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Abstract—In this work, we are interested in gradient sparse
plus low patch-rank signal recovery for image structure-texture
decomposition, the structure being gradient-sparse and the tex-
ture low patch-rank. Based upon theoretical results of sparse
plus low-rank matrix recovery, we propose an algorithm to
automatically tune the regularization parameters of our model
depending on the content of the image. This permits to provide
an improved localized version of gradient sparse plus low patch-
rank decomposition. This algorithm is validated by experiments
on synthetic and real images.

Index Terms—Image decomposition, cartoon, texture, opti-
mization, gradient-sparsity, low patch-rank

I. INTRODUCTION

The problem of decomposing an image into a struc-
ture/cartoon component and a texture component has been a
longstanding area of research, with an extensive number of
applications such as image restoration, pattern recognition,
deraining and astromical imaging. The problem is typically
given as follows: given an image f , find a decomposition
f = u+v such that u is a is piecewise constant approximation
of the image, called the structure or cartoon component, and v
is zero-mean, oscillating and with local patterns, called the tex-
ture component. The problem is notoriously ill-posed as there
are twice more unknowns than known variables. Furthermore,
parameter tuning in structure-texture decomposition, the focus
of this paper, is notoriously difficult as the tuning parameters
depend upon the content of each image.

The problem of structure-texture decomposition (STD) is
often formulated as an optimization problem of the form

min
u,v

f=u+v

µR1(u) + γR2(v), (1)

where µ, γ are the tuning parameters and R1, R2 are the
regularization functions for the structure and texture com-
ponents respectively. For the characterization of the struc-
ture component, most models use the total variation [1],
R1(u)= ∥u∥TV = ∥∇u∥1, since it characterizes well the piece-
wise constant nature of the structure component. Although
the choice of the characterization of the structural component

has remained relatively unchanged across most proposed STD
models, many options exist when it comes to the texture
component.

Historically the first STD variational-based models use the
total variation to characterize the structural component, and
they use a functional space norm to constrain the textural
component, such as the L2-norm [1], G-norm [2], [3], L1-norm
[4] or H-norm [5], [6]. While theoretically well-founded and
able to capture the oscillating nature of texture, these norms
are either difficult to implement or cannot capture textures
with a small magnitude.

More recently, learning based approaches have been pro-
posed. In [7] the authors proposed a self-example and un-
supervised learning approach where the STD functional is
optimized using a neural network. In [8]–[10], methods based
upon unfolding the TV proximal operator have been proposed.

In the category of sparsity-prior and low-rank prior, the
texture is considered to be sparsely represented in an appro-
priate dictionary, which is either fixed or learned. One of the
earliest approach on the subject was to consider that texture
can be sparsely represented in a suitable given transformation
(e.g discrete cosine transform (DCT), Gabor transform) [11],
[12]. While very successful in some applications, the issue
with this approach is that many textures that arise in practical
applications cannot be modeled by DCT or other related
dictionaries. More recently, this approach was extended to use
convolutional sparse coding instead [13], where convolutional
filters are learned beforehand. However, this method is depen-
dent on the resolution thus the learned convolutional filters
should be trained accordingly.

The approach that we lean on in this paper is Schaeffer
and Osher’s low-patch rank (LPR) model [14] in which the
texture is considered to be of low patch-rank. That is to
say that given a patch map P : Rn×m → Rp2×N (with
overlap), where p × p is the dimension of the patches and N
the number of extracted patches from the image, rank(P(v))
should be relatively small. Conceptually, this expresses the
idea that patches of textures should reside within a common
small vector space. However, as rank-minimization is well
known to be a NP-hard problem, we instead minimize the



nuclear norm R2(v)= ∥P(v)∥∗ =
∑
i

σi(P(v)), which is known

to enforce low rank. As such, the (LPR) model is written as

min
u,v

f=u+v

µ ∥∇u∥1 + γ ∥P(v)∥∗ , (2)

where µ and γ are the tuning parameters. This optimization
problem can be solved using the Alternating Direction Method
of Multiplier (ADMM) [15]. While the LPR model is more
capable of extracting ideal textures from an image with well-
patterned texture than previous models, the fact that it uses
the nuclear norm to capture the low rank of patches of the
texture globally is an issue, notably when the given image
contains many different texture patterns. More recently, Ono et
al. [16] proposed a blockwise low-rank texture model (BNN)
to counteract against this issue with LPR.

While these methods yield acceptable results, they are diffi-
cult to tune, i.e the tuning parameters can greatly vary between
images in order to obtain the required STD. Recent work on
sparse + low rank [17], [18] recovery have shown that the
parameter µ, γ in (5) can recover the original decomposition
when µ

γ is proportional to
√

sparsity/rank. In this paper, we
take inspiration from such results and we extend them to the
case of the LPR model: we consider the structure component
as gradient-sparse and the texture component as low patch-
rank, so that we can provide an automatic parameter selection
method.

