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We investigate theoretically the momentum-dependent frequency and damping of low-lying collec-
tive excitations of superconductors and charged superfluids in the BCS–BEC crossover regime. The
study is based on the Gaussian pair-and-density fluctuation method for the propagator of Gaussian
fluctuations of the pair and density fields. Eigenfrequencies and damping rates are determined in a
mutually consistent nonperturbative way as complex poles of the fluctuation propagator. Particular
attention is paid to new features with respect to preceding theoretical studies, which were devoted
to collective excitations of superconductors in the far BCS regime. We find that at a sufficiently
strong coupling, new branches of collective excitations appear, which manifest different behavior as
functions of the momentum and the temperature.

I. INTRODUCTION

Superconductors and fermionic superfluids exhibit a rich variety of collective excitations, which are provided by
the density and pair field response. The majority of known superconductors are realized at high concentrations of
electrons such that the plasma energy is large with respect to the gap, ~ωp ≫ ∆. Under this condition, the response
of superconductors and charged superfluids in the frequency range ω ∼ ωp is dominated by the plasma branch of
collective excitations [1]. At lower frequencies, namely in the range of the pair-breaking threshold, other collective
excitations can be observable in superconductors and charged superfluid systems, e.g., pair-breaking Higgs modes [2]
and gapless Carlson–Goldman modes [3]. The low-lying collective excitations can be resolved experimentally in both
neutral and charged Fermi superfluids using different methods, such as Bragg spectroscopy [4], spatially resolved
interferometry [5], and pump-THz probe spectroscopy [6].
The low-lying collective excitations are well studied theoretically for superconductors [2, 7] in the weak-coupling BCS

regime. Recent progress in a realization of the BCS–BEC crossover regime in superconductors makes the treatment
of collective excitations in the whole crossover range timely and relevant.
We consider collective excitations as small Gaussian fluctuations on the top of a uniform mean-field solution for

the pair and density fields. This formalism is equivalent to the random phase approximation (RPA) [8]. Using these
methods, collective excitations in charged superfluids have been investigated [9, 10], being concentrated on the case of
relatively small plasma frequencies, which can be in resonance with the pair-breaking threshold. The present study is
devoted to the other regime, when the plasma frequency is large with respect to the gap, which is relevant for existing
superconductors. For ~ωp ≫ ∆, the plasma branch of the response is only slightly affected by the difference between
the BCS–BEC crossover and the far BCS regime. Therefore, the paper is particularly focused on the dispersion and
damping of low-lying collective excitations.

II. GAUSSIAN PAIR-AND-DENSITY FLUCTUATION METHOD

The present treatment follows the theoretical scheme which is represented in detail in Ref. [10]. Therefore, we only
briefly describe the main steps of the derivation. It exploits the partition function of a gas of fermions with the spin
projection σ = ±1/2, which is a path integral over anticommuting Grassmann fields

{

ψ̄σ, ψσ

}

,

Z =

∫

e−SD
[

ψ̄, ψ
]

(1)
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with the action functional

S =

∫ β

0

dτ

∫

dr





∑

σ=↑,↓

ψ̄σ

(

∂

∂τ
+H − µ

)

ψσ + gψ̄↑ψ̄↓ψ↓ψ↑





+
1

2

∫ β

0

dτ

∫

dr

∫

dr′
e2

4πǫ0ε |r′ − r|
∑

σ,σ′

ψ̄σ (r) ψ̄σ′ (r′)ψσ′ (r′)ψσ (r) . (2)

The interparticle interaction in (2) is a sum of the attractive contact potential with the coupling constant g < 0 and
the repulsive Coulomb potential, in which ǫ0 is the permittivity of free space and ε is the high-frequency dielectric
constant of a medium. Additionally, β = ~/kBT is the inverse temperature, and µ is the chemical potential. We use
the set of units with ~ = 1, the particle mass m = 1/2, and the particle density n such that the Fermi wave vector of

free fermions in 3D is kF ≡
(

3π2n
)1/3

= 1. Consequently, the free-particle Fermi energy EF in these units is EF = 1.
Next, we obtain the effective bosonic action through standard steps as described in detail in Ref. [10]. First,

we introduce the auxiliary bosonic fields: the pair field
[

Ψ̄,Ψ
]

and the density field [Φ]. Second, the Hubbard–
Stratonovich shift of bosonic variables allows us to perform the path integration over fermionic variables analytically
exactly. This results in the effective bosonic action

