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Introduction

Earthquakes are one of the most devastating natural hazards that cause important loss of life and livelihood especially in dense urban areas located near seismic faults (e.g. Bam, 2003;Haiti, 2010;Christchurch, 2015) ( [START_REF] Elnashai | Fundamentals of earthquake engineering[END_REF]. Seismic risk is usually evaluated in terms of physical damages and related economic and social losses from probable earthquake shaking. Approaches for assessing seismic damage can be divided into two main categories [START_REF] Calvi | Development of seismic vulnerability assessment methodologies over the past 30 years[END_REF]: [START_REF] Ellenblum | Crusader castle torn apart by earthquake at dawn, 20 May 1202[END_REF] empirical methods, such as the damage probability matrix [START_REF] Braga | A statistical study on damaged buildings and an ensuing review of the MSK-76 scale[END_REF][START_REF] Whitman | Damage probability matrices for prototype buildings[END_REF], which correlate the building damage to the macroseismic intensity; (2) mechanical methods, such as the Capacity Spectrum Method (CSM) [START_REF] Chopra | Capacity-Demand-Diagram Methods Based on Inelastic Design Spectrum[END_REF][START_REF] Freeman | Review of the development of the capacity spectrum method[END_REF], which relate the building damage to the building's capacity curve and to the response spectrum, representing the building characteristics and the spectral acceleration as a function of the spectral displacement imposed by the earthquake, respectively. Empirical methods are commonly used for the estimation of seismic damages at the urban and regional scales (e.g. [START_REF] Lantada | Seismic hazard and risk scenarios for Barcelona, Spain, using the Risk-UE vulnerability index method[END_REF][START_REF] Riedel | Modeling of damage-related earthquake losses in a moderate seismic-prone country and cost-benefit evaluation of retrofit investments: application to France[END_REF][START_REF] Sarris | Earthquake vulnerability and seismic risk assessment of urban areas in high seismic regions: application to Chania City, Crete Island, Greece[END_REF][START_REF] Silva | Seismic risk assessment for mainland Portugal[END_REF], as these methods only require a small amount of qualitative data that can be easily acquired at large scale. However, the spatial resolution of such empirical methods is usually restricted to the administrative-level rather than the building-level, due to the use of aggregated census data for building information and of shake-maps for inferring macroseismic intensity (e.g. [START_REF] Wald | ShakeMap operations, policies, and procedures[END_REF]. Conversely, although analytical methods require more comprehensive data, they provide clear advantages compared to the empirical methods, due to their physics-based approach allowing the estimation of damages at the building-level [START_REF] Calvi | Development of seismic vulnerability assessment methodologies over the past 30 years[END_REF]. Particularly, the applicability of the CSM to different characteristics of hazard and building properties made it very popular and it has been adopted in widely-used seismic risk assessment methodologies, such as HAZUS (FEMA, 2012) and Risk-UE [START_REF] Mouroux | Risk-Ue Project: An Advanced Approach to Earthquake Risk Scenarios With Application to Different European Towns[END_REF]. In order to account for site effects in building damage aggravation, the CSM uses generic response spectra according to soil classifications based on time-averaged shear wave velocities (usually to a depth of 30 m). The use of such response spectra generally fails to represent the actual site Moreover, for earthquakes, debris are generated from structural and non-structural components of damaged buildings [START_REF] Lu | Pedestrian evacuation simulation under the scenario with earthquake-induced falling debris[END_REF]. Falling debris can lead to injuries that need hospitalization (Peek-Asa, 2003) and piles of debris on the road network can block vehicle traffic and even pedestrian evacuation paths slowing down the response of emergency services [START_REF] Gehl | Decision support for emergency road traffic management in post-earthquake conditions[END_REF][START_REF] Mesta | Probabilistic assessment of earthquake-induced debris generation using pbee methodology[END_REF]. While the estimation of debris volume, extent around buildings and height is of critical importance for improving emergency management plans, only a few studies have focused on the estimation of earthquake-generated debris. HAZUS proposes a methodology to estimate the quantity of generated debris considering the building's typology and damage level; however, this methodology does not investigate the spatial distribution of debris outside the building's right-of-way. The spatial distribution of debris is still an open research question [START_REF] Castro | Modeling the Impact of Earthquake-Induced Debris on Tsunami Evacuation Times of Coastal Cities[END_REF]. The most common practice is to estimate the extent of debris around a building as a function of the building height (H). The extent of the debris around buildings when there is a full collapse is usually assumed to follow a triangular distribution with minimum, maximum and mode equal to H/8, H/2 and H/4 respectively [START_REF] Nishino | An evaluation method for the urban post-earthquake fire risk considering multiple scenarios of fire spread and evacuation[END_REF]. In other works, debris is assumed to form an angle of 20° between the front wall and a line that connects the top of the front wall to the farthest point of the debris [START_REF] Ravari | Study the vulnerability and blocking of streets after earthquake (case study: Kerman Shariati and Shahid Beheshti Streets and Jomhuri Boulevard)[END_REF]. [START_REF] Argyroudis | Systemic Seismic Risk Assessment of Road Networks Considering Interactions with the Built Environment: Systemic seismic risk assessment of road networks[END_REF] proposed a simplified geometrical model to estimate the debris resulting from collapsed buildings, assuming that the debris form a volume with the shape of a triangular prism having its maximum height next to the building. Furthermore, experimental approaches have also been developed to analyze the debris formation due to an earthquake. [START_REF] Domaneschi | A simplified method to assess generation of seismic debris for masonry structures[END_REF] used numerical simulations to study different collapse scenarios of masonry buildings. The numerical simulations were validated by experimental tests on a shaking table, allowing deriving a simplified formula relating the geometric properties of the building with the area occupied by debris. However, the main limitation of this study is that it can only be applied for masonry buildings in the case of full building collapse. [START_REF] Santarelli | Earthquake building debris estimation in historic city centres_ From real world data to experimental-based criteria[END_REF] relied on machine learning tools to identify correlations between the extent of ruins on the streets outside masonry buildings observed in post-earthquake satellite images, and the buildings' vulnerability, seismic magnitude and ratio between the building's height and street width. By relating the debris extent to the building's vulnerability and the seismic magnitude, this approach is one of the few approaches that takes into account the building's damage level for estimating the debris extents. However, the results are expressed in terms of the fraction of the street that is covered by debris, instead of an absolute debris extent, which is difficult to generalize and to apply to studies in which knowing the width of streets is not a viable option.

Given the aforementioned limitations, the objectives of the paper are first to improve the seismic damage prediction of [START_REF] Salameh | Using ambient vibration measurements for risk assessment at an urban scale: from numerical proof of concept to Beirut case study (Lebanon)[END_REF] by quantifying the building damage in terms of the mean damage instead of the damage index. The performance of the ANNs to predict the mean damage will also be further explored using various combinations of damage predictors. This part will be covered in section 2 of this paper (Fig. 1). Second, a methodology to estimate damage-dependent height and extent of debris around each building is developed and presented in section 3. Finally, from a new 3D building stock model in Beirut derived using volunteered geographic information, satellite images and machine learning tools (section 4), building mean damage and debris maps are estimated at the scale of the city for different seismic scenarios (section 5). 

Method for estimating seismic damages building by building

A similar approach as in Salameh et al. ( 2017) was adopted for the estimation of urban seismic damages. The assessment is considered to be at the building level (building by building) because we take into account the spectral contents of both the building and the soil for the estimation of the building damage. We use the same dataset of [START_REF] Salameh | Using ambient vibration measurements for risk assessment at an urban scale: from numerical proof of concept to Beirut case study (Lebanon)[END_REF] composed of 887 1-D multi-layered soil profiles from worldwide available profiles, 60 synthetic base rock accelerations ranging from 0.02 to 8.6 m/s 2 mimicking accelerations produced by earthquakes with magnitude ranging from 3 to 7 and epicentral distances from 5 to 100 km. Finally, 87 single-degree-offreedom (SDOF) oscillators exhibiting an elastoplastic behavior and possessing realistic properties were taken into account based on the findings of the Risk-UE European project. In this project, [START_REF] Lagomarsino | Macroseismic and mechanical models for the vulnerability and damage assessment of current buildings[END_REF] gathered the principal characteristics of various building types in the Euro-Mediterranean region, including fundamental periods, elastic yield displacement (dy), and ductility ratios (du/dy), where du represents the ultimate displacement. Although these structures were classified by [START_REF] Lagomarsino | Macroseismic and mechanical models for the vulnerability and damage assessment of current buildings[END_REF] into five primary building classes encompassing different typologies, in this study we only considered the building classes that can be found in Beirut [START_REF] Salameh | Using ambient vibration measurements for risk assessment at an urban scale: from numerical proof of concept to Beirut case study (Lebanon)[END_REF], namely: masonry (Class 1), non-designed reinforced concrete (Class 2), designed reinforced concrete with low ductility (DCL) (Class 3). A comprehensive description of the dataset's characteristics can be found in Salameh (2016).

