio of the Fourier amplitude spectrum of the surface ground motion to that of a reference outcrop rock 

(Borcherdt, 1970). The TF provides frequency-dependent amplification of the bedrock input motion by the soil 

deposit (Kramer, 1996). The typical shape of the TF displays many amplification peaks; the peak at the lowest 

frequency occurs at the site’s fundamental resonance frequency. When soils behave nonlinearly under strong 

ground seismic excitation, the fundamental resonance frequency is decreased together with amplification and de-

amplification of the surface ground motion at frequencies below and beyond the fundamental resonance frequency, 

respectively (Bonilla, 2005; Frankel, 2002; Régnier et al., 2013). Fig. 2 shows the TFs of one of the sites in the 

dataset, precisely the site AKTH05 from the KiK-Net database (National Research Institute for Earth Science and 

Disaster Resilience, 2019), computed for the EL soil response for various bedrock accelerations. The TF 
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corresponding to a linear soil response is also shown for reference. The site response in the EL case depends on 

the PGA reached at the top of the soil column (surface PGA). While the TFs are relatively close to the linear TF 

for low-to moderate surface PGA (< 2 m/s2), the fundamental resonance frequency decreases for larger surface 

PGA, up to about 20% for the largest surface PGA (from 9 Hz in the linear case to 7 Hz in the non-linear case). 

The seismic amplification is reduced at the fundamental resonance frequency (by about 10% for the largest surface 

PGA) and at high frequencies, reaching up to a 40% reduction of the amplification at 20 Hz, while slighter 

amplification is observed at frequencies below the fundamental resonance frequency.  

 

Fig. 2 Site transfer functions for the site ATKH05 from the Kik-Net database computed from the results of the nonlinear site 

response analysis under 60 different seismic loadings. The site transfer function for the linear site response is plotted in black 

and the non-linear site responses are indicated in color according to the surface PGA values 

2.2 Computation of the building mean damage 

The structural displacement was simulated by computing the relative displacement of the damped elastoplastic 

SDOF oscillators (without including soil-structure interactions for simplification) by solving the dynamic equation 

of motion using the step-by-step Newmark method: 

m × d̈ + c × ḋ + k × d = −m × aS,i (1) 

where d is the displacement in m of the elastoplastic oscillator, ḋ its velocity, and d ̈  its acceleration. m is the mass 

in kg, c the viscous damping taken equal to 5%, k the rigidity and aS,i is the surface acceleration in m/s2 at the base 

of the oscillator (top of soil column) obtained from the EL calculations. 

The building mean damage was then estimated following the mechanical model proposed by Lagomarsino and 

Giovinazzi (2006). In this approach, four structural displacement thresholds, Sd,k (k=1…4), were specified 
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according to the yielding (dy) and ultimate (du) displacements of the building, which allowed to define four 

damage states DSk(k=1...4) as follows: 

Sd,1 = 0.7 dy ; DS1= Slight damage 

Sd,2 = 1.5 dy; DS2 = Moderate damage 

Sd,3 = 0.5(dy + du) ; DS3 = Extensive damage 

Sd,4 = du; DS4 = Complete damage 

In a second step, the probability that a damage reaches or exceeds a certain damage state DSk, is expressed as a 

function of the maximum displacement dmax reached by the oscillator and the displacement thresholds Sd,k, using 

a lognormal cumulative probability function as follows: 

                                            P[DSk|dmax] = Φ [
1

β
ln (

dmax

Sd,k
)] (k = 1, 2, 3, 4)                    (2) 

β = 0.4 lnμ (3) 

μ =
du

dy

(4) 

where Φ is the normal cumulative function, β is the normalized standard deviation of the natural logarithm of the 

displacement threshold, defined as a function of μ, the ductility capacity of the building.  

Finally, the mean damage (µDS) is computed as: 

µDS = ∑ kPSk

4

k=0

(5) 

Where PSk is the probability of reaching each damage limit state, derived from the cumulative distribution as 

follows:  

PS4 = P[DS4|dmax] (6) 

PSk =  P[DSk|dmax] −  P[DSk+1|dmax]     (k = 1, 2, 3) (7) 

PS0 = 1 − P[DS1|dmax] (8) 

Additionally, the probability of collapse 𝑃5 can be approximated as follows: 

𝑃5 = 0.09 sinh(0.6µ𝐷𝑆)𝑃𝑆4  (9) 

Moreover, the most probable damage for each value of mean damage was defined as indicated in Table 1 and 

linked to its corresponding EMS98 damage grade. The probabilities of each damage state according to the mean 

damage value for classes 1 to 3 can be found in the Appendix (Fig. 21 to 23). 

Table 1 Probability of collapse and most probable damage state depending on the mean damage value. The corresponding 
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EMS98 damage grade is also indicated in the last column 

Mean damage 

 

Collapse 

probability 

Most probable damage 

state 

Corresponding EMS98 damage 

grade 

0 ≤ µDS < 1       0 No damage No damage 

1 ≤ µDS < 2       0 Slight DS1 Slight D1 

2 ≤ µDS < 3       1% to 9 % Moderate DS2 Moderate D2 

3 ≤ µDS < 4       10% to 48% Extensive DS3 Heavy D3 

µ𝐷𝑆 = 4       49 % Complete DS4 Very heavy D4 

Destruction D5 

Table 2 shows the results of the application on the SDOF oscillators and the range of displacements attained along 

with the corresponding mean damage that ranges between 0 (no damage) and 4 (complete damage state).  

Table 2 For each building class, range of fundamental building resonance frequency (fstruct), yielding (dy), ultimate (du), 

maximum (dmax) displacement and mean damage (µDS) 

Building 

class 

fstruct range 

(Hz) 

𝐝𝐲 range (m) 𝐝𝐮 range (m)  𝐝𝐦𝐚𝐱 range (m) µ𝐃𝐒 range 

Class 1 2 - 6.7 0.0015- 

0.0107 

0.0070 - 

0.0387 

1.2477 x 10-5 - 0.5 0 -  4 

Class 2 0.77 - 1.85 0.015 - 0.0407 0.0451 - 

0.1227 

3.8239 x 10-5 - 

0.9023 

0 -  4 

Class 3 1.1 - 2.33 0.0108 -

0.0709 

0.0324 - 

0.2125 

4.3947 x 10-5 - 

0.7237 

0 -  4 

2.3 Training Artificial Neural Networks (ANNs) for the prediction of the building mean 

damage 

The ANN approach is a statistical learning algorithm inspired by biological neural networks. Its main characteristic 

is investigating, without any a priori knowledge, the relationship between input and output variables (McCulloch 

and Pitts, 1943; Minsky and Papert, 1969). The use of ANNs has emerged in the geophysical field particularly in 

the early nineties (Poulton, 2001) and has since become a popular tool in solving complex geophysical problems. 

Following Salameh et al. (2017), we have used ANNs to identify the relationship between the mean damage and 

indicators related to soil, building and input earthquake signal characteristics. While keeping the same neural 

network architecture and activation functions, the main changes compared to Salameh et al. (2017) were the choice 
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of the mean damage as the output variable, instead of damage index, and testing different combinations of input 

variables as predictors of the mean damage. Moreover, similar to Salameh et al. (2017), the ductility capacity of 

the buildings was not considered as an input variable in the ANNs; instead, an independent neural network was 

created for the 3 building typologies used by Salameh (2016) (Class 1, Class 2 and Class 3).  

Feedforward neural networks using supervised learning were created using the MATLAB® Neural Network 

Toolbox™ with the following architecture:  

i) an input layer containing the explanatory variables, made of 3 to 5 neurons, depending on the number of 

explanatory variables considered; 

ii) a single hidden layer, containing 10 neurons, which is the optimal number of hidden neurons found after 

testing numbers between 2 and 20; 

iii) an output layer with 1 neuron, containing the variable we aim to estimate, i.e. the mean damage. 