Seff = − tr
[

ln
(

−G
−1

)]

+

∫ β

0

dτ

∫

dr

(

−1

g
Ψ̄Ψ +

1

8π
(∇Φ)

2

)

. (3)

with the inverse Nambu matrix

−G
−1 =

(

∂
∂τ +H − µ+ i

√
α0Φ −Ψ

−Ψ̄ ∂
∂τ −H + µ− i

√
α0Φ

)

. (4)

Here, α0 is the dimensionless coupling strength for the Coulomb interaction,

α0 ≡ e2

4πǫ0ε~

√

2m

EF
. (5)

The relation between α0 and the bare plasma frequency ωp =
√

e2n/ǫ0εm in the chosen units is given by ωp =
√

(8/3π)α0.
The expansion of the effective bosonic action (3) up to the quadratic order in powers of fluctuations of the pair and

density fields about the mean-field solution leads to the Gaussian pair-and-density fluctuation (GPDF) action. We
approximate the mean-field solution by uniform values, neglecting exchange scattering contributions [9]. Consequently,
the gap equation remains the same as for a neutral superfluid:

∫

k<K0

dk

(2π)
3

(

1

2Ek

tanh

(

βEk

2

)

− 1

2k2

)

+
1

8πas
= 0, (6)

where Ek =
√

ξ2k +∆2 is the pair excitation energy, ξk = k2 − µ is the free-fermion energy, and as is the s-wave
scattering length coming from the renormalization of the coupling constant [11]:

1

g
=

1

8πas
−
∫

k<K0

dk

(2π)
3

1

2k2
, (7)

with the ultraviolet cutoff K0. In the case of the model contact interaction, g → 0 and, correspondingly, the cutoff is
set to K0 → ∞, keeping the integral in equation (6) convergent.
The resulting GPDF action is a quadratic form of the modulus (λq,m) and phase (θq,m) fluctuations of the pair

field and the density fluctuations Φq,m:

SGPDF =
1

2

∑

q,m

(

λ−q,−m θ−q,−m Φ−q,−m

)

×





K1,1 K1,2 K1,3

−K1,2 K2,2 K2,3

K1,3 −K2,3 K3,3









λq,m
θq,m
Φq,m



 . (8)
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Here, q is the momentum, and m is the Matsubara index of the Fourier representation of the bosonic fields. The
coefficients Ki,j constitute the matrix of the inverse GPDF propagator. They are explicitly given by (for details,
see [9, 10, 12]):

K1,1 (q, iΩm) = −

1

8πas

+

∫

dk

(2π)3

{

1

2k2
+

tanh (βEk/2)

4EkEk+q

×

[

(

ξkξk+q + EkEk+q −∆2
)

(

1

iΩm − Ek − Ek+q

−

1

iΩm + Ek + Ek+q

)

+
(

ξkξk+q − EkEk+q −∆2
)

(

1

iΩm − Ek+q + Ek

−

1

iΩm − Ek + Ek+q

)]}

, (9)

K2,2 (q, iΩm) = −

1

8πas

+

∫

dk

(2π)3

{

1

2k2
+

tanh (βEk/2)

4EkEk+q

×

[

(

ξkξk+q + EkEk+q +∆2
)

(

1

iΩm − Ek − Ek+q

−

1

iΩm + Ek + Ek+q

)

+
(

ξkξk+q − EkEk+q +∆2
)

(

1

iΩm − Ek+q + Ek

−

1

iΩm − Ek + Ek+q

)]}

, (10)

K1,2 (q, iΩm) = i

∫

dk

(2π)
3

tanh (βEk/2)

4EkEk+q

×
[

(ξkEk+q + Ekξk+q)

(

1

iΩm − Ek − Ek+q

+
1

iΩm + Ek + Ek+q

)

+(ξkEk+q − Ekξk+q)