Simulation of non-linear site response

Several observations after large earthquakes have found that under strong ground shaking, the soil's behavior becomes nonlinear as it manifests by the shift of the soil's resonance frequency to lower frequencies and the reduction of the soil's amplification (e.g. [START_REF] Beresnev | Nonlinear soil response-A reality[END_REF]. The soil's nonlinear behavior is a result of the reduction of the soil's shear modulus and the increase in damping that occur when the soil undergoes high deformation levels [START_REF] Finn | Geotechnical engineering aspects of microzonation[END_REF]. The soil's nonlinear behavior has also been demonstrated by laboratory tests on different types of soils, which resulted in laws that can be applied for the simulation of the soil's nonlinear behavior (Hardin andDrnevich, 1972a, 1972b). These laws, called degradation curves, relate the loss in shear modulus and the increase in damping to the level of shear strain in the soil. The dynamic soil response can be simulated by fully nonlinear models, such as NOAH [START_REF] Bonilla | NOAH: users manual[END_REF], in which the dynamic equation of motion is integrated in the time-domain at small incremental steps. The computation of the nonlinear soil response can be simplified by an Equivalent Linear (EL) site response analysis, in which the nonlinear soil behavior is simulated by a linear elastic model, with dynamic values of the shear modulus and damping updated iteratively to correspond to the level of strain achieved by the soil according to given degradation curves. Although the EL site response analysis is an approximation of the actual nonlinear response of the soil, this approach has proved to be computationally efficient, capable of providing reasonable results for many practical problems and is widely used by the earthquakeengineering community (e.g. [START_REF] Assimaki | A Wavelet-based Seismogram Inversion Algorithm for the In Situ Characterization of Nonlinear Soil Behavior[END_REF][START_REF] Kaklamanos | Comparison of 1D linear, equivalent-linear, and nonlinear site response models at six KiK-net validation sites[END_REF][START_REF] Kim | Relative differences between nonlinear and equivalent-linear 1-D site response analyses[END_REF].

As the EL approach is less computationally demanding than the full nonlinear method, we have simulated the EL site response of the sites to the input accelerograms. The simulations were performed in SHAKE [START_REF] Schnabel | A computer program for earthquake analysis of horizontally layered sites[END_REF] that computes the response to vertically propagating plane shear waves of a layered soil profile overlying a uniform half-space. In SHAKE, the soil profile is defined in terms of each sublayer's shear wave velocity, damping ratio, shear modulus and damping degradation curves, total unit weight and thickness. The degradation curves of [START_REF] Darendeli | Development of a New Family of Normalized Modulus Reduction and Material Damping Curves[END_REF] were used as they are generic curves composed of simple equations, which makes them easy to adapt to any soil type. Nevertheless, the application of Darendeli's relationships requires values of plasticity index and overconsolidation ratios, parameters that are not provided in the soil profiles dataset. Due to the absence of this site-specific information, all the soils were assumed to be dry sand, which yields to values of both plasticity index and overconsolidation ratio equal to 0. The assumption of dry sand is at first order well suited to the study case of Beirut according to the known surface geology [START_REF] Dubertret | Géologie du Site de Beyrouth avec carte geologique 1/20,000[END_REF]. However, it should be noted that this assumption leads to an exaggeration of the soil's nonlinearity.

The non-linear surface ground motion synthetics were analyzed by calculating the site's transfer function (TF) as the ratio of the Fourier amplitude spectrum of the surface ground motion to that of a reference outcrop rock [START_REF] Borcherdt | Effects of local geology on ground motion near San Francisco Bay[END_REF]. The TF provides frequency-dependent amplification of the bedrock input motion by the soil deposit [START_REF] Kramer | Geotechnical earthquake engineering[END_REF]. The typical shape of the TF displays many amplification peaks; the peak at the lowest frequency occurs at the site's fundamental resonance frequency. When soils behave nonlinearly under strong ground seismic excitation, the fundamental resonance frequency is decreased together with amplification and deamplification of the surface ground motion at frequencies below and beyond the fundamental resonance frequency, respectively [START_REF] Bonilla | Hysteretic and Dilatant Behavior of Cohesionless Soils and Their Effects on Nonlinear Site Response: Field Data Observations and Modeling[END_REF][START_REF] Frankel | Nonlinear and Linear Site Response and Basin Effects in Seattle for the M 6.8 Nisqually, Washington, Earthquake[END_REF]Régnier et al., 2013). Fig. 2 shows the TFs of one of the sites in the dataset, precisely the site AKTH05 from the KiK-Net database (National Research Institute for Earth Science and Disaster Resilience, 2019), computed for the EL soil response for various bedrock accelerations. The TF corresponding to a linear soil response is also shown for reference. The site response in the EL case depends on the PGA reached at the top of the soil column (surface PGA). While the TFs are relatively close to the linear TF for low-to moderate surface PGA (< 2 m/s 2 ), the fundamental resonance frequency decreases for larger surface PGA, up to about 20% for the largest surface PGA (from 9 Hz in the linear case to 7 Hz in the non-linear case).

The seismic amplification is reduced at the fundamental resonance frequency (by about 10% for the largest surface PGA) and at high frequencies, reaching up to a 40% reduction of the amplification at 20 Hz, while slighter amplification is observed at frequencies below the fundamental resonance frequency. 

Computation of the building mean damage

The structural displacement was simulated by computing the relative displacement of the damped elastoplastic SDOF oscillators (without including soil-structure interactions for simplification) by solving the dynamic equation of motion using the step-by-step Newmark method:

m × d ̈+ c × d ̇+ k × d = -m × a S,i (1) 
where d is the displacement in m of the elastoplastic oscillator, d ̇ its velocity, and d ̈ its acceleration. m is the mass in kg, c the viscous damping taken equal to 5%, k the rigidity and a S,i is the surface acceleration in m/s 2 at the base of the oscillator (top of soil column) obtained from the EL calculations.

The building mean damage was then estimated following the mechanical model proposed by [START_REF] Lagomarsino | Macroseismic and mechanical models for the vulnerability and damage assessment of current buildings[END_REF]. In this approach, four structural displacement thresholds, S d,k (k=1…4), were specified according to the yielding (d y ) and ultimate (d u ) displacements of the building, which allowed to define four damage states D Sk (k=1...4) as follows: In a second step, the probability that a damage reaches or exceeds a certain damage state D Sk , is expressed as a function of the maximum displacement d max reached by the oscillator and the displacement thresholds S d,k , using a lognormal cumulative probability function as follows:

P[D Sk |d max ] = Φ [ 1 β ln ( d max S d,k )] (k = 1, 2, 3, 4) (2) 
β = 0.4 lnμ (3) μ = d u d y ( 4 
)
where Φ is the normal cumulative function, β is the normalized standard deviation of the natural logarithm of the displacement threshold, defined as a function of μ, the ductility capacity of the building.

Finally, the mean damage (µ DS ) is computed as:

µ DS = ∑ kP Sk 4 k=0
(5)

Where P Sk is the probability of reaching each damage limit state, derived from the cumulative distribution as follows:

P S4 = P[D S4 |d max ] (6) 
P Sk = P[D Sk |d max ] -P[D Sk+1 |d max ] (k = 1, 2, 3) (7) 
P S0 = 1 -P[D S1 |d max ] (8)
Additionally, the probability of collapse 𝑃 5 can be approximated as follows:

𝑃 5 = 0.09 sinh(0.6µ 𝐷𝑆 )𝑃 𝑆4 (9)

Moreover, the most probable damage for each value of mean damage was defined as indicated in Table 1 and linked to its corresponding EMS98 damage grade. The probabilities of each damage state according to the mean damage value for classes 1 to 3 can be found in the Appendix (Fig. 21 to 23). Table 2 shows the results of the application on the SDOF oscillators and the range of displacements attained along with the corresponding mean damage that ranges between 0 (no damage) and 4 (complete damage state). 

Training Artificial Neural Networks (ANNs) for the prediction of the building mean damage

The ANN approach is a statistical learning algorithm inspired by biological neural networks. Its main characteristic is investigating, without any a priori knowledge, the relationship between input and output variables [START_REF] Mcculloch | A logical calculus of the ideas immanent in nervous activity[END_REF][START_REF] Minsky | An introduction to computational geometry[END_REF]. The use of ANNs has emerged in the geophysical field particularly in the early nineties [START_REF] Poulton | Computational neural networks for geophysical data processing[END_REF] and has since become a popular tool in solving complex geophysical problems.

Following [START_REF] Salameh | Using ambient vibration measurements for risk assessment at an urban scale: from numerical proof of concept to Beirut case study (Lebanon)[END_REF], we have used ANNs to identify the relationship between the mean damage and indicators related to soil, building and input earthquake signal characteristics. While keeping the same neural network architecture and activation functions, the main changes compared to [START_REF] Salameh | Using ambient vibration measurements for risk assessment at an urban scale: from numerical proof of concept to Beirut case study (Lebanon)[END_REF] were the choice of the mean damage as the output variable, instead of damage index, and testing different combinations of input variables as predictors of the mean damage. Moreover, similar to [START_REF] Salameh | Using ambient vibration measurements for risk assessment at an urban scale: from numerical proof of concept to Beirut case study (Lebanon)[END_REF], the ductility capacity of the buildings was not considered as an input variable in the ANNs; instead, an independent neural network was created for the 3 building typologies used by Salameh (2016) (Class 1, Class 2 and Class 3).