The activation functions were the tangential sigmoid activation function in the hidden layer and the linear sigmoid 

in the output layer. For the choice of damage indicators, in addition to variables used by Salameh et al. (2017), 

namely PGA, A0HV as the amplitude of the H/V peak at the fundamental resonance frequency, serving as a proxy 

to site amplification in the linear case, and the ratio between the fundamental resonance frequency of the building 

(fstruct) and the soil (fsoil), fstruct/fsoil, we have also considered fstruct and fsoil separately. The PGV on outcrop rock was 

also considered as a proxy of the seismic signal. Eight different combinations of these variables were formed, in a 

way that each combination included at least one proxy for each of the signals, sites and buildings. Each one of the 

8 artificial neural networks was trained for building classes 1, 2 and 3 and the datasets were randomly split into 

three subsets (70% training, 15% validation set and 15% test set) to avoid overfitting problems. The ANN’s 

performance was assessed by the coefficient of determination R2 (from 0 to 1), which shows how well the input 

variables can predict the mean damage. 

The ANNs’ input variables and performances are summarized in Table 3. All the neural networks performed 

comparably well in estimating the mean damages, as demonstrated by the high R2 values ranging from 0.8466 to 

0.9602. By comparing the R2 values in ANN1 and ANN2, the PGV seems to perform better than the PGA in 

explaining the mean damages, especially for Class 2 buildings. The same applies for the improvement between 

ANN3 and ANN4, as well as between ANN5 and ANN6. Yet, the consideration of both PGA and PGV 

simultaneously as proxies of the seismic signal (ANN7 and ANN8) improved the prediction of the mean damages. 

In ANN3, the consideration of fsoil and fstruct separately did not lead to the improvement in the R2 values in any of 

the classes with respect to ANN1. However, in ANN5, the separation of fstruct and fsoil without removing A0HV 

improved the performance for Class 1 but worsened it for the other building classes. Finally, the consideration of 

all the variables separately in ANN8, improved the prediction of the mean damages for Class 1 compared to ANN7 

while the ANN’s performance declined for Classes 2 and 3. Finally, while the best performance for Class 1 is 

achieved in ANN8, ANN7 ensures the best performance for Classes 2 and 3 buildings and was retained as the 

optimal neural network for the prediction of the building mean damage. 
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Table 3 Summary of the input variables and the performance of the 8 ANNs trained to estimate the mean damages of building 

classes 1, 2 and 3. ANN1 is composed of the same input variables as in Salameh et al. (2017). The values of R2 in bold represent 

the maximum R2 attained for each building class 

After identifying the optimal neural network, we investigated the input variables’ synaptic weights ratio, which is 

the proportion of the weight of each of the inputs of the ANN with respect to the sum of the total weights in the 

network. The synaptic weight indicates the relative importance of each input variable in ANN7 in the prediction 

of the buildings’ mean damages. We can see in Fig. 3 that for Class 1 buildings, the PGV has the highest synaptic 

weight (37.7%), followed by fstruct/fsoil (29.1%). For Class 2 buildings, fstruct/fsoil has a higher synaptic weight 

(38.1%) than the PGV (34.2%), however for Class 3 buildings fstruct/fsoil is the predominant indicator with a synaptic 

weight (68.7%), while all the other variables have significantly lower weights. From the synaptic weights 

distribution, it can be concluded that it is fstruct/fsoil and the PGV that mostly control the buildings mean damages, 

followed by the PGA and finally the A0HV, the most vulnerable buildings (Class 1 and Class 2) being however 

the most sensitive to the level of seismic excitation as a consequence of their related fragility curves. 

 

Fig. 3 Synaptic weight proportions for the inputs (PGA, PGV, A0HV and fstruct/fsoil) of ANN7 for building classes 1, 2 and 3 
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ANN3 3 PGA; fsoil; fstruct 0.8724 0.9038 0.8466 

ANN4 3 PGV; fsoil; fstruct 0.8817 0.9514 0.8662 

ANN5 4 PGA; A0HV; fsoil; fstruct 0.8855 0.9111 0.8551 

ANN6 4 PGV; A0HV; fsoil; fstruct 0.8866 0.9551 0.8785 

ANN7 4 PGA; PGV; A0HV; fstruct/fsoil  0.8957 0.9602 0.8845 

ANN8 5 PGA; PGV; A0HV; fsoil; fstruct 0.8981 0.9594 0.8804 
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3 Estimation of damage-induced debris 

The literature review identified a gap in models that could estimate the spatial distribution of debris around 

buildings while also accounting for the severity of the buildings’ damage. In order to estimate a damage-dependent 

height and extent of debris around buildings, we first estimate the volume of generated debris in the case of full 

collapse. Then, the debris volume corresponding to the building’s damage state is estimated using available 

correlations between the building’s damage and the generated debris quantity, and distributed around the building 

following a geometrical model. 

3.1 Estimation of the debris volume corresponding to the damage level of the building 

To compute the volume of debris in the case of full collapse, we assumed that when a building collapses, debris 

are generated from the building’s structural elements, specifically the exterior walls and the floor slabs (Fig. 4 (a)). 

The debris generated from interior walls and partitions, furniture and other objects in the buildings were not 

considered for simplification purposes. Also for the sake of simplification, buildings were assumed to have a 

regular rectangular shape. The debris volume in case of total collapse can therefore be computed as: 

𝑉𝑡 = 2 × 𝑊 × 𝐻 × 𝑒 + 2 × 𝐿 × 𝐻 × 𝑒 + 𝑛 × 𝑊 × 𝐿 × 𝑠       (10) 

Where Vt represents the total debris volume in case of full collapse (in m3), W is the building width (in m), H is 

the building’s height (in m) and L is the building’s length (in m). 𝑒 and 𝑠 represent respectively the thickness of 

the exterior walls and the thickness of the floors slabs (in m), while n represents the building’s number of floors. 

 

Fig. 4 Debris estimation methodology. (a) Parameters used for the calculation of debris generation from the building’s structural 
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elements. (b) Percentage of total debris (α) generated depending on the mean damage for each building typology. (c) Front and 

top views of truncated pyramid shaped debris 

In case of partial buildings damages, the generated volume of debris was considered to represent fraction of 𝑉𝑡 

computed as: 

𝑉𝑑 = 𝛼 × 𝑉𝑡   (11) 

Where Vd is the volume of debris corresponding to the mean damage of the building and α is the proportion of 

total debris volume that is generated at this particular damage level. 

In order to determine the fraction of the total debris volume generated according to the damage level, we have 

relied on the debris estimation method provided by HAZUS (FEMA, 2012), which has compiled tables containing 

the percentage values of debris weight based on observations of damage caused by previous earthquakes. HAZUS 

provides estimates of the percentage of debris weight from damaged structural elements depending on factors such 

as the building typology and the extent of damage. These estimates are provided for two different categories of 

debris, the first category consisting of brick, wood, and glass while the second category comprises debris generated 

by steel members and reinforced concrete elements. The values provided by HAZUS could be adopted for the 

relationship between debris volume and building damage state by assuming that all building materials have the 

same unit weight. Under this assumption, the percentage of debris volume generated for a given damage level can 

be considered the same as the percentage of debris weight. 

In order to utilize the tables provided by HAZUS, the first step is to establish the correspondence of the building 

typologies between our approach and HAZUS. Class 1 buildings can directly be considered equivalent to the 

Unreinforced Masonry Bearing Walls (URM) building type in HAZUS. However, the exact equivalents of classes 

2 and 3 could not be found in HAZUS. Firstly, because the building classification in HAZUS does not differentiate 

between non-designed (class 2) and designed (class 3) reinforced concrete. Secondly, HAZUS differentiates 

reinforced concrete buildings according to their type of structural system (e.g. moment resisting frame or sheer 

walls), which we do not do in this study. To overcome these limitations, we have considered that reinforced 

concrete classes 2 and 3 are equivalent in terms of debris they generate at the same level of building damage. Then, 

we have identified the most common HAZUS typologies for reinforced concrete buildings in Beirut as Moment 

Resisting Frame (typology C1 in HAZUS) and Concrete Frame with Unreinforced Masonry Infill Walls (C3 in 

HAZUS). Finally, we have decided to assign the debris percentages for classes 2 and 3 as the average of the values 

provided by HAZUS for C1 and C3 buildings.  