(

1

iΩm − Ek+q + Ek

+
1

iΩm − Ek + Ek+q

)]

, (11)

K1,3 (q, iΩm) = −i
√
2α0∆

∫

dk

(2π)
3

tanh (βEk/2)

4EkEk+q

(ξk + ξk+q)

×
(

1

iΩm − Ek − Ek+q

− 1

iΩm + Ek + Ek+q

)

+
1

iΩm + Ek − Ek+q

− 1

iΩm − Ek + Ek+q

)

, (12)

K2,3 (q, iΩm) = −
√
2α0∆

∫

dk

(2π)
3

tanh (βEk/2)

4EkEk+q

×
[

(Ek+q + Ek)

(

1

iΩm − Ek − Ek+q

+
1

iΩm + Ek + Ek+q

)

+(Ek+q − Ek)

(

1

iΩm + Ek − Ek+q

+
1

iΩm − Ek + Ek+q

)]

, (13)

K3,3 (q, iΩm) =
q2

4π
− α0

∫

dk

(2π)
3

tanh (βEk/2)

2EkEk+q

×
(

EkEk+q − ξkξk+q +∆2

iΩm − Ek − Ek+q

+
EkEk+q + ξkξk+q −∆2

iΩm − Ek + Ek+q

−EkEk+q + ξkξk+q −∆2

iΩm + Ek − Ek+q

− EkEk+q − ξkξk+q +∆2

iΩm + Ek + Ek+q

)

. (14)

The other matrix elements can be written down using the symmetry relations,

K2,1 (q, iΩm) = −K1,2 (q, iΩm) , (15)

K3,1 (q, iΩm) = K1,3 (q, iΩm) , (16)

K3,2 (q, iΩm) = −K2,3 (q, iΩm) (17)
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As the matrix elements of the inverse GPDF propagator K1,3 and K2,3 are proportional to the gap ∆, the pair and
density fields become decoupled at T = Tc. For lower temperatures, however, this coupling can influence the spectra
of collective modes. Moreover, as shown below, even in a relatively close vicinity of the transition temperature, at
T = 0.99Tc, the coupling of the pair and density fields leads to clearly observable consequences, such as an appearance
of new collective modes.
Frequencies and damping factors of collective excitations are determined in a mutually consistent way through roots

of the determinant of the inverse GPDF propagator for the complex frequency argument z = ω + iγ,

detK (z) = 0, (18)

or, in other words, as complex poles of the GPDF propagator. In order to get these poles, the propagator is analytically
continued through the branch cut at the real axis (for more details, see Ref. [10]). This method is well established
and widely used, particularly for Green’s functions [13], for the dielectric function [14], for collective excitations of
ultracold Fermi gases [16, 17].
The matrix elements Kj,k (q, z) contain several angular points at the branch cut. The analytic continuation is

therefore possible through several intervals between these points, as analyzed in detail in Ref. [17]. Different intervals
can reveal different branches of collective excitations.
Bounds of intervals for the analytic continuation shown in Figure 1 (and considered in detail in Ref. [17]) influence

both the analytic solutions of the dispersion equation and the spectral weight functions, where they are explicitly

manifested as shown below. In the figure, the frequency ω1 is the pair-breaking continuum edge. The frequencies ω
(pp)
2

and ω
(ph)
2 correspond to bounds of channels for the particle–particle and particle–hole scattering processes, respectively,

and ω3 = 2

√

(µ− q2/4)2 +∆2 is the energy of the BCS pair Ek−q/2 + Ek+q/2 at zero fermion momentum k. The

set of these bounds is determined by a change in the configuration of the resonant wave vectors for any of the two
resonance conditions, ω = Ek−q/2 + Ek+q/2 for the particle–particle scattering channel and ω =

∣

∣Ek−q/2 − Ek+q/2

∣

∣

for the particle–hole channel. The values qcj indicate bounds of intervals of momentum where different branches of
collective excitations can exist. For completeness, we can also compute spectral weight functions for the phase–phase

0 2 4 6 8 10 12 14
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qc3

qc2

IVIII

IIb

IbIb

IIa
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 (pp)
2
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2