Feedforward neural networks using supervised learning were created using the MATLAB® Neural Network Toolbox™ with the following architecture:

i) an input layer containing the explanatory variables, made of 3 to 5 neurons, depending on the number of explanatory variables considered;

ii) a single hidden layer, containing 10 neurons, which is the optimal number of hidden neurons found after testing numbers between 2 and 20;

iii) an output layer with 1 neuron, containing the variable we aim to estimate, i.e. the mean damage.

The activation functions were the tangential sigmoid activation function in the hidden layer and the linear sigmoid in the output layer. For the choice of damage indicators, in addition to variables used by [START_REF] Salameh | Using ambient vibration measurements for risk assessment at an urban scale: from numerical proof of concept to Beirut case study (Lebanon)[END_REF], namely PGA, A0HV as the amplitude of the H/V peak at the fundamental resonance frequency, serving as a proxy to site amplification in the linear case, and the ratio between the fundamental resonance frequency of the building (fstruct) and the soil (fsoil), fstruct/fsoil, we have also considered fstruct and fsoil separately. The PGV on outcrop rock was also considered as a proxy of the seismic signal. Eight different combinations of these variables were formed, in a way that each combination included at least one proxy for each of the signals, sites and buildings. Each one of the 8 artificial neural networks was trained for building classes 1, 2 and 3 and the datasets were randomly split into three subsets (70% training, 15% validation set and 15% test set) to avoid overfitting problems. The ANN's performance was assessed by the coefficient of determination R 2 (from 0 to 1), which shows how well the input variables can predict the mean damage.

The ANNs' input variables and performances are summarized in Table 3. All the neural networks performed comparably well in estimating the mean damages, as demonstrated by the high R 2 values ranging from 0.8466 to 0.9602. By comparing the R 2 values in ANN1 and ANN2, the PGV seems to perform better than the PGA in explaining the mean damages, especially for Class 2 buildings. The same applies for the improvement between ANN3 and ANN4, as well as between ANN5 and ANN6. Yet, the consideration of both PGA and PGV simultaneously as proxies of the seismic signal (ANN7 and ANN8) improved the prediction of the mean damages.

In ANN3, the consideration of fsoil and fstruct separately did not lead to the improvement in the R 2 values in any of the classes with respect to ANN1. However, in ANN5, the separation of fstruct and fsoil without removing A0HV improved the performance for Class 1 but worsened it for the other building classes. Finally, the consideration of all the variables separately in ANN8, improved the prediction of the mean damages for Class 1 compared to ANN7

while the ANN's performance declined for Classes 2 and 3. Finally, while the best performance for Class 1 is achieved in ANN8, ANN7 ensures the best performance for Classes 2 and 3 buildings and was retained as the optimal neural network for the prediction of the building mean damage.

Table 3 Summary of the input variables and the performance of the 8 ANNs trained to estimate the mean damages of building classes 1, 2 and 3. ANN1 is composed of the same input variables as in [START_REF] Salameh | Using ambient vibration measurements for risk assessment at an urban scale: from numerical proof of concept to Beirut case study (Lebanon)[END_REF]. The values of R 2 in bold represent the maximum R 2 attained for each building class

After identifying the optimal neural network, we investigated the input variables' synaptic weights ratio, which is the proportion of the weight of each of the inputs of the ANN with respect to the sum of the total weights in the network. The synaptic weight indicates the relative importance of each input variable in ANN7 in the prediction of the buildings' mean damages. We can see in Fig. 3 that for Class 1 buildings, the PGV has the highest synaptic weight (37.7%), followed by fstruct/fsoil (29.1%). For Class 2 buildings, fstruct/fsoil has a higher synaptic weight (38.1%) than the PGV (34.2%), however for Class 3 buildings fstruct/fsoil is the predominant indicator with a synaptic weight (68.7%), while all the other variables have significantly lower weights. From the synaptic weights distribution, it can be concluded that it is fstruct/fsoil and the PGV that mostly control the buildings mean damages, followed by the PGA and finally the A0HV, the most vulnerable buildings (Class 1 and Class 2) being however the most sensitive to the level of seismic excitation as a consequence of their related fragility curves. 

Estimation of damage-induced debris

The literature review identified a gap in models that could estimate the spatial distribution of debris around buildings while also accounting for the severity of the buildings' damage. In order to estimate a damage-dependent height and extent of debris around buildings, we first estimate the volume of generated debris in the case of full collapse. Then, the debris volume corresponding to the building's damage state is estimated using available correlations between the building's damage and the generated debris quantity, and distributed around the building following a geometrical model.

Estimation of the debris volume corresponding to the damage level of the building

To compute the volume of debris in the case of full collapse, we assumed that when a building collapses, debris are generated from the building's structural elements, specifically the exterior walls and the floor slabs (Fig. 4 (a)).

The debris generated from interior walls and partitions, furniture and other objects in the buildings were not considered for simplification purposes. Also for the sake of simplification, buildings were assumed to have a regular rectangular shape. The debris volume in case of total collapse can therefore be computed as:

𝑉 𝑡 = 2 × 𝑊 × 𝐻 × 𝑒 + 2 × 𝐿 × 𝐻 × 𝑒 + 𝑛 × 𝑊 × 𝐿 × 𝑠 ( 10 
)
Where V t represents the total debris volume in case of full collapse (in m 3 ), W is the building width (in m), H is the building's height (in m) and L is the building's length (in m). 𝑒 and 𝑠 represent respectively the thickness of the exterior walls and the thickness of the floors slabs (in m), while n represents the building's number of floors. In case of partial buildings damages, the generated volume of debris was considered to represent fraction of 𝑉 𝑡 computed as:

𝑉 𝑑 = 𝛼 × 𝑉 𝑡 (11)
Where V d is the volume of debris corresponding to the mean damage of the building and α is the proportion of total debris volume that is generated at this particular damage level.

In order to determine the fraction of the total debris volume generated according to the damage level, we have relied on the debris estimation method provided by HAZUS (FEMA, 2012), which has compiled tables containing the percentage values of debris weight based on observations of damage caused by previous earthquakes. HAZUS provides estimates of the percentage of debris weight from damaged structural elements depending on factors such as the building typology and the extent of damage. These estimates are provided for two different categories of debris, the first category consisting of brick, wood, and glass while the second category comprises debris generated by steel members and reinforced concrete elements. The values provided by HAZUS could be adopted for the relationship between debris volume and building damage state by assuming that all building materials have the same unit weight. Under this assumption, the percentage of debris volume generated for a given damage level can be considered the same as the percentage of debris weight.

In order to utilize the tables provided by HAZUS, the first step is to establish the correspondence of the building typologies between our approach and HAZUS. Class 1 buildings can directly be considered equivalent to the Unreinforced Masonry Bearing Walls (URM) building type in HAZUS. However, the exact equivalents of classes 2 and 3 could not be found in HAZUS. Firstly, because the building classification in HAZUS does not differentiate between non-designed (class 2) and designed (class 3) reinforced concrete. Secondly, HAZUS differentiates reinforced concrete buildings according to their type of structural system (e.g. moment resisting frame or sheer walls), which we do not do in this study. To overcome these limitations, we have considered that reinforced concrete classes 2 and 3 are equivalent in terms of debris they generate at the same level of building damage. Then, we have identified the most common HAZUS typologies for reinforced concrete buildings in Beirut as Moment

Resisting Frame (typology C1 in HAZUS) and Concrete Frame with Unreinforced Masonry Infill Walls (C3 in HAZUS). Finally, we have decided to assign the debris percentages for classes 2 and 3 as the average of the values provided by HAZUS for C1 and C3 buildings.

For the assignment of the debris percentage, we have considered the most probable damage state corresponding to the mean damage value. Then for each damage state, since we do not distinguish between different types of debris, namely debris made of brick or steel and reinforced concrete, we have assigned to each building typology the maximum debris percentage found in HAZUS for the corresponding damage state regardless of the debris type.

These values are summarized in Table 4 andTable 5. However, the mean damage computed in the previous section is on a continuous scale from 0 to 4 while the values in Table 4 and Table 5 are given for discrete damage levels.

14 Therefore, to determine the values of α corresponding to any mean damage value, the data points found in Table 4 and Table 5 were fitted onto a curve using non-linear regression analysis, and the best fit was achieved with a Gaussian curve, which yielded the highest goodness of fit parameters. The values taken for α for each building type for mean damage values ranging from 1 to 4 are displayed in Fig. 4 (b). 

Estimation of the debris footprint around a building

For estimating the debris footprint around a building, a geometrical model similar to [START_REF] Argyroudis | Systemic Seismic Risk Assessment of Road Networks Considering Interactions with the Built Environment: Systemic seismic risk assessment of road networks[END_REF] was developed except that adjacent buildings façades were not considered continuous but separated, thus debris could fall in all four directions around the building. This simplification is motivated by the difficulty of mapping the degree of adjacency of one building to another at the city scale in the absence of detailed building footprint maps.