For the assignment of the debris percentage, we have considered the most probable damage state corresponding to 

the mean damage value. Then for each damage state, since we do not distinguish between different types of debris, 

namely debris made of brick or steel and reinforced concrete, we have assigned to each building typology the 

maximum debris percentage found in HAZUS for the corresponding damage state regardless of the debris type. 

These values are summarized in Table 4 and Table 5. However, the mean damage computed in the previous section 

is on a continuous scale from 0 to 4 while the values in Table 4 and Table 5 are given for discrete damage levels. 
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Therefore, to determine the values of α corresponding to any mean damage value, the data points found in Table 

4 and Table 5 were fitted onto a curve using non-linear regression analysis, and the best fit was achieved with a 

Gaussian curve, which yielded the highest goodness of fit parameters. The values taken for α for each building 

type for mean damage values ranging from 1 to 4 are displayed in Fig. 4 (b). 

Table 4 Percentage of debris weight from damaged structural elements for Class 1 buildings (URM- Unreinforced Masonry 

Bearing Walls) (adapted from: HAZUS, FEMA 2012) 

Mean 

damage 

Damage state probability Most 

probable 

damage state 

Percentage of 

debris weight 

from structural 

damage state 

Slight Moderate Extensive Complete   

µ𝐃𝐒=1 35% - 61% 11% - 26% 3% - 4% 1% Slight 0 

µ𝐃𝐒=2 24% - 38% 25% - 44% 18% - 25% 9% Moderate 25% 

µ𝐃𝐒=3 4% - 10% 17% - 27% 29% - 37% 36% Extensive 50% 

µ𝐃𝐒=4 0% 0% 0% 100% Complete 100% 

Table 5 Percentage of debris weight from damaged structural elements for Class 2 (C1- Reinforced Concrete Moment 

Resisting Frames) and Class 3 (C3- Concrete Frame Buildings with Unreinforced Masonry Infill Walls) buildings (adapted 

from: HAZUS, FEMA 2012) 

Mean 

damage 

Damage state probability Most 

probable 

damage state 

Percentage of debris 

weight from structural 

damage state 
Slight Moderate Extensive Complete 

µ𝐃𝐒=1 60% 12% 4% 0% Slight 0 

µ𝐃𝐒=2 38% 26% 25% 8% Moderate 12.5% 

µ𝐃𝐒=3 10% 17% 37% 36% Extensive 30% 

µ𝐃𝐒=4 0% 0% 0% 100% Complete 100% 

3.2 Estimation of the debris footprint around a building 

For estimating the debris footprint around a building, a geometrical model similar to Argyroudis et al. (2015) was 

developed except that adjacent buildings façades were not considered continuous but separated, thus debris could 

fall in all four directions around the building. This simplification is motivated by the difficulty of mapping the 

degree of adjacency of one building to another at the city scale in the absence of detailed building footprint maps. 

The estimation results in the formation of debris in the shape of a truncated pyramid whose volume is filled by the 

volume of the generated debris Vd (Fig. 4 (c)). The debris extent around the building can be computed by 
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calculating the dimensions of the pyramid’s base Lp and Wp. The height of the debris at the highest point next to 

the building façade can also be computed by finding H′, the truncated pyramid’s height. 

The truncated pyramid’s volume is given by: 

𝑉𝑝 =
𝐻′

3
 (𝐵 + 𝑏 +  √𝐵 × 𝑏 )  (12) 

𝑏 = 𝐿 × 𝑊    (13) 

𝐵 = 𝐿𝑝 × 𝑊𝑝 = (𝐿 + 2 × 𝑦 × 𝑐𝑜𝑠𝛽) × (𝑊 + 2 × 𝑦 × 𝑠𝑖𝑛𝛽) (14) 

𝐻′ = 𝑦 × 𝑐𝑜𝑠𝛽 × 𝑡𝑎𝑛𝜃 (15) 

𝛽 = 𝑡𝑎𝑛−1 (
𝑊

𝐿
) (16) 

where B is the area of the truncated pyramid’s base (in m2), b is the area of the truncated pyramid’s top (in m2) 

and H′ is the height of the truncated pyramid (in m). In the top view (Fig. 4 (c)), y represents the diagonal distance 

between the building’s corner and the debris’ corner (in m). β is the angle between the building’s length and its 

diagonal and θ is the angle between the debris and horizontal plane. 

Under the assumption that the debris falls uniformly in all directions, filling the volume of the truncated pyramid: 

𝑉𝑝 = 𝑉𝑑    (17) 

Solving equation (17) with one unknown, gives the value of 𝑦, from which the debris height can be directly 

calculated as:𝑦 × 𝑐𝑜𝑠𝛽 × 𝑡𝑎𝑛𝜃, and the debris extent can be calculated in both directions as: 𝑦 × 𝑐𝑜𝑠𝛽 and 𝑦 ×

𝑠𝑖𝑛𝛽. 

3.3 Validation of the approach 

Previous studies highlighted the dependence of the extent of the debris around the building on the building’s height. 

The debris extent was commonly found to be proportional to the building height (H), with values ranging from 

H/2 to H/8 (Nishino et al., 2012). Since these relationships were established for cases of full building collapse 

only, the relationship between the debris extent computed using the developed model and the building height was 

investigated for the case of complete collapse (mean damage = 4). 

A rectangular building with dimensions L = 20 m and W = 10 m was considered. The building’s number of floors 

varied from 1 floor to 40 floors, with a floor height set to 3.5 m. The angle at the diagonal of the building was 

calculated as: 𝛽 = 𝑡𝑎𝑛−1(
10

20
). The angle θ formed by the debris and the horizontal plane was assumed to be equal 

to 30°. The thicknesses of the walls and the floor slabs were considered to be respectively e= 0.2 m and s= 0.5 m 

The debris extent in the diagonal direction, y, was computed for each building height by solving equation (17). 

The resulting debris extent is shown in Fig. 5 as a function of the building’s height. It can be observed that as the 
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height of the building increases, the extent of debris away from the building increases as well. For building heights 

less than 20 m, the debris extent ranges between H/2 and H/4. As the building becomes taller (up to 115.5 m, 33 

floors), the debris extent tends gradually away from H/4 and closer to H/8. The debris extent becomes less than 

H/8 for buildings taller than 115 m. Therefore, in our model, as the building height increases, the ratio between 

the debris extent and the building height decreases. This observation has not been documented in the literature, as 

no other study offers a detailed comparison between debris extent and building height. We believe that this is 

mainly due to the geometrical considerations of the truncated pyramid shape, which highly depends on the ratio 

between the building’s length and width that sets an upper limit to the debris extent. 

However, the debris estimated using the developed approach are within the range found in the literature, even 

though the approach needs to be validated and refined for high-rise buildings by conducting further experiments 

and collecting post-seismic event observations. 