 3/

q

1/kFas = 0.5
T = 0.9Tc

Iaqc1

FIG. 1: (Adapted from Ref. [17].) Angular-point frequencies of the GPDF matrix elements for 1/kF as = 0.5 and T = 0.9Tc.
The areas between curves determine intervals for the analytic continuation. The momentum is multiplied by the coherence
length ξ ≡ vF /Tc, where vF is the Fermi velocity (vF = 2 in the present units).

and modulus–modulus correlation functions of the pair field and for the density–density correlation function. In the
general form, they are reported in Ref. [10]. Here, we approximate them assuming the limit ωp → ∞ for the plasma
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frequency. This approximation is relevant for low-lying collective excitations, and reads

lim
α0→∞

χλλ (q, ω) =
1

π
Im

K2,2 (q, ω + i0+) K̃3,3 (q, ω + i0+) + K̃2
2,3 (q, ω + i0+)

det K̃ (q, ω + i0+)
, (19)

lim
α0→∞

χθθ (q, ω) =
1

π
Im

K1,1 (q, ω + i0+) K̃3,3 (q, ω + i0+)− K̃2
1,3 (q, ω + i0+)

det K̃ (q, ω + i0+)
, (20)

lim
α0→∞

χρρ (q, ω) = − q4

16π3
Im

(

detKGPF (q, ω + i0+)

det K̃ (q, ω + i0+)

)

, (21)

with the rescaled matrix elements and the determinant

K̃1,3 =
1√
α0
K1,3, K̃2,3 =

1√
α0
K2,3, K̃3,3 =

1

α0

(

K3,3 −
q2

4π

)

, (22)

det K̃ = lim
α0→∞

(

1

α0
detK

)

, (23)

which tend to finite and nonzero limiting values when α0 → +∞.
In the limit of large ωp, the contribution of the low-lying collective excitations in the density–density spectral weight

is extremely small. Moreover, in this limit, the contribution of the density oscillations to the low-lying excitations
must be relatively small. Therefore, we use the pair–field spectral weight functions in the subsequent numeric results.
The phase–phase and modulus–modulus spectral weight functions are useful to clarify the physical sense of different
modes and to see whether they are provided by oscillations of the modulus or the phase of the pair field. Thus, the
spectrum of collective excitations is determined below in two complementary ways, (1) as peaks of spectral weight
functions, and (2) finding a solution for complex poles of the GPDF propagator analytically continued to the lower
half-plane of the complex frequency.
The random-phase and Gaussian fluctuation approximations are well substantiated and widely used in the whole

BCS–BEC crossover, as long as we stay under the assumption that collective excitations are small (harmonic)
oscillations about the uniform background. The special case when higher-order terms in the power of fluctuations are
important is considered in Ref. [18]. The other reason for a quantitative inaccuracy of the present approach can follow
from the mean-field results for the uniform gap and the chemical potential. This does not influence the qualitative
behavior of collective excitations as discussed in Refs. [16, 17].

III. SPECTRA OF COLLECTIVE EXCITATIONS

There is a significant difference between the behavior of collective excitations in neutral and charged fermionic
superfluids in the frequency range of the order of the pair-breaking threshold. In a neutral superfluid Fermi gas, there
exists the gapless (Anderson–Bogoliubov, Goldstone) collective excitation branch provided by the phase response of
the pair field, and the gapped (pair-breaking, Higgs) branch constituted by the modulus response. The Anderson–
Bogoliubov mode turns to the gapped plasma mode due to the Coulomb interaction, and the Goldstone phase mode is
thus suppressed [8]. When the temperature rises, approaching the vicinity of the transition temperature Tc, a gapless
mode appears again due to the presence of the normal fraction, as described by Carlson and Goldman [3].
In the BCS–BEC crossover, the strong coupling is favorable for the manifestation of the gapless collective excitation