The estimation results in the formation of debris in the shape of a truncated pyramid whose volume is filled by the volume of the generated debris V d (Fig. 4 (c)). The debris extent around the building can be computed by calculating the dimensions of the pyramid's base L p and W p . The height of the debris at the highest point next to the building façade can also be computed by finding H ′ , the truncated pyramid's height.

The truncated pyramid's volume is given by:

𝑉𝑝 = 𝐻 ′ 3 (𝐵 + 𝑏 + √𝐵 × 𝑏 ) (12) 𝑏 = 𝐿 × 𝑊 (13) 𝐵 = 𝐿𝑝 × 𝑊𝑝 = (𝐿 + 2 × 𝑦 × 𝑐𝑜𝑠𝛽) × (𝑊 + 2 × 𝑦 × 𝑠𝑖𝑛𝛽) (14) 𝐻 ′ = 𝑦 × 𝑐𝑜𝑠𝛽 × 𝑡𝑎𝑛𝜃 (15) 𝛽 = 𝑡𝑎𝑛 -1 ( 𝑊 𝐿 ) ( 16 
)
where B is the area of the truncated pyramid's base (in m 2 ), b is the area of the truncated pyramid's top (in m 2 ) and H ′ is the height of the truncated pyramid (in m). In the top view (Fig. 4 (c)), y represents the diagonal distance between the building's corner and the debris' corner (in m). β is the angle between the building's length and its diagonal and θ is the angle between the debris and horizontal plane.

Under the assumption that the debris falls uniformly in all directions, filling the volume of the truncated pyramid:

𝑉 𝑝 = 𝑉 𝑑 (17) 
Solving equation ( 17) with one unknown, gives the value of 𝑦, from which the debris height can be directly calculated as:𝑦 × 𝑐𝑜𝑠𝛽 × 𝑡𝑎𝑛𝜃, and the debris extent can be calculated in both directions as: 𝑦 × 𝑐𝑜𝑠𝛽 and 𝑦 × 𝑠𝑖𝑛𝛽.

Validation of the approach

Previous studies highlighted the dependence of the extent of the debris around the building on the building's height.

The debris extent was commonly found to be proportional to the building height (H), with values ranging from H/2 to H/8 [START_REF] Nishino | An evaluation method for the urban post-earthquake fire risk considering multiple scenarios of fire spread and evacuation[END_REF]. Since these relationships were established for cases of full building collapse only, the relationship between the debris extent computed using the developed model and the building height was investigated for the case of complete collapse (mean damage = 4).

A rectangular building with dimensions L = 20 m and W = 10 m was considered. The building's number of floors varied from 1 floor to 40 floors, with a floor height set to 3.5 m. The angle at the diagonal of the building was calculated as:

𝛽 = 𝑡𝑎𝑛 -1 ( 10 20 
). The angle θ formed by the debris and the horizontal plane was assumed to be equal to 30°. The thicknesses of the walls and the floor slabs were considered to be respectively e= 0.2 m and s= 0.5 m

The debris extent in the diagonal direction, y, was computed for each building height by solving equation ( 17).

The resulting debris extent is shown in Fig. 5 as a function of the building's height. It can be observed that as the height of the building increases, the extent of debris away from the building increases as well. For building heights less than 20 m, the debris extent ranges between H/2 and H/4. As the building becomes taller (up to 115.5 m, 33 floors), the debris extent tends gradually away from H/4 and closer to H/8. The debris extent becomes less than H/8 for buildings taller than 115 m. Therefore, in our model, as the building height increases, the ratio between the debris extent and the building height decreases. This observation has not been documented in the literature, as no other study offers a detailed comparison between debris extent and building height. We believe that this is mainly due to the geometrical considerations of the truncated pyramid shape, which highly depends on the ratio between the building's length and width that sets an upper limit to the debris extent.

However, the debris estimated using the developed approach are within the range found in the literature, even though the approach needs to be validated and refined for high-rise buildings by conducting further experiments and collecting post-seismic event observations. Fig. 5 Comparison of the debris extent estimated for a collapsed building following the developed methodology to the typical relationships with the building height (H) found in the literature

Generation of a complete 3D model of buildings in Beirut

In Beirut, a comprehensive building dataset does not exist due to the absence of an up-to-date building census. In the framework of ANR-LIBRIS project (2010 -2014) (Agence nationale de la recherche, 2010), the Saint Joseph University (USJ) conducted extensive surveys on Beirut's buildings by collecting geographical coordinates, construction year and number of floors of 7 362 buildings [START_REF] Salameh | Ambient vibrations, spectral content and seismic damages : new approach adapted to the urban scale[END_REF]. Additionally, ambient noise measurements were carried out on another set of 330 buildings to extract the fundamental resonance frequency of these buildings, in addition to their typology, construction year and number of floors. From the measured resonance frequencies, relationships between the number of floors, soil type and resonance frequency were derived [START_REF] Salameh | Seismic response of Beirut (Lebanon) buildings: instrumental results from ambient vibrations[END_REF] as follows:

 fstruct =23/number of floors, for buildings constructed on rock sites;

 fstruct =18/number of floors, for buildings built on soft sites. were considered as designed reinforced concrete with low ductility (Class 3). Indeed, this typology classification is rather simplified compared to other established taxonomies, such as the GEM building taxonomy [START_REF] Silva | A Building Classification System for Multi-hazard Risk Assessment[END_REF] or ESRM20 [START_REF] Crowley | Exposure model for European seismic risk assessment[END_REF]; however, the lack of building census data in Lebanon significantly increase the challenges of having a more refined building characterization. The distribution of the characteristics of the surveyed buildings in Beirut is shown in Appendix (Fig. 24). However, due to security and political constraints at the time of the LIBRIS project, the building survey was restricted to the eastern and north-western sectors of the city as shown in Fig. 6. Since a complete building inventory is essential for estimating building damages throughout the city, we have relied on the existing building dataset, satellite images, and OpenStreetMap (OSM) to generate a 3D building model of Beirut and characterize its typology.

Building footprints in Beirut were already available on OSM at the start of our work. However, we contributed to the completion of the building database on OSM by digitizing the missing buildings, resulting in the delimitation of a total of 15 089 buildings in Beirut. The OSM shapefile layer of buildings in Beirut extracted on 26/02/2021 is displayed in Fig. 7. The estimation of the seismic damages from the OSM dataset requires first the derivation of the buildings' typology and their resonance frequency. Although the LIBRIS dataset contains valuable attributes (construction period and number of floors) for 7 692 of these buildings, these attributes could not be directly transferred to the OSM layer due to georeferencing incompatibilities between the two building layers (see Appendix Fig. 26), caused by the use of a combination of several projection systems when digitizing the building footprints in LIBRIS.

To overcome this limitation and to make use of the information provided in LIBRIS, a subset of 947 buildings from the LIBRIS dataset were manually identified in the OSM dataset by finding the footprints of identical buildings in the two layers. These buildings were selected by picking all buildings that have more than 10 floors in LIBRIS, and a representative set of buildings with lower number of floors. We aimed to sample the overall distribution of number of floors and construction period in the LIBRIS database while selecting buildings in the western and eastern parts of Beirut. The spatial distribution of the selected buildings (referred to as LIB-STAT dataset) is displayed in Fig. 6. The attributes related to the number of floors and the construction year were added to the corresponding OSM buildings. The distribution of the building attributes in the subset of 947 buildings is displayed in Appendix (Fig. 25). This subset is assumed to be representative of Beirut's buildings and was used to derive statistical relationships between different building attributes in order to estimate the OSM buildings' number of floors and construction periods. 

Estimation of the building heights from satellite images

The first step for characterizing the building dataset is to retrieve the height of each building, which was done by processing very high resolution satellite images. Tri-stereo Pleiades 1-B 1 satellite images (resolution 0.7 m) acquired in July 2016 for Beirut and its surroundings (see Appendix Fig. 27) were processed using the Ames Stereo Pipeline software [START_REF] Broxton | The Ames Stereo Pipeline: Automated 3D Surface Reconstruction from Orbital Imagery[END_REF], an automated stereo processing software developed by the NASA Ames Research Center, capable of generating high-quality surface elevation models from satellite images. We followed the methodology developed in [START_REF] Lacroix | Landslides triggered by the Gorkha earthquake in the Langtang valley, volumes and initiation processes[END_REF] that can be summarized as follows:

(1) Each image was map-projected using a low resolution (10 m) Digital Terrain Model (DTM) covering the area of Beirut to remove the long wavelength stereo component.

(2) Each pair of the tri-stereo image was then automatically correlated to produce a disparity map per pair of images.

(3) Intersection between all the rays coming from the similar points were finally jointly found in the three images to find the high-frequency component of the topography, resulting in a 3D point cloud. The long and short wavelength topography were then added to form the surface elevation at each point in the satellite images.