 

Fig. 5 Comparison of the debris extent estimated for a collapsed building following the developed methodology to the typical 

relationships with the building height (H) found in the literature 

4 Generation of a complete 3D model of buildings in Beirut 

In Beirut, a comprehensive building dataset does not exist due to the absence of an up-to-date building census. In 

the framework of ANR-LIBRIS project (2010 - 2014) (Agence nationale de la recherche, 2010), the Saint Joseph 

University (USJ) conducted extensive surveys on Beirut’s buildings by collecting geographical coordinates, 

construction year and number of floors of 7 362 buildings (Salameh, 2016). Additionally, ambient noise 

measurements were carried out on another set of 330 buildings to extract the fundamental resonance frequency of 

these buildings, in addition to their typology, construction year and number of floors. From the measured resonance 

frequencies, relationships between the number of floors, soil type and resonance frequency were derived (Salameh 

et al., 2016) as follows: 

 fstruct =23/number of floors, for buildings constructed on rock sites; 

 fstruct =18/number of floors, for buildings built on soft sites. 
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Moreover, Salameh et al. (2017) proposed a classification of the buildings’ typologies based on their number of 

floors and construction period. Buildings constructed before 1950 with less than 4 floors consisted mainly of 

masonry buildings (Class 1). Buildings constructed before 1950 with 4 or more floors and buildings constructed 

between 1950 and 2005 were classified as non-designed reinforced concrete (Class 2). Buildings built after 2005 

were considered as designed reinforced concrete with low ductility (Class 3). Indeed, this typology classification 

is rather simplified compared to other established taxonomies, such as the GEM building taxonomy (Silva et al., 

2022) or ESRM20 (Crowley et al., 2020); however, the lack of building census data in Lebanon significantly 

increase the challenges of having a more refined building characterization. The distribution of the characteristics 

of the surveyed buildings in Beirut is shown in Appendix (Fig. 24). However, due to security and political 

constraints at the time of the LIBRIS project, the building survey was restricted to the eastern and north-western 

sectors of the city as shown in Fig. 6. Since a complete building inventory is essential for estimating building 

damages throughout the city, we have relied on the existing building dataset, satellite images, and OpenStreetMap 

(OSM) to generate a 3D building model of Beirut and characterize its typology. 

Building footprints in Beirut were already available on OSM at the start of our work. However, we contributed to 

the completion of the building database on OSM by digitizing the missing buildings, resulting in the delimitation 

of a total of 15 089 buildings in Beirut. The OSM shapefile layer of buildings in Beirut extracted on 26/02/2021 

is displayed in Fig. 7. The estimation of the seismic damages from the OSM dataset requires first the derivation of 

the buildings’ typology and their resonance frequency. Although the LIBRIS dataset contains valuable attributes 

(construction period and number of floors) for 7 692 of these buildings, these attributes could not be directly 

transferred to the OSM layer due to georeferencing incompatibilities between the two building layers (see 

Appendix Fig. 26), caused by the use of a combination of several projection systems when digitizing the building 

footprints in LIBRIS. 

To overcome this limitation and to make use of the information provided in LIBRIS, a subset of 947 buildings 

from the LIBRIS dataset were manually identified in the OSM dataset by finding the footprints of identical 

buildings in the two layers. These buildings were selected by picking all buildings that have more than 10 floors 

in LIBRIS, and a representative set of buildings with lower number of floors. We aimed to sample the overall 

distribution of number of floors and construction period in the LIBRIS database while selecting buildings in the 

western and eastern parts of Beirut. The spatial distribution of the selected buildings (referred to as LIB-STAT 

dataset) is displayed in Fig. 6. The attributes related to the number of floors and the construction year were added 

to the corresponding OSM buildings. The distribution of the building attributes in the subset of 947 buildings is 

displayed in Appendix (Fig. 25). This subset is assumed to be representative of Beirut’s buildings and was used to 

derive statistical relationships between different building attributes in order to estimate the OSM buildings’ number 

of floors and construction periods. 
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Fig. 6 Buildings in Beirut surveyed during the LIBRIS project and corrected location of 947 of these buildings in blue (LIB-

STAT data set) 

 

Fig. 7 Buildings footprints in Beirut retrieved from OSM 

4.1 Estimation of the building heights from satellite images  

The first step for characterizing the building dataset is to retrieve the height of each building, which was done by 
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processing very high resolution satellite images. Tri-stereo Pleiades 1-B1 satellite images (resolution 0.7 m) 

acquired in July 2016 for Beirut and its surroundings (see Appendix Fig. 27) were processed using the Ames Stereo 

Pipeline software (Broxton and Edwards, 2008), an automated stereo processing software developed by the NASA 

Ames Research Center, capable of generating high-quality surface elevation models from satellite images. We 

followed the methodology developed in Lacroix (2016) that can be summarized as follows: 

(1) Each image was map-projected using a low resolution (10 m) Digital Terrain Model (DTM) covering the 

area of Beirut to remove the long wavelength stereo component.  

(2) Each pair of the tri-stereo image was then automatically correlated to produce a disparity map per pair of 

images. 

(3) Intersection between all the rays coming from the similar points were finally jointly found in the three 

images to find the high-frequency component of the topography, resulting in a 3D point cloud. The long 

and short wavelength topography were then added to form the surface elevation at each point in the 

satellite images. 

The point cloud was converted into a grid mesh regularly spaced every 2 m, which is approximately three times 

the resolution of the initial images. This grid mesh constitutes the Digital Surface Model (DSM) (Fig. 8 (a) and 

(b)), which represents the elevation model of the earth’s surface including the elevation of the above-the-ground 

features (trees, buildings, etc.). The Digital Features Model (DFM), describing the height of the above-the-ground 

features- including buildings-, was obtained by subtracting the elevations of the bare earth (DTM) from the DSM 

as illustrated in Fig. 8 (a) and described below. 

                                                           

 

 

 

 

1 https://www.intelligence-airbusds.com/imagery/constellation/pleiades/  

https://www.intelligence-airbusds.com/imagery/constellation/pleiades/
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Fig. 8 Digital elevation models derived from processing very high-resolution satellite images. (a) Elevation models processing 

for obtaining a Digital Features Model from a Digital Surface Model, (b) Digital Surface Model of Beirut, (c) Digital Terrain 

Model of Beirut, (d) Digital Features Model of Beirut 

To derive a high-resolution DTM, the generated DSM was treated in the geographic information system software 

QGIS (Quantum GIS), using the SAGA-GIS module DTM-filter. This module automatically detects the cells in 

the DSM corresponding to bare earth and those corresponding to elevated objects. After identifying the bare earth 

cells, a Digital Terrain Model (DTM) was reconstructed (Fig. 8 (c)) by performing a Multilevel B-spline 

interpolation in QGIS and filling the gaps between the bare earth cells. The elevations of the DTM were then 

subtracted from the DSM, which resulted in the generation of a DFM for Beirut (Fig. 8 (d)). Elevations less than 

2 m in the DFM were filtered out, since they are too low to correspond to building heights. Then, for each building, 

the mean DFM value of the cells occupied by the building’s footprint was assigned as the building height.  

To estimate the error in the prediction of the building’s heights from the DFM, we compared the building heights 

retrieved from the DFM for the LIB-STAT dataset to the heights provided in OSM (when available). When the 

building height was not indicated in OSM, it was estimated by multiplying the building’s number of floors by an 

approximate story height of 3.5 m. The approximate story height was chosen as 3.5 m because the average story 

height in Beirut was found to vary between 2.8 m to 4.5 m, depending on the building’s construction period 

(Krayem et al., 2021; Salameh, 2016). On average, the DFM was able to reproduce the building height with a 

mean error of 14 m (Fig. 9). However, the height of buildings of less than 50 m is slightly overestimated in the 
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DFM, while the elevation of high-rise buildings (100 m and higher) is mostly underestimated. To investigate the 

possible causes for this underestimation, we examined the distribution of the DFM values and the quality of the 

DSM at the location of 9 well-known skyscrapers in Beirut (Table 6 and Fig. 10). 

 

Fig. 9 Comparison of the DFM building heights to the building height retrieved from OSM or from LIBRIS assuming a floor 

height of 3.5 m 

As it appears in Table 6, the highest values taken by the DFM for the “Sama Beirut”, “20|30”, “Les domes de 

Sursock” and “Crédit Libanais” towers (35.1 m, 30.8 m, 60.4 m and 27.4 m high, respectively) are significantly 

lower than the actual building heights which exceed 130 m for the four buildings. Furthermore, the DSM appears 

to be poorly constrained for these buildings, as the DSM has many “no data” cells (no color) at the buildings’ 

locations (Fig. 10). Moreover, even when DSM data are available, the data are sparse and do not match the 

building’s footprint.  