branch with respect to that in the far BCS regime. This extended range of survival for gapless excitations is revealed
in the contour plots of the spectral weight functions for the phase and modulus response of a charged superfluid in
Figure 2. In the far BCS limit [7], the gapless mode disappears below T/Tc ≈ 0.9, while it is rather strongly expressed
at that temperature even in the moderate BCS case with 1/kFas = −0.5, and moreover at higher coupling strengths.
The logarithmic scale is used for the better visibility of the whole spectrum. Additionally, we partly clipped the plot
range for the spectral weights of the phase response in Figure 2a,c. The clipping areas are shown in red.
Comparing the phase and modulus spectral weight functions to each other, it can be seen that gapless collective

excitations in the BCS–BEC crossover appear in both phase and modulus spectral weight functions such that they
are provided by both the modulus and phase response as distinct from the far BCS limit 1/as → −∞ [7], where they
are constituted by phase excitations only. The spectral weight functions show the existence of more than one gapless
branch. One of them contains a significant contribution of amplitude excitations, with an increasing relative weight
when T approaches Tc, as can be seen from Figure 2b,d. The other gapless branches are not visible in the modulus
spectral weight functions. Consequently, they can be attributed to the phase response. We can see a splitting of
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these collective excitations to the branches above and below the particle–hole angular point frequency ω
(ph)
2 , which is

revealed as a kink in the contour plots.
The pair-breaking collective excitation branch is less affected by the Coulomb interaction and exists both in super-

conductors and in neutral Fermi superfluids. The pair-breaking Higgs modes do not contain a sufficiently resolvable
phase component and, therefore, are not visible in the spectral weight functions for the phase response (Figure 2a,c).
They are provided by amplitude oscillations in both neutral and charged superfluids.

a Phase response

1/ = 0.5a
s

-

/ = 0.9T T
c

b Modulus response

1/ = 0.5a
s

-

/ = 0.9T T
c

c Phase response

1/ = 0.5a
s

-

/ = 0.99T T
c

d Modulus response

1/ = 0.5a
s

-

/ = 0.99T T
c

FIG. 2: Contour plots of the spectral weight functions at T = 0.9Tc (a,b) and at T = 0.99Tc (c,d) for the phase (a,c) and
modulus (b,d) response of a charged Fermi superfluid with the inverse s-wave scattering length 1/kF as = −0.5. The momentum
is measured in units of 1/ξ, where ξ ≡ vF /Tc with the Fermi velocity vF = ~kF /m. The clipping area above the plot range for
the spectral weights is shown by red color.

The one-dimensional slices of the spectral weight functions at selected values of the pair field momentum q shown
in Figure 3 give us even more transparent picture of the behavior of different collective excitation branches. The kink

in the spectral weight functions of the phase response manifested in Figure 3a,c at ω = ω
(ph)
2 apparently indicates the

existence of two gapless modes related to phase excitations. They are not well resolved from each other because in
the temperature range where gapless modes exist they exhibit significant damping. Consequently, the two peaks in
Figure 3a,c substantially overlap.
According to the spectral weight functions in comparison with the results of Ref. [17], the gapless mode splits to

more branches in charged superfluids/superconductors than in neutral superfluids. It is not a priori clear whether or
not this splitting is accompanied by an appearance of more than one complex poles in the analytic solution. Below,
we show that the splitting is indeed consistent with the behavior of the poles of the propagator.
The spectral weight functions for the amplitude response in Figure 3b,d show peaks attributed to the gapped Higgs

modes and gapless modes. The Higgs mode frequencies are pinned to the pair-breaking continuum edge and tend to
2∆ at the small momentum. Their behavior in charged superfluids is only slightly influenced by plasma oscillations
at ωp ≫ ∆, contrary to the case of small plasma frequencies considered in Ref. [10], where Higgs and plasma modes
can be in resonance.
Besides the Higgs modes, the amplitude response exhibits the lowest-energy gapless excitation branch, which shows

a distinctive dissipative behavior. Its response magnitude increases when moving close toward Tc.
Next, we analyze complex eigenfrequencies given by roots of the dispersion equation (18). The solution based on the

analytic continuation of the GPDF propagator exhibits more complex poles in the BCS–BEC crossover with respect
to the far BCS limit, in accordance with the spectral weight functions shown in Figure 2. Only a part of them are
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FIG. 3: Spectral weight functions of the phase (a,c) and amplitude (b,d) pair field response at T/Tc = 0.9 (a,b) and T/Tc = 0.99
(c,d) for several values of the field momentum q.