The point cloud was converted into a grid mesh regularly spaced every 2 m, which is approximately three times the resolution of the initial images. This grid mesh constitutes the Digital Surface Model (DSM) (Fig. 8 (a) and (b)), which represents the elevation model of the earth's surface including the elevation of the above-the-ground features (trees, buildings, etc.). The Digital Features Model (DFM), describing the height of the above-the-ground features-including buildings-, was obtained by subtracting the elevations of the bare earth (DTM) from the DSM as illustrated in Fig. 8 (a) and described below. . Elevations less than 2 m in the DFM were filtered out, since they are too low to correspond to building heights. Then, for each building, the mean DFM value of the cells occupied by the building's footprint was assigned as the building height.

To estimate the error in the prediction of the building's heights from the DFM, we compared the building heights retrieved from the DFM for the LIB-STAT dataset to the heights provided in OSM (when available). When the building height was not indicated in OSM, it was estimated by multiplying the building's number of floors by an approximate story height of 3.5 m. The approximate story height was chosen as 3.5 m because the average story height in Beirut was found to vary between 2.8 m to 4.5 m, depending on the building's construction period [START_REF] Krayem | Machine learning for buildings' characterization and power-law recovery of urban metrics[END_REF][START_REF] Salameh | Ambient vibrations, spectral content and seismic damages : new approach adapted to the urban scale[END_REF]. On average, the DFM was able to reproduce the building height with a mean error of 14 m (Fig. 9). However, the height of buildings of less than 50 m is slightly overestimated in the DFM, while the elevation of high-rise buildings (100 m and higher) is mostly underestimated. To investigate the possible causes for this underestimation, we examined the distribution of the DFM values and the quality of the DSM at the location of 9 well-known skyscrapers in Beirut (Table 6 and Fig. 10).

Fig. 9

Comparison of the DFM building heights to the building height retrieved from OSM or from LIBRIS assuming a floor height of 3.5 m

As it appears in Table 6, the highest values taken by the DFM for the "Sama Beirut", "20|30", "Les domes de Sursock" and "Crédit Libanais" towers (35.1 m, 30.8 m, 60.4 m and 27.4 m high, respectively) are significantly lower than the actual building heights which exceed 130 m for the four buildings. Furthermore, the DSM appears to be poorly constrained for these buildings, as the DSM has many "no data" cells (no color) at the buildings' locations (Fig. 10). Moreover, even when DSM data are available, the data are sparse and do not match the building's footprint. We verified that these buildings already existed at the time when the satellite images were taken (July 2016), as they have all been constructed in 2016 or before. Inversely, the DSM's quality is considerably better for the five other towers, as the DSM has very few no data points at the location of these buildings, and the buildings' footprints can be identified by the higher values taken by the DSM around and under the building footprint. This is also translated by the maximum and mean DFM heights for these buildings, which are close to the actual building heights. Consequently, although the processing of satellite images has shortcomings in the detection of high-rise buildings, the errors are not systematic, as some of the tall buildings in Beirut have been accurately identified. The errors could be due to the buildings' architectural styles, especially the presence of large façade windows possibly influencing the detection of the surface elevation. However, as the errors are not systematic, the heights of buildings retrieved from the satellite images were retained for the subsequent analysis. 

Estimation of the buildings' number of floors

The number of floors can be estimated by dividing the building's height by the average story height. As the average story height in Beirut varies according to different sources [START_REF] Krayem | Machine learning for buildings' characterization and power-law recovery of urban metrics[END_REF][START_REF] Salameh | Ambient vibrations, spectral content and seismic damages : new approach adapted to the urban scale[END_REF], we relied on a linear regression between the heights of the LIB-STAT buildings retrieved from satellite images and the number of floors of these buildings to derive an empirical story height for buildings in Beirut.

After grouping the LIB-STAT buildings according to their number of floors, we analyzed the distribution of the heights taken by buildings with a similar number of floors (Fig. 11 (a)). For buildings with 2 to 5 floors, the median building height (red line) increases sharply for each additional floor, while the increase is slightly less steep for buildings with 6 or more floors. Buildings with more than 18 floors seem to have unusually low heights, as a consequence of errors in the DFM, and were therefore removed from the regression analysis. A linear regression with no intercept was performed between the number of floors and the heights of the LIB-STAT buildings (Fig. indicate that the number of floors are overestimated for low to medium-rise buildings (10 floors and less), while they are underestimated for buildings higher than 10 floors, as the residuals are mostly negative for these buildings. 

Prediction of the buildings' construction period

A classification tree is a machine-learning model that can be trained to identify rules for splitting a dataset into subsets based on predictor variables. The resulting model can be applied to classify new datasets. In this paper, we train classification trees on the LIB-STAT dataset to predict the building's construction period based on the available building parameters. First we categorized the construction periods into the 3 classes used for the definition of the building typology: before 1950, between 1950 and 2005 and after 2005. Second, different variables combinations were tested for the choice of predictor variables, namely:

 the building's number of floors, as the height of the building may reflect the evolution of construction materials, building codes and architectural styles over time;

the building's location (the longitude and latitude coordinates of the building's centroid), which indicates the area in which the building is located and can relate to the evolution of the city's urbanization over time (Yassin, 2012);

the building's area and perimeter, as the geometrical properties and the size of the building may indicate the evolution of the construction practices over time.

Table 7 The four different classification trees trained and their corresponding performance in terms of validation accuracy A classification tree was trained with each set of predictor variables (Table 7). The best accuracy was achieved in Tree 3 where the predictors were the number of floors and the longitude and latitude coordinates of the building.

The number of floors was the most important predictor for the construction period, with a weight more than twice as important as the longitude of the building (Fig. 12 

Accuracy of the seismic damages estimated with the predicted building characteristics and generation of a complete 3D building model in Beirut

As the main purpose behind the prediction of the building characteristics is to estimate the seismic damages, we assessed the accuracy of the damages inferred from predicted characteristics of the building stock and the damages estimated with the original LIB-STAT dataset's characteristics. The damages were estimated using the ANNs trained in section 2.3 by using the building's resonance frequency and the typology (class) derived from the predicted number of floors and construction period. The detailed comparison of the original and predicted building characteristics can be found in Appendix (Fig. 28). The soil resonance parameters (fsoil and A0HV) at the location of each building were extracted as later explained in section 5.1. For a seismic scenario of PGA= 0.3 g and PGV = 16 cm/s as defined in section5, the predicted building characteristics resulted in slightly more severe damage states compared to the original dataset's (Fig. 13 (a)). The percentage of buildings with mean damage values between 1 and 2 decreased from to 71% to 66%, while the percentage of buildings with mean damage values between 2 and 3 increased (from 25% to 31%). The increase of the damage severity could be partially explained by the increase of the percentage of Class 1 buildings (masonry) in the predicted dataset (Appendix Fig. 28). The building-by-building mean damage comparison summarized in the confusion matrix (Fig. 13 (b)), shows that buildings with mean damages between 1 and 2 are predicted with the highest accuracy (73.3%) followed by buildings with mean damages between 2 and 3 (50.6%). Overall, the building mean damages were replicated with an accuracy of 66% at the building-level, which was considered an acceptable trade-off given the reduced size of the training dataset and the limited data available on the buildings in Beirut. After validating the approach on the LIB-STAT dataset, the same steps were followed to retrieve the characteristics of the entire OSM building dataset. This resulted in the characterization of the number of floors, construction period and typology of the 15 089 buildings in Beirut as shown in Fig. 14 and Fig. 15. The generated 3D buildings model in Beirut can be downloaded in the electronic supplement. The distribution of the building damage states for the two earthquake scenarios is shown in Table 8 andTable 9.

For the earthquake of PGA 0.3 g, most buildings in Beirut are likely to have mean damage between 1 and 2 (60.7% of the buildings) followed by mean damage values between 2 and 3 (33.7%) and mean damage less than 1 (5.5%).

0.1% of the buildings are likely to have a mean damage between 3 and 4, while no buildings are likely to have a mean damage equal to 4. However, it should be noted that although no building reaches a mean damage equal to 4, this does not exclude the possibility of building collapse (see Table 1). For an earthquake of PGA 0.5 g, all buildings in Beirut might have a mean damage greater or equal to 1, 68.1% are likely to have a mean damage between 2 and 3, while 31.4% are likely to have mean damage between 3 and 4. For this scenario too, no buildings are likely to experience a mean damage equal to 4, although some buildings may have collapsed (Table 1). Nevertheless, the interpretation of these results should take into account the uncertainty in the predicted building characteristics, especially the error in the building's number of floors that propagates to both the resonance frequency and the typology. To have a first order estimation of the propagation of uncertainty from the number of floors to the mean damages, the latter were also predicted for the mean number of floors (N) plus and minus the standard error of 3 floors (N +3 and N -3). The related ANNs inputs (fstruct/fsoil and building typology) were recomputed before estimating the mean damage. As the building's typology depends on the number of floors, the subtraction of 3 floors (N -3) resulted in an increase in the proportion of Class 1 masonry buildings (Fig. 17 (a)).