Table 6 Distribution of the DFM values and the quality of the DSM over high-rise buildings in Beirut. The DSM quality is 

qualified as “poor” when the DSM has many “no data” cells (no color) at the building’s location and “OK” otherwise 

Building name 

End of 

construction 

date 

Height 

(from 

OSM) (m) 

DFM max. 

elevation 

(m) 

DFM mean 

elevation 

(m) 

DSM 

quality 

Sama Beirut 2016 195 m 35.1 11.6 Poor 

20|30 2016 155 m 30.8 22.4 Poor 

Les domes de Sursock 2013 140 m 60.4 25.2 Poor 

Crédit Libanais 2015 133 m 27.4 15.1 Poor 

Platinum Tower 2008 152 m 141.9 122.6 OK 

Marina Tower 2007 150 m 126.7 101.3 OK 

Bay Tower 2011 125 m 100.5 107.5 OK 

Four Seasons 2009 120 m 121.6 102.7 OK 
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Beirut Tower 2009 112 m 103.8 95.6 OK 

We verified that these buildings already existed at the time when the satellite images were taken (July 2016), as 

they have all been constructed in 2016 or before. Inversely, the DSM’s quality is considerably better for the five 

other towers, as the DSM has very few no data points at the location of these buildings, and the buildings’ footprints 

can be identified by the higher values taken by the DSM around and under the building footprint. This is also 

translated by the maximum and mean DFM heights for these buildings, which are close to the actual building 

heights. Consequently, although the processing of satellite images has shortcomings in the detection of high-rise 

buildings, the errors are not systematic, as some of the tall buildings in Beirut have been accurately identified. The 

errors could be due to the buildings’ architectural styles, especially the presence of large façade windows possibly 

influencing the detection of the surface elevation. However, as the errors are not systematic, the heights of 

buildings retrieved from the satellite images were retained for the subsequent analysis. 

 

Fig. 10 DSM elevations at the location of 9 high-rise buildings in Beirut. The building’s name is indicated on the top the 

corresponding figure and the corresponding building’s footprint is highlighted in red 

4.2 Estimation of the buildings’ number of floors  

The number of floors can be estimated by dividing the building’s height by the average story height. As the average 

story height in Beirut varies according to different sources (Krayem et al., 2021; Salameh, 2016), we relied on a 

linear regression between the heights of the LIB-STAT buildings retrieved from satellite images and the number 

of floors of these buildings to derive an empirical story height for buildings in Beirut. 
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After grouping the LIB-STAT buildings according to their number of floors, we analyzed the distribution of the 

heights taken by buildings with a similar number of floors (Fig. 11 (a)). For buildings with 2 to 5 floors, the median 

building height (red line) increases sharply for each additional floor, while the increase is slightly less steep for 

buildings with 6 or more floors. Buildings with more than 18 floors seem to have unusually low heights, as a 

consequence of errors in the DFM, and were therefore removed from the regression analysis. A linear regression 

with no intercept was performed between the number of floors and the heights of the LIB-STAT buildings (Fig. 

11 (b)), resulting in an average story height of 3.5 m estimated with a coefficient of determination R2 = 0.59 and a 

RMSE= 2.47. The RMSE value indicates that the number of floors can be estimated using the linear regression 

with a mean error of + or – 3 floors. The estimation errors, in terms of the predicted number of floors as a function 

of the actual number of floors (Fig. 11 (c)) and residuals between the predicted and the actual values Fig. 11 (d), 

indicate that the number of floors are overestimated for low to medium-rise buildings (10 floors and less), while 

they are underestimated for buildings higher than 10 floors, as the residuals are mostly negative for these buildings. 
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Fig. 11 (a) Boxplot distribution of the building heights according to the number of floors in the LIB-STAT dataset. Outliers 

are represented by black crosses. (b) Linear regression of the number of floors of the LIB-STAT dataset according to the 

building heights retrieved from the DFM. Estimation errors (R2 and RMSE) in the linear regression between the number of 

floors and the building heights are indicated in the figure. (c) the predicted number of floors as a function of the actual number 

of floors. (d) the residuals between the predicted and actual value of the number of floors as a function of the actual number of 

floors 
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4.3 Prediction of the buildings’ construction period 

 A classification tree is a machine-learning model that can be trained to identify rules for splitting a dataset into 

subsets based on predictor variables. The resulting model can be applied to classify new datasets. In this paper, we 

train classification trees on the LIB-STAT dataset to predict the building’s construction period based on the 

available building parameters. First we categorized the construction periods into the 3 classes used for the 

definition of the building typology: before 1950, between 1950 and 2005 and after 2005. Second, different 

variables combinations were tested for the choice of predictor variables, namely: 

 the building’s number of floors, as the height of the building may reflect the evolution of construction 

materials, building codes and architectural styles over time;  

– the building’s location (the longitude and latitude coordinates of the building’s centroid), which 

indicates the area in which the building is located and can relate to the evolution of the city’s 

urbanization over time (Yassin, 2012); 

– the building’s area and perimeter, as the geometrical properties and the size of the building may 

indicate the evolution of the construction practices over time. 

Table 7 The four different classification trees trained and their corresponding performance in terms of validation accuracy 

Tree number Predictors Validation accuracy 

Tree 1 Number of floors 0.7718 

Tree 2 Number of floors, Area, Perimeter 0.7583 

Tree 3 Number of floors, Longitude, Latitude 0.7958 

Tree 4 Number of floors, Longitude, Latitude, Area, 

Perimeter 

0.7838 

A classification tree was trained with each set of predictor variables (Table 7). The best accuracy was achieved in 

Tree 3 where the predictors were the number of floors and the longitude and latitude coordinates of the building. 

The number of floors was the most important predictor for the construction period, with a weight more than twice 

as important as the longitude of the building (Fig. 12 (a)). Overall, when comparing the predicted and the true 

construction period classes (Fig. 12 (b)), buildings built between 1950 and 2005 are over-estimated using the 

classification tree, while the two other construction periods are underestimated in the predicted sample. This could 

be explained by the unbalanced input dataset, where the buildings built between 1950 and 2005 are overly 

represented (Appendix Fig. 24 and Fig. 25) possibly creating a prediction bias and affecting the precision of the 

classification. 
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Fig. 12 Prediction of the construction period from the building’s number of floors and geographical coordinates using a 

classification tree. (a) Predictor importance estimates, (b) Distribution of the predicted and true construction periods classes 

4.4 Accuracy of the seismic damages estimated with the predicted building characteristics 

and generation of a complete 3D building model in Beirut  

As the main purpose behind the prediction of the building characteristics is to estimate the seismic damages, we 

assessed the accuracy of the damages inferred from predicted characteristics of the building stock and the damages 

estimated with the original LIB-STAT dataset’s characteristics. The damages were estimated using the ANNs 

trained in section 2.3 by using the building’s resonance frequency and the typology (class) derived from the 

predicted number of floors and construction period. The detailed comparison of the original and predicted building 

characteristics can be found in Appendix (Fig. 28). The soil resonance parameters (fsoil and A0HV) at the location 

of each building were extracted as later explained in section 5.1. For a seismic scenario of PGA= 0.3 g and PGV 