Contributions: The main contribution of this paper is to
provide a novel algorithm to automatically tune the regu-
larization parameters of the low patch-rank structure texture
decomposition model, which adapts to the local content in
the image. This allows us to construct a localized version
of the LPR model with a reduced amount of parameters, e.g
for an image of size 512 × 512 and using a window size of
64× 64, using an overlap of 16, we reduce 121 parameters to
a single parameter. The resulting algorithm is highly scalable
as each operation can be parallelized efficiently. Finally, we
demonstrate the robustness and effectiveness of our algorithm
with numerical synthetic experiments (fig. 1) and comparative
results (fig. 2) to other related methods (LPR and BNN) on
real images.

II. LOCAL LPR DECOMPOSITION WITH AUTOMATIC
PARAMETER SELECTION

A. Localized LPR

In order to add localization of texture into the LPR model,
we introduce the following subdivision with overlap of the
image

Qo
(n1,m1)

(f) =

Q(f)1,1 · · · Q(f)1,qm
...

. . .
...

Q(f)qn,1 · · · Q(f)qn,qm ,

 , (3)

where o is the size of the overlap between adjacent blocks,
(n1,m1) is the dimensions of the subdivision blocks Q(f)i,j .

To simplify notations, we set fi,j = Q(f)i,j (and similarly
ui,j , vi,j). Our model can be written as

min
u,v

f=u+v

qn,qm∑
i,j=1

µi,j ∥ui,j∥TV + γi,j ∥P(vi,j)∥∗ , (4)

where {µ}q1,q2i,j=1 and {γ}q1,q2i,j=1 are the regularization parameters
of the model. Furthermore, we set Q−1 as the pseudo-inverse
mapping from the subdivision, where we use linear interpola-
tion between frames to reconstruct overlapping regions.

B. Gradient-Sparse + Low Patch rank recovery

With their increase in number, it is not possible anymore
to set manually the local regularization parameters of the
localized LPR. We propose a novel method to automatically
adjust the regularization parameters, which adapt to the local
content in the image. The method is largely inspired from
the problem of sparse + low-rank recovery of compressive
sensing. Given a s-sparse matrix ū ∈ Rn such that ∥ū∥0 =
#{i, j | ūi,j ̸= 0} ≤ s, a low-rank matrix v̄ ∈ Rn such that
rank(v̄) ≤ r and a linear map A : Rn → Rm, the aim of
sparse + low-rank recovery is to recover the couple (ū, v̄)
from a measurement b = A(ū + v̄). Recent works [17], [18]
have shown that the couple (ū, v̄) can be recovered under some
conditions via the minimization problem:

min
u,v

b=A(u+v)

µ ∥u∥1 + γ ∥v∥∗ (5)

when µ
γ = c

√
r√
s

, where c is a specified constant.
In [19], Chandrasekaran et al showed that the sparse+low

rank matrix recovery problem could be solved with A=Id
if the support space of the sparse component and the
row+column space of the low-rank component are disjoint.
Tanner and Vary’s work [18] on the subject showed that if
the incoherence between the sparse component and the low
rank (LR) component and the operator A verifies a restricted
isometry property (i.e. A behaves almost like an isometry on
sparse + LR objects with incoherence), then the couple (ū, v̄)

can be recovered from (5), with µ
γ =

√
2r
s . In a more general

context, when the unknown is the concatenation (u, v) of a
sparse vector and a LR matrix, it was shown in [17] that,
for operators having the restricted isometry property (without
incoherence between components, thus mostly specializing
to random observation operators), the choice of µ

γ =
√

r
s

is optimal for the family of low rank+sparse problems. In
Section II-C, we propose to use this choice of parameters as a
basis for automatic parameter selection in our localized LPR
model. Indeed, in the LPR model the texture is interpreted
as being of low patch rank and the structural component
is constrained by the total variation which forces it to be
gradient-sparse; the LPR model is a gradient-sparse + low
patch-rank recovery problem, with A = Id.

To test the validity of this parameter selection strategy, we
conduct numerical experiments using synthetic 64×64 images
where we control the gradient sparsity of the structure and the
patch-rank of the texture (Fig. 1). The gradient sparsity is
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Fig. 1: Recovery relative error of the structure component with
different gradient-sparsity s∈{105, 139, 173} a¨nd patch-rank
r∈{2, 4, 6} via the LPR model with tuning parameters µ = c√

s

and γ = 1√
r

. (a) Fourier texture, (b) Hadamard basis and (c)
Gaussian basis. (d) Example of a synthetic test image with a
fourier texture used in this experiment.

controlled by drawing a circle with a chosen radius, whereas
the texture was synthesized using either a sparse Fourier
texture or a Gaussian or Hadamard basis in the patch space.
We then plot the relative error of reconstruction of (2) with
µ
γ = c

√
s
r , where s is the gradient-sparsity of the structure

and r the patch-rank of the texture. We observe that for a
given category of texture, a fixed c ∈ [0.5, 0.75] minimizes
the recovery error.