Contrariwise, the addition of 3 floors (N + 3) led to a slight increase in Class 3 buildings and the disappearance of Class 1, as all buildings would have at least 4 floors. As the buildings' resonance frequency is inversely proportional to the number of floors, the change in the number of floors also translated to an increase of fstruct/fsoil for N -3 and a decrease for N + 3 (Fig. 17 For scenario 1 (PGA = 0.3 g), the N -3 configuration led to more pessimistic building damages overall (Fig. 17 (c)). This can be seen by the decrease of the percentage of buildings with mean damage less than 1 and between 1 and 2 from 5% to 2% and from 61% to 47%, respectively, and the increase of the proportion of buildings with mean damage between 2 to 3 from 34% to 50% (Fig. 17 (c)). The opposite trend was observed for the N + 3 configuration (Fig. 17 (c)), as 15% of the buildings had mean damage values less than 1 for this scenario, while the damaged buildings had predominantly mean damage values between 1 and 2 (73%). For scenario 2 (PGA = 0.5 g, Fig. 17 (d)), the percentage of buildings with mean damage between 1 and 2 increased with the increase of the number floors (0 for N -3, 1% for N and 2% for N + 3). When considering N -3, the percentage of buildings with mean damage between 2 and 3 increased from 68% to 78%, while the percentage of buildings with mean damage between 3 and 4 decreased from 31% to 22%. Inversely, the addition of 3 floors, resulted in the decrease of the percentage of buildings with mean damage between 2 and 3 (from 68% to 61%) and the increase of the percentage of buildings with mean damage between 3 and 4 (from 31% to 37%). Overall, in scenario 2, as opposed to scenario 1, the decrease of the number of floors resulted in less pessimistic damages, while the increase of number of floors led to more severe damages. Distribution of the building damage states for the seismic scenario 2 with PGA = 0.5 g

In order to understand the variation of the building damages with the change of number of floors, we analyzed the spatial distribution of the buildings' typology and fstruct/fsoil for the 3 building configurations (N -3, N and N + 3) together with the resulting damages for the two seismic scenarios (Fig. 18). Although, the mean damages were computed building by building, for presentation purposes, they were averaged on a radius of 100 m.

For scenario 1, the buildings with the mean number of floors (N) expected to have mean damage between 1 and 2 (Fig. 18 (h)) are concentrated in the east and the west rocky formation of Beirut (Fig. 16). Heavier damages (mean damage between 2 and 3) are concentrated in the north and the south of the city, which are areas prone to site effects (Fig. 16). The spatial distribution of the damages appears to be strongly correlated to the fstruct/fsoil map in Fig. 18 (e), since higher levels of damages are observed for buildings having fstruct/fsoil between 0.5 and 1.5 and the lowest building damages are observed when this ratio is less than 0.5 or larger than 1.5. When considering the uncertainty on the number of floors, the building configuration N -3 suffers overall heavier damages throughout the city (Fig. 18 (g)) compared to building configurations N or N + 3 (Fig. 18 (h) and (i)). Although larger damages (mean damage = 3) are located in narrow regions where fstruct/fsoil is close to 1, most of the damages (mean damage = 2) are caused by more vulnerable buildings (most of the buildings are Class 1, Fig. 18 (a)) located on sites exhibiting site effects, and thus subject to larger surface ground motion for which the Class 1 buildings are especially sensitive to (Fig. 2). The control of the coincidence of frequencies between soils and buildings on the spatial distribution of the building damages is remarkable when considering the building configuration N + 3 (Fig.

18 (f) and (i)), since most buildings at sediment sites exhibit a fstruct/fsoil close to 1 (Fig. 18 (f)).

In scenario 2, most buildings suffer heavy damages (mean damage > 3) regardless of the building's number of floors (Fig. 18 (j) (k) and (l)). Nevertheless, the building damages are less severe at rock sites (mostly mean damage = 3 whatever the building's number of floors) in the east and the west of Beirut compared to the north and south sediment sites. Interestingly, less severe damages are observed at sediment sites for the building configuration N -3 compared to N and N + 3. This can be explained by the reduction of the soil's amplification at the building resonance frequency due to the nonlinearity of the soil response. Since most of the N -3 building resonance frequencies correspond to fstruct/fsoil larger than 1.5 at sediment sites, this ratio is even increased when considering the decrease of soil's resonance frequency due to non-linearity in conjunction also with a decrease of seismic motion beyond fsoil, leading to less severe damage levels. For the N + 3 configuration, most of the fstruct/fsoil range from 0.5 to 1.5 at sediment sites (Fig. 18 (f)). When fsoil decreases due to the soil's non-linear behavior, buildings with fstruct/fsoil between 0.5 and 1 will be more prone to more structural displacement because of the coincidence of resonance frequencies.

Despite the differences observed in the distribution of the damage severity when considering the uncertainty in the building properties, the spatial distribution of the damages exhibits heavier building damages at sediment sites in the north and the south of Beirut, while the buildings located on the rock sites in the east and the west of Beirut are expected to witness the lowest levels of damages. These observations confirm that the site effects and the coincidence of frequencies between soils and buildings control on the first order the spatial distribution of damages, while the building's configuration (i.e. relative distribution between the buildings' vulnerability classes) controls the severity of the expected damages. 

Debris estimation

The extent and height of debris in Beirut were estimated for the two earthquakes scenarios for the building configuration with the average predicted number of floors (N). The debris extents vary according to the building's height and mean damage (Fig. 19). For a given building height or mean damage, the debris extent increases with increasing building damages or building height. For the scenario with a PGA of 0.3 g, debris are expected to reach up to 1.8 m away from buildings in Beirut (Fig. 19 (a)). The limited debris extent in this scenario can be attributed to the fact that masonry buildings, which are more prone to significant damage and generate more debris, are limited to a maximum height of four stories. Whereas taller buildings are more likely to be of reinforced concrete, resulting in a smaller amount of debris being generated. In contrast, for the scenario with PGA of 0.5 g (Fig. 19 (b)), as the buildings experience greater damages, the extent of debris around buildings are significantly larger than in the first scenario, reaching up to 6.5 m for heavily damaged tall buildings. As the debris height is also important for urban mobility in the aftermath of an earthquake, we have examined the distribution of debris heights for the two seismic scenarios. The debris height follows exactly the same distribution as the debris extents in the two scenarios: with increasing building heights and damage levels, the debris heights increase as well. While the maximum debris height in the scenario with PGA= 0.3 g (Fig. 19 (d)) is of 1 m, in scenario with PGA= 0.5 g (Fig. 19 (e)) the debris are considerably higher, reaching up to 3.8 m in the case of heavily damaged tall buildings. Debris are expected to reach heights greater than 1 m, particularly in the Mazraa and Moussaitbeh sectors ( Fig. 20). The heights of debris in these areas should be taken into account by emergency management planners due to the increased mobility challenges to pedestrian and vehicles caused by the presence However, it should be noted that the debris estimated herein corresponds to the most probable damage state based on the mean damage value (see Table 4 andTable 5). This does not exclude the possibility of experiencing wider and higher debris, especially in the case of complete building damage. To illustrate the maximum debris that can be expected for the more pessimistic scenario of PGA 0.5 g, we have computed the debris extent and height for each building in case of complete damage, along with the corresponding probability of complete damage (Fig. 19 (c) and (f)). For this earthquake scenario, the debris can reach up to 18 m away from buildings and up to 10 m high with a probability of occurrence around 20%. However, for certain buildings, the likelihood of debris reaching up to 10 m away from buildings and a height of 6 m rises significantly to 70%.

Conclusion

This paper proposes methodological improvements to estimate seismic damages and debris in urban areas from building-level simulations, along with the generation of a complete 3D building model for the city of Beirut (Lebanon) and the characterization of its vulnerability based on open-source geographic data, very high-resolution satellite images and machine learning tools. Artificial Neural Networks (ANNs) were trained to predict buildings mean damages computed from extensive simulations of site and building responses to synthetic input motions.

Several proxies for building, soil and input seismic motion properties were tested to find the optimal predictors of the mean damage. Although PGV was found to be a better proxy for the input ground motion than the PGA, better damage prediction performances were achieved by considering both the PGA and the PGV simultaneously.

Regarding the proxies related to soil and building properties, the frequency ratio fstruct/fsoil explained better the damage for reinforced concrete buildings (Classes 2 and 3), while considering fstruct and fsoil separately improved the prediction of mean damages in masonry buildings (Class 1). A0HV performed better than fsoil in the damage prediction when considered with fstruct/fsoil. Nevertheless, the best performances were obtained when considering PGA, PGV, A0HV and fstruct/fsoil as input variables in the ANNs. The corresponding ANNs for each building class were derived for the estimation of the building mean damages in urban areas. The proposed methodology for the estimation of damaged-induced debris provides the height and extent of debris around buildings, while considering the level of building damage. The volume of generated debris in the case of full collapse is estimated first. Then, using correlations between the building's damage and the generated debris quantity, the debris volume corresponding to the building's damage level is estimated and distributed around the building. This methodology was validated by comparing its results to usual values found in the literature for full collapse buildings. Although the calibration of the model should be improved for high-rise buildings, it showed good results for low-to-moderate rise buildings. A complete 3D building model was developed for the city of Beirut in Lebanon. Building footprints were collected from the volunteered geographic information database, OSM, and the height of these buildings was retrieved from the analysis of very high-resolution Pleaides 1-B satellite images. A subset of around 1000 buildings with known attributes, taken from an existing building dataset, was used to derive statistical relationships between different building attributes (building height, number of floors, resonance frequency, typology) in order to extrapolate the building properties at the city scale.