= 16 cm/s as defined in section5, the predicted building characteristics resulted in slightly more severe damage 

states compared to the original dataset’s (Fig. 13 (a)). The percentage of buildings with mean damage values 

between 1 and 2 decreased from to 71% to 66%, while the percentage of buildings with mean damage values 

between 2 and 3 increased (from 25% to 31%). The increase of the damage severity could be partially explained 

by the increase of the percentage of Class 1 buildings (masonry) in the predicted dataset (Appendix Fig. 28). The 

building-by-building mean damage comparison summarized in the confusion matrix (Fig. 13 (b)), shows that 

buildings with mean damages between 1 and 2 are predicted with the highest accuracy (73.3%) followed by 

buildings with mean damages between 2 and 3 (50.6%). Overall, the building mean damages were replicated with 

an accuracy of 66% at the building-level, which was considered an acceptable trade-off given the reduced size of 

the training dataset and the limited data available on the buildings in Beirut. 
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Fig. 13 Comparison of the overall distribution of the building mean damage for the original and predicted characteristics: (a) 

Distribution of the mean damage of the LIB-STAT dataset for the original and predicted building characteristics, (b) Confusion 

matrix showing the accuracy of the mean damage estimated at the building-level 

After validating the approach on the LIB-STAT dataset, the same steps were followed to retrieve the characteristics 

of the entire OSM building dataset. This resulted in the characterization of the number of floors, construction 

period and typology of the 15 089 buildings in Beirut as shown in Fig. 14 and Fig. 15. The generated 3D buildings 

model in Beirut can be downloaded in the electronic supplement. 
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Fig. 14 Generated 3D building model in Beirut with their assigned typology. Buildings in red are masonry buildings (Class 1), 

buildings in blue are non-designed reinforced concrete (Class 2) and buildings in green are DCL designed reinforced concrete 

(Class 3). 

 

Fig. 15 Distribution of the predicted (a) number of floors, (b) construction year and (c) typology in the generated 3D model 

of buildings in Beirut 
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5 Application: estimation of seismic damages and debris at the scale of 

Beirut 

Lebanon is a Middle Eastern country situated on the 1 200 km long Levant Fault System that stretches from the 

Gulf of Aqaba to Turkey. In Lebanon, the Levant Fault splits into 4 main ramifications: the three left-lateral strike 

slip faults: the Yammouneh, Roum and Serghaya-Rachaya faults, and the Mount-Lebanon Thrust (Daeron et al., 

2007; Elias et al., 2007; Huijer et al., 2016; Walley, 1988). Lebanon and its surroundings have been struck by 

several strong earthquakes that have caused massive destruction and a high number of fatalities (Khair et al., 2000). 

The most devastating earthquake in Lebanon was the 551 A.D. earthquake (moment magnitude, Mw ~7.5) 

attributed to a rupture on the Mount-Lebanon Thrust (Elias et al., 2007). The rupture of the Yammouneh fault in 

1202 also caused wide-scale destruction in the Mediterranean region (Daeron et al., 2007; Ellenblum et al., 1998). 

The double-shock of the 16 March 1956 (Mw = 6.1, Mw = 6.3), was attributed to a rupture on the Roum Fault 

(Nemer and Meghraoui, 2006) and is the most recent high-magnitude earthquake to affect Lebanon. It killed 136 

people, destroyed 6 000 houses and damaged 17 000 others (Harajli et al., 2002). Although Beirut did not witness 

any major earthquakes in the last couple of decades, the dense urbanization and the only recent and partial 

implementation of the seismic building code (decrees number 14 293 (2005) and 7 964 (2012)) make the city of 

Beirut highly vulnerable to earthquakes. 

In view of these considerations, scenarios of earthquakes occurring at the Mount Lebanon Thrust (Epicentral 

distance R = 0 km from Beirut) were considered. The scenarios were fixed based on their PGA value, and their 

corresponding Mw and PGV values were computed using the ground-motion prediction equation established by 

Akkar et al. (2014). We defined a first scenario of PGA = 0.3 g, the recommended PGA for the design of 

earthquake-resistant buildings in Beirut (Huijer et al., 2016). This scenario stands for an earthquake with a Mw of 

6.0 on the Mount-Lebanon fault with a PGV of 16 cm/s. Another scenario with a PGA of 0.5 g was also considered. 

Although pessimistic, this scenario is plausible for near-fault ground motion in Lebanon (Fayjaloun et al., 2021) 

and corresponds to a Mw of 7.0 and a PGV of 40 cm/s.  

5.1 Seismic mean damage estimation in Beirut 

The application of the ANNs for the estimation of building mean damages requires soil resonance parameters: fsoil 

and A0HV. Soil investigation campaigns carried out in Beirut and part of it suburbs in the framework of the ANR-

LIBRIS project investigated 827 sites using seismic noise recordings (Brax et al., 2018; Salameh et al., 2017; 

Salloum et al., 2014). The soil fundamental resonance frequency (fsoil) was obtained from these recordings using 

the HVSR (horizontal to vertical spectral ratio) approach (Nakamura, 1989). From these measurements, 

interpolated maps of both the fsoil and A0HV were derived for the surveyed area (Fig. 16 (a) and (b) respectively). 

The high resonance frequencies (above 10 Hz) and low A0HV (below 1) observed in the east and west of Beirut 

correspond to outcropping rock. Inversely, the presence of soil deposits can be observed in areas with low 

resonance frequencies (between 1 and 3 Hz), namely in the northern and the southern parts of Beirut. The soil 
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resonance parameters: A0HV and fsoil at the location of each building were obtained from the interpolated maps in 

Fig. 16, which also allowed computing fstruct/fsoil for each building. 

 

Fig. 16 fsoil and A0HV maps in Beirut derived from the cubic-spline interpolation of the ambient vibration measurements 

performed in Salloum et al. (2014), Salameh et al. (2017) and Brax et al. (2018) 

The distribution of the building damage states for the two earthquake scenarios is shown in Table 8 and Table 9. 

For the earthquake of PGA 0.3 g, most buildings in Beirut are likely to have mean damage between 1 and 2 (60.7% 

of the buildings) followed by mean damage values between 2 and 3 (33.7%) and mean damage less than 1 (5.5%). 

0.1% of the buildings are likely to have a mean damage between 3 and 4, while no buildings are likely to have a 

mean damage equal to 4. However, it should be noted that although no building reaches a mean damage equal to 

4, this does not exclude the possibility of building collapse (see Table 1). For an earthquake of PGA 0.5 g, all 

buildings in Beirut might have a mean damage greater or equal to 1, 68.1% are likely to have a mean damage 

between 2 and 3, while 31.4% are likely to have mean damage between 3 and 4. For this scenario too, no buildings 

are likely to experience a mean damage equal to 4, although some buildings may have collapsed (Table 1). 

Table 8 Distribution of the building mean damage for the earthquake scenario of PGA 0.3 g for each building class and for the 

total number of buildings 

Structure Mean Damage 

Type [0, 1[ [1, 2[ [2, 3[ [3, 4[ 4 

Class 1 0 20% 79.6% 0.4% 0 

Class 2 7% 78% 15% 0% 0 

Class 3 100% 0 0 0 0 

All buildings 5.5% 60.7% 33.7% 0.1% 0 

Table 9 Distribution of the building mean damage for the earthquake scenario of PGA 0.5 g for each building class and for the 
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total number of buildings 

Structure Mean Damage 

Type [0, 1[ [1, 2[ [2, 3[ [3, 4[ 4 

Class 1 0 0 89% 11% 0 

Class 2 0 0 60% 40% 0 

Class 3 0 100% 0 0 0 

All buildings 0 0.5% 68.1% 31.4% 0 

Nevertheless, the interpretation of these results should take into account the uncertainty in the predicted building 

characteristics, especially the error in the building’s number of floors that propagates to both the resonance 

frequency and the typology. To have a first order estimation of the propagation of uncertainty from the number of 

floors to the mean damages, the latter were also predicted for the mean number of floors (N) plus and minus the 

standard error of 3 floors (N +3 and N – 3). The related ANNs inputs (fstruct/fsoil and building typology) were re-

computed before estimating the mean damage. As the building’s typology depends on the number of floors, the 

subtraction of 3 floors (N – 3) resulted in an increase in the proportion of Class 1 masonry buildings (Fig. 17 (a)). 