C. Local LPR with adaptive parameter tuning
Since the gradient-sparsity of the structure component and

the patch-rank of the texture component cannot be distin-
guished beforehand, we propose to approximate them during
the iterative steps of the ADMM and then to update the tuning
parameters as follows:

µi,j ≈
c√

∥∇ũi,j∥0
and γi,j ≈

1√
rank(P(ṽi,j))

, (6)

where ũ and ṽ are an approximation of the structural and textu-
ral components, and c is a constant that we can set manually.
In practice, the gradient-sparsity and rank are estimated by
enumerating the top 90% gradients and patch-singular values,
denoted by ∥·∥0,est and rank(·)est respectively. With this
technique, we narrow down the number of required parameters
to tune from qn × qm to a single parameter and each tuning
parameter adapts to the local content in the image. In order to
use the ADMM, we need to compute the proximal operator of
the total variation, which can be quickly solved using FISTA
[20] and the proximal operator of the nuclear norm, which is
known as the singular value thresholding (SVT) operator [21]:

prox∥·∥∗,β
(x) = SV T (x, β) = U max(D − βI, 0)V T , (7)

where x = UDV T is the singular value decomposition of x
[22] and the maximum is taken elementwise. In practice, every
(i, j)-operation can be performed simultaneously in parallel,
making the method highly scalable.

Algorithm 1 (Our proposed method)
Notation: zi,j = Q(z)i,j , P−1 the pseudo inverse of P
u0 = f , v0 = 0, y0 = 0
µ0
i,j =

c√
∥∇fi,j∥0

, γ0
i,j =

1
p

while not converged do
for each (i, j) ∈ [[1, qn]]×[[1, qm]] do
uk+1
i,j = prox

TV,
µk
i,j
ρ

((f − vk − yk)i,j)

vk+1
i,j = P−1(SVT(P(f − uk+1 − yk)i,j ,

γk
i,j

ρ ))
if k = 0 mod M then
µk+1
i,j = c√

∥∇uk+1
i,j ∥

0,est

γk+1
i,j = 1√

rank(vk+1
i,j )est

end if
end for
uk+1, vk+1 = Q−1({uk+1

i,j }i,j),Q−1({vk+1
i,j }i,j)

yk+1 = yk + (uk+1 + vk+1 − f)
end while

III. EXPERIMENTAL RESULTS

We present some decomposition results (fig. 2), where we
compare our method to the Low Patch Rank (LPR) and Block
Norm Normalization (BNN) methods. The source code of
our algorithm 1 and numerical experiments (fig. 1) can be
found in the git repository [23]. In our decomposition results,
the patch operator P was parameterized with a patch size
p=5 and the subdivision Q of the image was performed with
(n1,m1)=(64, 64) and an overlap o=16. Finally, our tuning
parameter was set to c=0.65 for every image and in order to
achieve comparative results with our method, we tuned the
LPR and BNN models for each image such that the output
textural components are of similar magnitude by requiring
| ∥vother∥2 − ∥vproposed∥2 |<0.1.

As seen in our results, our method achieves better decom-
position than the original LPR and BNN. For the same amount
of texture, our structure component is sharper and while BNN
captures well stripes-like textures, we observed that this tends
to force a lot of structural details such as facial features into
the textural component. Moreover, fine grain texture such as
the floor in the Barbara image is left out compared to our
method (see fig. 3). Finally, we observe that our localization
of the LPR model improves it significantly with a gain in
sharpness with a lot less structural component being present
in the texture (e.g the hat in the zoom of the middle image,
fig. 2).

Furthermore, compared with other methods, our method re-
quires very little tuning: indeed, when we set any c∈[0.5, 0.75]
we observed that our method achieves a good image decom-
position for these images (and more, available in [23]). To
illustrate the robustness of our method: in Fig. 2, our method



Fig. 2: Comparison between different methods. From left to right: original image, LPR, BNN and our proposed method.



(a) (b)

Fig. 3: 1-dimensional sample taken from the Barbara image
with different decompositions. a) Zoom on the table leg for
the different decomposition methods (from left to right: LPR,
BNN and ours). b) 1-D graph of the area highlighted in red
with different decomposition; top graph: structure component,
bottom graph: texture component. We observe that the cartoon
component of BNN tends to pursue the original signal, while
LPR and ours are more piecewise constant. This leads the
BNN to capture less texture in the region surrounding the table
leg in the image.

was performed with a fixed c=0.65 whereas the other methods
required changes of up to 60% and 53% in the parametrization
for LPR and BNN methods respectively. Furthermore, since
our method is performed locally simultaneously, we can sig-
nificantly accelerate the process by parallelizing the computing
using a graphic processing unit.

IV. CONCLUSION

We presented an efficient parameter selection strategy for
the gradient sparse plus low patch rank model, validated
by experiments. There are still some open questions which
should be investigated in the future. On the one hand, from a
theoretical point of view, the gradient-sparse + low patch-rank
recovery problem has yet to be studied. Fundamentally, in the
sparse + low rank recovery problem, sparse and LR matrices
cannot be recovered by (5) when they are not sufficiently
incoherent one to the other: it is not clear how this translates
on the type of structure-texture decomposition that can be
recovered using the LPR model. On the other hand, the
convergence of the scheme we used to update our parameters
should be explored further.

Up to now, tuning decomposition models has remained
largely try-and-error and our tuning methodology could also
benefit other sparsity/low rank prior based decomposition
models such as BNN in order to reach an optimal decom-
position.
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