The proposed methodologies were applied to estimate the seismic damages and debris in Beirut for two earthquake scenarios corresponding to PGA of 0.3 g and 0.5 g. The damages predicted at the building scale indicate that the damages are concentrated in sediment areas, larger damages occurring when the ratio between soil and building resonance frequency is close to 1 (double resonance phenomenon), while the damage levels depend on the seismic scenario considered. Although for the scenario with PGA = 0.3 g the debris extent and height are relatively low (maximum debris extent 1.8 m and maximum height 1 m), for the scenario with PGA = 0.5 g the debris reach further around buildings (up to 6.5 m) and have heights of over 1 m that could severely constrain post-seismic mobility. Nevertheless, as in any estimation, there is an uncertainty in the estimated damages and debris. One of the uncertainty factors comes from the difficulty in accurately quantifying the buildings' heights from satellite images, which in turn influences the number of floors and other building attributes such as the building's resonance frequency and its typology. The effect of the uncertainty in the estimated number of floors on the predicted damages was explored by comparing the damages estimated for the average predicted number of floors and the damages computed for the average number of floors plus and minus the standard error of 3 floors. The changes in the number of floors translate into a possible change of building vulnerability class and an increase or decrease of fstuct/fsoil. While the overall distribution of damage states varies depending on the building configuration, the spatial distribution of the damages throughout the city is consistent with the damage distribution for the average predicted number of floors. This highlights the control of the site effects on the buildings damages, as despite the variability of the building properties, the damages were still concentrated in the same areas in the city. Therefore, although the generated 3D building model does not substitute a complete and detailed buildings exposure model, it can provide a starting point for the analysis of the distribution of seismic damages and debris within urban areas. The approach developed in this study, which relies on simple measure parameters, may be particularly useful in other cities with a similar context to Beirut, where comprehensive building data stock is lacking.

In future works we plan to complement this study with a more comprehensive analysis of the propagation of uncertainty from the estimated building parameters to the building damages. Furthermore, the shortcomings found in the estimation of the elevation of high-rise buildings using satellite images will be further investigated to identify their possible reasons and improve the characterization of the building heights. Additionally, one of the limitations of our study is related to the use of HAZUS to estimate the debris quantity, while HAZUS is primarily calibrated for the United States where buildings differ in quality and type compared to those in Lebanon. The debris estimation model could be improved by calibrating it in an experimental setup, such as performing experiments on a shaking table and observing the extent and height of the generated debris. Finally, the experiments can be validated by observations from real events through the analysis of satellite images and street-view photography in pre/post-earthquake conditions, eventually combined with in-situ evaluation of building typologies. This would allow establishing empirical relationships between the ground motion, the building typology and the generated debris. 
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 4 Fig. 4 Debris estimation methodology. (a) Parameters used for the calculation of debris generation from the building's structural

  Moreover,[START_REF] Salameh | Using ambient vibration measurements for risk assessment at an urban scale: from numerical proof of concept to Beirut case study (Lebanon)[END_REF] proposed a classification of the buildings' typologies based on their number of floors and construction period. Buildings constructed before 1950 with less than 4 floors consisted mainly of masonry buildings (Class 1). Buildings constructed before 1950 with 4 or more floors and buildings constructed between 1950 and 2005 were classified as non-designed reinforced concrete (Class 2). Buildings built after 2005
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 67 Fig. 6 Buildings in Beirut surveyed during the LIBRIS project and corrected location of 947 of these buildings in blue (LIB-STAT data set)
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 8 Fig. 8 Digital elevation models derived from processing very high-resolution satellite images. (a) Elevation models processing for obtaining a Digital Features Model from a Digital Surface Model, (b) Digital Surface Model of Beirut, (c) Digital Terrain Model of Beirut, (d) Digital Features Model of Beirut
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 10 Fig. 10 DSM elevations at the location of 9 high-rise buildings in Beirut. The building's name is indicated on the top the corresponding figure and the corresponding building's footprint is highlighted in red

  11 (b)), resulting in an average story height of 3.5 m estimated with a coefficient of determination R 2 = 0.59 and a RMSE= 2.47. The RMSE value indicates that the number of floors can be estimated using the linear regression with a mean error of + or -3 floors. The estimation errors, in terms of the predicted number of floors as a function of the actual number of floors (Fig.11 (c)) and residuals between the predicted and the actual values Fig.11 (d),
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 11 Fig. 11 (a) Boxplot distribution of the building heights according to the number of floors in the LIB-STAT dataset. Outliers are represented by black crosses. (b) Linear regression of the number of floors of the LIB-STAT dataset according to the building heights retrieved from the DFM. Estimation errors (R 2 and RMSE) in the linear regression between the number of floors and the building heights are indicated in the figure. (c) the predicted number of floors as a function of the actual number of floors. (d) the residuals between the predicted and actual value of the number of floors as a function of the actual number of floors

Fig. 12

 12 Fig. 12 Prediction of the construction period from the building's number of floors and geographical coordinates using a classification tree. (a) Predictor importance estimates, (b) Distribution of the predicted and true construction periods classes

Fig. 13

 13 Fig. 13 Comparison of the overall distribution of the building mean damage for the original and predicted characteristics: (a) Distribution of the mean damage of the LIB-STAT dataset for the original and predicted building characteristics, (b) Confusion matrix showing the accuracy of the mean damage estimated at the building-level

Fig. 14

 14 Fig. 14 Generated 3D building model in Beirut with their assigned typology. Buildings in red are masonry buildings (Class 1), buildings in blue are non-designed reinforced concrete (Class 2) and buildings in green are DCL designed reinforced concrete (Class 3).

Fig. 15

 15 Fig. 15 Distribution of the predicted (a) number of floors, (b) construction year and (c) typology in the generated 3D model of buildings in Beirut

Fig. 16

 16 Fig. 16 fsoil and A0HV maps in Beirut derived from the cubic-spline interpolation of the ambient vibration measurements performed in Salloum et al. (2014), Salameh et al. (2017) and[START_REF] Brax | Towards a microzonation of the Greater Beirut area: an instrumental approach combining earthquake and ambient vibration recordings[END_REF] 

  (b)).

Fig. 17

 17 Fig. 17 Variation in the building characteristics and estimated mean damage between the 3 buildings configurations obtained by considering: the mean predicted number of floors (N, dark grey), the mean predicted number of floors -3 (N -3, grey) and the mean predicted number floors + 3 (N + 3, light grey). (a) Distribution of the building typologies, (b) Distribution of the structure to soil frequency ratio (c) Distribution of the building mean damage for the seismic scenario 1 with PGA = 0.3 g (d)

Fig. 18

 18 Fig. 18 Beirut mean damage maps for various buildings configurations with the average predicted number of floors -3 (N-3, a and d), predicted number of floors (N, b and e) and predicted number of floors +3 (N+3, c and f) for scenario 1 (g, h and i) and scenario 2 (j, k and l). The mean damages (g to l) were computed building by building, but for presentation purposes they were averaged on a radius of 100 m

Fig. 19

 19 Fig. 19 Distribution of the debris extent and height according to the building height and the mean damage. Debris extent for (a) Seismic scenario of PGA = 0.3 g, (b) Seismic scenario of PGA = 0.5 g and (c) in case complete damage for a seismic scenario of PGA = 0.5 g with the associated probability of occurrence. Debris height for (d) Seismic scenario of PGA = 0.3 g, (e) Seismic scenario of PGA = 0.5 g and (f) in case complete damage for a seismic scenario of PGA = 0.5 g with the associated probability of occurrence

Fig. 20

 20 Fig. 20 Spatial distribution of the debris heights in Beirut for a seismic scenario of PGA = 0.5 g

Fig. 22 Fig. 23 Fig. 24

 222324 Fig. 22 Damage state probabilities depending on the mean damage value for buildings class 2

Fig. 25

 25 Fig. 25 Distribution of the characteristics of the subset of buildings in Beirut retained for the statistical analysis (LIB-STAT). (a) Number of floors, (b) construction year and (c) typology

  

  

  

  

  

Table 1

 1 Probability of collapse and most probable damage state depending on the mean damage value.

	The corresponding

Mean damage Collapse probability Most probable damage state Corresponding EMS98 damage grade

  

	0 ≤ µ DS < 1	0	No damage	No damage
	1 ≤ µ DS < 2	0	Slight DS1	Slight D1
	2 ≤ µ DS < 3	1% to 9 %	Moderate DS2	Moderate D2
	3 ≤ µ DS < 4	10% to 48%	Extensive DS3	Heavy D3
	µ 𝐷𝑆 = 4	49 %	Complete DS4	Very heavy D4
				Destruction D5

Table 2

 2 For each building class, range of fundamental building resonance frequency (fstruct), yielding (d y ), ultimate (d u ), maximum (d max ) displacement and mean damage (µ DS )

Building class fstruct range (Hz) 𝐝 𝐲 range (m) 𝐝 𝐮 range (m) 𝐝 𝐦𝐚𝐱 range (m) µ 𝐃𝐒 range