Contrariwise, the addition of 3 floors (N + 3) led to a slight increase in Class 3 buildings and the disappearance of 

Class 1, as all buildings would have at least 4 floors. As the buildings’ resonance frequency is inversely 

proportional to the number of floors, the change in the number of floors also translated to an increase of fstruct/fsoil 

for N – 3 and a decrease for N + 3 (Fig. 17 (b)).  

For scenario 1 (PGA = 0.3 g), the N – 3 configuration led to more pessimistic building damages overall (Fig. 17 

(c)). This can be seen by the decrease of the percentage of buildings with mean damage less than 1 and between 1 

and 2 from 5% to 2% and from 61% to 47%, respectively, and the increase of the proportion of buildings with 

mean damage between 2 to 3 from 34% to 50% (Fig. 17 (c)). The opposite trend was observed for the N + 3 

configuration (Fig. 17 (c)), as 15% of the buildings had mean damage values less than 1 for this scenario, while 

the damaged buildings had predominantly mean damage values between 1 and 2 (73%). For scenario 2 (PGA = 

0.5 g, Fig. 17 (d)), the percentage of buildings with mean damage between 1 and 2 increased with the increase of 

the number floors (0 for N – 3, 1% for N and 2% for N + 3). When considering N - 3, the percentage of buildings 

with mean damage between 2 and 3 increased from 68% to 78%, while the percentage of buildings with mean 

damage between 3 and 4 decreased from 31% to 22%. Inversely, the addition of 3 floors, resulted in the decrease 

of the percentage of buildings with mean damage between 2 and 3 (from 68% to 61%) and the increase of the 

percentage of buildings with mean damage between 3 and 4 (from 31% to 37%). Overall, in scenario 2, as opposed 

to scenario 1, the decrease of the number of floors resulted in less pessimistic damages, while the increase of 

number of floors led to more severe damages. 
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Fig. 17 Variation in the building characteristics and estimated mean damage between the 3 buildings configurations obtained 

by considering: the mean predicted number of floors (N, dark grey), the mean predicted number of floors -3 (N – 3, grey) and 

the mean predicted number floors + 3 (N + 3, light grey). (a) Distribution of the building typologies, (b) Distribution of the 

structure to soil frequency ratio (c) Distribution of the building mean damage for the seismic scenario 1 with PGA = 0.3 g (d) 

Distribution of the building damage states for the seismic scenario 2 with PGA = 0.5 g 

In order to understand the variation of the building damages with the change of number of floors, we analyzed the 

spatial distribution of the buildings’ typology and fstruct/fsoil for the 3 building configurations (N – 3, N and N + 3) 

together with the resulting damages for the two seismic scenarios (Fig. 18). Although, the mean damages were 

computed building by building, for presentation purposes, they were averaged on a radius of 100 m.  

For scenario 1, the buildings with the mean number of floors (N) expected to have mean damage between 1 and 2 

(Fig. 18 (h)) are concentrated in the east and the west rocky formation of Beirut (Fig. 16). Heavier damages (mean 

damage between 2 and 3) are concentrated in the north and the south of the city, which are areas prone to site 

effects (Fig. 16). The spatial distribution of the damages appears to be strongly correlated to the fstruct/fsoil map in 

Fig. 18 (e), since higher levels of damages are observed for buildings having fstruct/fsoil between 0.5 and 1.5 and the 

lowest building damages are observed when this ratio is less than 0.5 or larger than 1.5. When considering the 

uncertainty on the number of floors, the building configuration N - 3 suffers overall heavier damages throughout 

the city (Fig. 18 (g)) compared to building configurations N or N + 3 (Fig. 18 (h) and (i)). Although larger damages 

(mean damage = 3) are located in narrow regions where fstruct/fsoil is close to 1, most of the damages (mean damage 
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= 2) are caused by more vulnerable buildings (most of the buildings are Class 1, Fig. 18 (a)) located on sites 

exhibiting site effects, and thus subject to larger surface ground motion for which the Class 1 buildings are 

especially sensitive to (Fig. 2). The control of the coincidence of frequencies between soils and buildings on the 

spatial distribution of the building damages is remarkable when considering the building configuration N + 3 (Fig. 

18 (f) and (i)), since most buildings at sediment sites exhibit a fstruct/fsoil close to 1 (Fig. 18 (f)).  

In scenario 2, most buildings suffer heavy damages (mean damage > 3) regardless of the building’s number of 

floors (Fig. 18 (j) (k) and (l)). Nevertheless, the building damages are less severe at rock sites (mostly mean damage 

= 3 whatever the building’s number of floors) in the east and the west of Beirut compared to the north and south 

sediment sites. Interestingly, less severe damages are observed at sediment sites for the building configuration N 

- 3 compared to N and N + 3. This can be explained by the reduction of the soil’s amplification at the building 

resonance frequency due to the nonlinearity of the soil response. Since most of the N - 3 building resonance 

frequencies correspond to fstruct/fsoil larger than 1.5 at sediment sites, this ratio is even increased when considering 

the decrease of soil’s resonance frequency due to non-linearity in conjunction also with a decrease of seismic 

motion beyond fsoil, leading to less severe damage levels. For the N + 3 configuration, most of the fstruct/fsoil range 

from 0.5 to 1.5 at sediment sites (Fig. 18 (f)). When fsoil decreases due to the soil’s non-linear behavior, buildings 

with fstruct/fsoil between 0.5 and 1 will be more prone to more structural displacement because of the coincidence of 

resonance frequencies. 

Despite the differences observed in the distribution of the damage severity when considering the uncertainty in the 

building properties, the spatial distribution of the damages exhibits heavier building damages at sediment sites in 

the north and the south of Beirut, while the buildings located on the rock sites in the east and the west of Beirut 

are expected to witness the lowest levels of damages. These observations confirm that the site effects and the 

coincidence of frequencies between soils and buildings control on the first order the spatial distribution of damages, 

while the building’s configuration (i.e. relative distribution between the buildings’ vulnerability classes) controls 

the severity of the expected damages. 
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Fig. 18 Beirut mean damage maps for various buildings configurations with the average predicted number of floors -3 (N-3, a 

and d), predicted number of floors (N, b and e) and predicted number of floors +3 (N+3, c and f) for scenario 1 (g, h and i) and 

scenario 2 (j, k and l). The mean damages (g to l) were computed building by building, but for presentation purposes they were 

averaged on a radius of 100 m 

5.2 Debris estimation 

The extent and height of debris in Beirut were estimated for the two earthquakes scenarios for the building 

configuration with the average predicted number of floors (N). The debris extents vary according to the building’s 

height and mean damage (Fig. 19). For a given building height or mean damage, the debris extent increases with 

increasing building damages or building height. For the scenario with a PGA of 0.3 g, debris are expected to reach 
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up to 1.8 m away from buildings in Beirut (Fig. 19 (a)). The limited debris extent in this scenario can be attributed 

to the fact that masonry buildings, which are more prone to significant damage and generate more debris, are 

limited to a maximum height of four stories. Whereas taller buildings are more likely to be of reinforced concrete, 

resulting in a smaller amount of debris being generated. In contrast, for the scenario with PGA of 0.5 g (Fig. 19 

(b)), as the buildings experience greater damages, the extent of debris around buildings are significantly larger 

than in the first scenario, reaching up to 6.5 m for heavily damaged tall buildings.  