  

	Class 1	2 -6.7	0.0015-		0.0070	-	1.2477 x 10 -5 -0.5	0 -4
			0.0107		0.0387			
	Class 2	0.77 -1.85	0.015 -0.0407 0.0451	-	3.8239 x 10 -5 -	0 -4
					0.1227		0.9023	
	Class 3	1.1 -2.33	0.0108	-	0.0324	-	4.3947 x 10 -5 -	0 -4
			0.0709		0.2125		0.7237	

Table 4

 4 Percentage of debris weight from damaged structural elements for Class 1 buildings (URM-Unreinforced Masonry

	Bearing Walls) (adapted from: HAZUS, FEMA 2012)			
	Mean		Damage state probability		Most	Percentage of
	damage					probable	debris weight
						damage state	from structural
							damage state
		Slight	Moderate	Extensive	Complete		
	µ 𝐃𝐒 =1	35% -61% 11% -26%	3% -4%	1%	Slight	0
	µ 𝐃𝐒 =2	24% -38% 25% -44%	18% -25%	9%	Moderate	25%
	µ 𝐃𝐒 =3	4% -10%	17% -27%	29% -37%	36%	Extensive	50%
	µ 𝐃𝐒 =4	0%	0%	0%	100%	Complete	100%

Table 5

 5 

Percentage of debris weight from damaged structural elements for Class 2 (C1-Reinforced Concrete Moment Resisting Frames) and Class 3 (C3-Concrete Frame Buildings with Unreinforced Masonry Infill Walls) buildings (adapted from: HAZUS, FEMA 2012)

Mean damage Damage state probability Most probable damage state Percentage of debris weight from structural damage state Slight Moderate Extensive Complete

  

	µ 𝐃𝐒 =1	60%	12%	4%	0%	Slight	0
	µ 𝐃𝐒 =2	38%	26%	25%	8%	Moderate	12.5%
	µ 𝐃𝐒 =3	10%	17%	37%	36%	Extensive	30%
	µ 𝐃𝐒 =4	0%	0%	0%	100%	Complete	100%

Table 6

 6 Distribution of the DFM values and the quality of the DSM over high-rise buildings in Beirut. The DSM quality is

qualified as "poor" when the DSM has many "no data" cells (no color) at the building's location and "OK" otherwise

Building name End of construction date Height (from OSM) (m) DFM max. elevation (m) DFM mean elevation (m) DSM quality

  

	Beirut Tower	2009	112 m	103.8	95.6	OK
	Sama Beirut	2016	195 m	35.1	11.6	Poor
	20|30	2016	155 m	30.8	22.4	Poor
	Les domes de Sursock	2013	140 m	60.4	25.2	Poor
	Crédit Libanais	2015	133 m	27.4	15.1	Poor
	Platinum Tower	2008	152 m	141.9	122.6	OK
	Marina Tower	2007	150 m	126.7	101.3	OK
	Bay Tower	2011	125 m	100.5	107.5	OK
	Four Seasons	2009	120 m	121.6	102.7	OK

Table 8

 8 Distribution of the building mean damage for the earthquake scenario of PGA 0.3 g for each building class and for the total number of buildings

	Structure			Mean Damage		
	Type	[0, 1[	[1, 2[	[2, 3[	[3, 4[	4
	Class 1	0	20%	79.6%	0.4%	0
	Class 2	7%	78%	15%	0%	0
	Class 3	100%	0	0	0	0
	All buildings	5.5%	60.7%	33.7%	0.1%	0

Table 9

 9 Distribution of the building mean damage for the earthquake scenario of PGA 0.5 g for each building class and for the total number of buildings

	Structure			Mean Damage		
	Type	[0, 1[	[1, 2[	[2, 3[	[3, 4[	4
	Class 1	0	0	89%	11%	0
	Class 2	0	0	60%	40%	0
	Class 3	0	100%	0	0	0
	All buildings	0	0.5%	68.1%	31.4%	0
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Application: estimation of seismic damages and debris at the scale of Beirut

Lebanon is a Middle Eastern country situated on the 1 200 km long Levant Fault System that stretches from the Gulf of Aqaba to Turkey. In Lebanon, the Levant Fault splits into 4 main ramifications: the three left-lateral strike slip faults: the Yammouneh, Roum and Serghaya-Rachaya faults, and the Mount-Lebanon Thrust [START_REF] Daeron | 12,000-Year-Long Record of 10 to 13 Paleoearthquakes on the Yammouneh Fault, Levant Fault System, Lebanon[END_REF][START_REF] Elias | Active thrusting offshore Mount Lebanon: Source of the tsunamigenic A.D. 551 Beirut-Tripoli earthquake[END_REF][START_REF] Huijer | Re-evaluation and updating of the seismic hazard of Lebanon[END_REF][START_REF] Walley | A braided strike-slip model for the northern continuation of the Dead Sea Fault and its implications for Levantine tectonics[END_REF]. Lebanon and its surroundings have been struck by several strong earthquakes that have caused massive destruction and a high number of fatalities [START_REF] Khair | Seismic zonation of the Dead Sea Transform Fault area[END_REF].

The most devastating earthquake in Lebanon was the 551 A.D. earthquake (moment magnitude, Mw ~7.5) attributed to a rupture on the Mount-Lebanon Thrust [START_REF] Elias | Active thrusting offshore Mount Lebanon: Source of the tsunamigenic A.D. 551 Beirut-Tripoli earthquake[END_REF]. The rupture of the Yammouneh fault in 1202 also caused wide-scale destruction in the Mediterranean region [START_REF] Daeron | 12,000-Year-Long Record of 10 to 13 Paleoearthquakes on the Yammouneh Fault, Levant Fault System, Lebanon[END_REF][START_REF] Ellenblum | Crusader castle torn apart by earthquake at dawn, 20 May 1202[END_REF].

The double-shock of the 16 March 1956 (Mw = 6.1, Mw = 6.3), was attributed to a rupture on the Roum Fault [START_REF] Nemer | Evidence of coseismic ruptures along the Roum fault (Lebanon): a possible source for the AD 1837 earthquake[END_REF] and is the most recent high-magnitude earthquake to affect Lebanon. It killed 136 people, destroyed 6 000 houses and damaged 17 000 others [START_REF] Harajli | Evaluation of the seismic hazard of Lebanon[END_REF]. Although Beirut did not witness any major earthquakes in the last couple of decades, the dense urbanization and the only recent and partial implementation of the seismic building code (decrees number 14 293 (2005) and 7 964 ( 2012)) make the city of Beirut highly vulnerable to earthquakes.

In view of these considerations, scenarios of earthquakes occurring at the Mount Lebanon Thrust (Epicentral distance R = 0 km from Beirut) were considered. The scenarios were fixed based on their PGA value, and their corresponding Mw and PGV values were computed using the ground-motion prediction equation established by [START_REF] Akkar | Empirical ground-motion models for point-and extendedsource crustal earthquake scenarios in Europe and the Middle East[END_REF]. We defined a first scenario of PGA = 0.3 g, the recommended PGA for the design of earthquake-resistant buildings in Beirut [START_REF] Huijer | Re-evaluation and updating of the seismic hazard of Lebanon[END_REF]. This scenario stands for an earthquake with a Mw of 6.0 on the Mount-Lebanon fault with a PGV of 16 cm/s. Another scenario with a PGA of 0.5 g was also considered.

Although pessimistic, this scenario is plausible for near-fault ground motion in Lebanon [START_REF] Fayjaloun | Hybrid Simulation of Near-Fault Ground Motion for a Potential Mw 7 Earthquake in Lebanon[END_REF] and corresponds to a Mw of 7.0 and a PGV of 40 cm/s.

Seismic mean damage estimation in Beirut

The application of the ANNs for the estimation of building mean damages requires soil resonance parameters: fsoil and A0HV. Soil investigation campaigns carried out in Beirut and part of it suburbs in the framework of the ANR-LIBRIS project investigated 827 sites using seismic noise recordings [START_REF] Brax | Towards a microzonation of the Greater Beirut area: an instrumental approach combining earthquake and ambient vibration recordings[END_REF][START_REF] Salameh | Using ambient vibration measurements for risk assessment at an urban scale: from numerical proof of concept to Beirut case study (Lebanon)[END_REF][START_REF] Salloum | The shear wave velocity structure of the heterogeneous alluvial plain of Beirut (Lebanon): combined analysis of geophysical and geotechnical data[END_REF]. The soil fundamental resonance frequency (fsoil) was obtained from these recordings using the HVSR (horizontal to vertical spectral ratio) approach [START_REF] Nakamura | A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface[END_REF]. From these measurements, interpolated maps of both the fsoil and A0HV were derived for the surveyed area (Fig. 16 (a) and (b) respectively).

The high resonance frequencies (above 10 Hz) and low A0HV (below 1) observed in the east and west of Beirut correspond to outcropping rock. Inversely, the presence of soil deposits can be observed in areas with low resonance frequencies (between 1 and 3 Hz), namely in the northern and the southern parts of Beirut. The soil
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Appendix

Fig. 21 Damage state probabilities depending on the mean damage value for buildings class 1