 

Fig. 19 Distribution of the debris extent and height according to the building height and the mean damage. Debris extent for 

(a) Seismic scenario of PGA = 0.3 g, (b) Seismic scenario of PGA = 0.5 g and (c) in case complete damage for a seismic 

scenario of PGA = 0.5 g with the associated probability of occurrence. Debris height for (d) Seismic scenario of PGA = 0.3 g, 

(e) Seismic scenario of PGA = 0.5 g and (f) in case complete damage for a seismic scenario of PGA = 0.5 g with the 

associated probability of occurrence 

As the debris height is also important for urban mobility in the aftermath of an earthquake, we have examined the 

distribution of debris heights for the two seismic scenarios. The debris height follows exactly the same distribution 

as the debris extents in the two scenarios: with increasing building heights and damage levels, the debris heights 

increase as well. While the maximum debris height in the scenario with PGA= 0.3 g (Fig. 19 (d)) is of 1 m, in 

scenario with PGA= 0.5 g (Fig. 19 (e)) the debris are considerably higher, reaching up to 3.8 m in the case of 

heavily damaged tall buildings. Debris are expected to reach heights greater than 1 m, particularly in the Mazraa 

and Moussaitbeh sectors ( Fig. 20). The heights of debris in these areas should be taken into account by emergency 

management planners due to the increased mobility challenges to pedestrian and vehicles caused by the presence 
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of debris. 

 

 Fig. 20 Spatial distribution of the debris heights in Beirut for a seismic scenario of PGA = 0.5 g 

However, it should be noted that the debris estimated herein corresponds to the most probable damage state based 

on the mean damage value (see Table 4 and Table 5). This does not exclude the possibility of experiencing wider 

and higher debris, especially in the case of complete building damage. To illustrate the maximum debris that can 

be expected for the more pessimistic scenario of PGA 0.5 g, we have computed the debris extent and height for 

each building in case of complete damage, along with the corresponding probability of complete damage (Fig. 19 

(c) and (f)). For this earthquake scenario, the debris can reach up to 18 m away from buildings and up to 10 m high 

with a probability of occurrence around 20%. However, for certain buildings, the likelihood of debris reaching up 

to 10 m away from buildings and a height of 6 m rises significantly to 70%. 

6 Conclusion 

This paper proposes methodological improvements to estimate seismic damages and debris in urban areas from 

building-level simulations, along with the generation of a complete 3D building model for the city of Beirut 

(Lebanon) and the characterization of its vulnerability based on open-source geographic data, very high-resolution 

satellite images and machine learning tools. Artificial Neural Networks (ANNs) were trained to predict buildings 

mean damages computed from extensive simulations of site and building responses to synthetic input motions. 

Several proxies for building, soil and input seismic motion properties were tested to find the optimal predictors of 

the mean damage. Although PGV was found to be a better proxy for the input ground motion than the PGA, better 

damage prediction performances were achieved by considering both the PGA and the PGV simultaneously. 

Regarding the proxies related to soil and building properties, the frequency ratio fstruct/fsoil explained better the 
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damage for reinforced concrete buildings (Classes 2 and 3), while considering fstruct and fsoil separately improved 

the prediction of mean damages in masonry buildings (Class 1). A0HV performed better than fsoil in the damage 

prediction when considered with fstruct/fsoil. Nevertheless, the best performances were obtained when considering 

PGA, PGV, A0HV and fstruct/fsoil as input variables in the ANNs. The corresponding ANNs for each building class 

were derived for the estimation of the building mean damages in urban areas. The proposed methodology for the 

estimation of damaged-induced debris provides the height and extent of debris around buildings, while considering 

the level of building damage. The volume of generated debris in the case of full collapse is estimated first. Then, 

using correlations between the building’s damage and the generated debris quantity, the debris volume 

corresponding to the building’s damage level is estimated and distributed around the building. This methodology 

was validated by comparing its results to usual values found in the literature for full collapse buildings. Although 

the calibration of the model should be improved for high-rise buildings, it showed good results for low-to-moderate 

rise buildings. A complete 3D building model was developed for the city of Beirut in Lebanon. Building footprints 

were collected from the volunteered geographic information database, OSM, and the height of these buildings was 

retrieved from the analysis of very high-resolution Pleaides 1-B satellite images. A subset of around 1000 buildings 

with known attributes, taken from an existing building dataset, was used to derive statistical relationships between 

different building attributes (building height, number of floors, resonance frequency, typology) in order to 

extrapolate the building properties at the city scale. 

The proposed methodologies were applied to estimate the seismic damages and debris in Beirut for two earthquake 

scenarios corresponding to PGA of 0.3 g and 0.5 g. The damages predicted at the building scale indicate that the 

damages are concentrated in sediment areas, larger damages occurring when the ratio between soil and building 

resonance frequency is close to 1 (double resonance phenomenon), while the damage levels depend on the seismic 

scenario considered. Although for the scenario with PGA = 0.3 g the debris extent and height are relatively low 

(maximum debris extent 1.8 m and maximum height 1 m), for the scenario with PGA = 0.5 g the debris reach 

further around buildings (up to 6.5 m) and have heights of over 1 m that could severely constrain post-seismic 

mobility. Nevertheless, as in any estimation, there is an uncertainty in the estimated damages and debris. One of 

the uncertainty factors comes from the difficulty in accurately quantifying the buildings’ heights from satellite 

images, which in turn influences the number of floors and other building attributes such as the building’s resonance 

frequency and its typology. The effect of the uncertainty in the estimated number of floors on the predicted 

damages was explored by comparing the damages estimated for the average predicted number of floors and the 

damages computed for the average number of floors plus and minus the standard error of 3 floors. The changes in 

the number of floors translate into a possible change of building vulnerability class and an increase or decrease of 

fstuct/fsoil. While the overall distribution of damage states varies depending on the building configuration, the spatial 

distribution of the damages throughout the city is consistent with the damage distribution for the average predicted 

number of floors. This highlights the control of the site effects on the buildings damages, as despite the variability 

of the building properties, the damages were still concentrated in the same areas in the city. Therefore, although 

the generated 3D building model does not substitute a complete and detailed buildings exposure model, it can 

provide a starting point for the analysis of the distribution of seismic damages and debris within urban areas. The 
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approach developed in this study, which relies on simple measure parameters, may be particularly useful in other 

cities with a similar context to Beirut, where comprehensive building data stock is lacking.  

In future works we plan to complement this study with a more comprehensive analysis of the propagation of 

uncertainty from the estimated building parameters to the building damages. Furthermore, the shortcomings found 

in the estimation of the elevation of high-rise buildings using satellite images will be further investigated to identify 

their possible reasons and improve the characterization of the building heights. Additionally, one of the limitations 

of our study is related to the use of HAZUS to estimate the debris quantity, while HAZUS is primarily calibrated 

for the United States where buildings differ in quality and type compared to those in Lebanon. The debris 

estimation model could be improved by calibrating it in an experimental setup, such as performing experiments 

on a shaking table and observing the extent and height of the generated debris. Finally, the experiments can be 

validated by observations from real events through the analysis of satellite images and street-view photography in 

pre/post-earthquake conditions, eventually combined with in-situ evaluation of building typologies. This would 

allow establishing empirical relationships between the ground motion, the building typology and the generated 

debris. 
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Fig. 21 Damage state probabilities depending on the mean damage value for buildings class 1
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Fig. 22  Damage state probabilities depending on the mean damage value for buildings class 2

 

Fig. 23 Damage state probabilities depending on the mean damage value for buildings class 3 
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Fig. 24 Distribution of the characteristics of the buildings in Beirut surveyed in the framework of the LIBRIS project. (a) 

Number of floors, (b) construction year and (c) typology.  

 

Fig. 25 Distribution of the characteristics of the subset of buildings in Beirut retained for the statistical analysis (LIB-STAT). 

(a) Number of floors, (b) construction year and (c) typology 
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Fig. 26 Geolocalisation incompatibilities between the LIBRIS buildings (purple) and the OSM buildings (orange) 
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Fig. 27 Preview of one of the Pleiades 1-B panchromatic satellite images taken over Beirut 
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Fig. 28 Detailed comparison of the distribution of the characteristics of the original and predicted characteristics of the LIB-

STAT dataset. (a) Original number of floors distribution, (b) Predicted number of floors distribution, (c) Original construction 
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period distribution, (d) Predicted number of floors distribution, (e) Original typology distribution, (f) Predicted typology 

distribution 