really physically significant, namely those that have relatively small damping rates, because in general, complex poles
of Green’s functions can be convincingly attributed to elementary excitations only at sufficiently small damping [15].
Figure 4 shows the momentum dependence of eigenfrequencies and damping factors in the moderate BCS regime for
T = 0.9Tc and for two values of the inverse scattering length, 1/kFas = −0.5, which corresponds to Figure 2, and the
unitarity regime with 1/kFas = 0.
Even at small damping, the mutually consistent calculation of eigenfrequencies and damping factors is more rigorous

than the perturbation approach, where the eigenfrequency is determined for the zero damping, and the damping rate
is then calculated within the lowest-order perturbation theory. The perturbation approach can give solutions such as
an upper mode at ω ≈ 2∆ for phase excitations, which may be unphysical, as mentioned in Ref. [7].
We show in Figure 4 the most representative (with non-negligible spectral weights) branches of gapless collective

excitations. These roots of the dispersion equation (18) are generated by the analytic continuation of the GPDF
propagator through the intervals Ia and Ib from Figure 1. In agreement with the spectral weight functions, we can

see three of the most representative complex poles with the eigenfrequencies
(

ω
(1)
Ia , ω

(2)
Ia

)

< ω
(ph)
2 and ωIb > ω

(ph)
2 .

The latter pole does not exist in the solution for neutral superfluids [17]. Therefore, the appearance of this gapless
mode is provided by the interaction of the phase and plasma collective excitations. These two upper-frequency gapless
modes have the sound-like (linear) dispersion at the small momentum. This looks like the splitting of the phononic-like
Carlson0-Goldman branch to two phononic-like collective excitation modes. Figure 4a demonstrates an example of

the upper-frequency gapless mode pole z
(2)
Ia existing in the restricted area of momentum q < q1c, as follows from the

scheme of intervals for the analytic continuation (Figure 1).

The lower-frequency gapless branch with the eigenfrequency ω
(2)
Ia is an analog of the second gapless mode in neutral

Fermi superfluids [19]. It exists at T sufficiently close to the transition temperature and disappears at some tem-
perature below Tc, which depends on the inverse scattering length, and decreases when rising the coupling strength.
As can be seen from Figure 1, this second mode is close to disappearance at T = 0.9Tc and 1/as = −0.5, but it is
non-vanishing at 1/as = 0 with the same relative temperature. Moreover, at unitarity, we can see the crossing of the

solutions ω
(1)
Ia and ω

(2)
Ia at qξ ≈ 1.6. Thus, at a larger momentum, ω

(2)
Ia becomes the upper gapless mode of the two.

This crossing of frequencies is accompanied by the avoided crossing of the damping factors so that complex roots are
not crossed. This behavior of complex eigenfrequencies is qualitatively the same as that for neutral Fermi superfluids,
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FIG. 4: Heavy solid, dashed and dotted curves: eigenfrequency (a,c) and damping factor (b,d) of low-lying collective excitations
for the inverse scattering length 1/kF as = −0.5 (a,b) and 1/kF as = 0 (c,d) at the relative temperature T/Tc = 0.9. Thin solid,
dashed and dotted curves show angular-point frequencies, which indicate bounds of energy intervals for different scattering
processes.

discussed in Refs. [17, 19].

The pair-breaking collective excitation branch in the BCS–BEC crossover and at T 6= 0 splits to two branches ω
(1)
IIb

and ω
(2)
IIb, similarly to the pair-breaking mode in a neutral fermionic superfluid [17]. The first solution ω

(1)
IIb dominates

at a small momentum with respect to ω
(2)
IIb due to a smaller damping. It exhibits a negative dispersion approaching

a minimum at some finite q. This behavior has an analog with the negative dispersion of the plasma mode [9] found
when the plasma frequency is low and comparable with the gap.

The gapless mode frequencies ω
(1)
Ia and ωIb expand to the continuum when T is close to Tc, as shown in Figure 5,

similarly to the phononic-like mode in a neutral superfluid [17]. This mode frequency demonstrates an avoided crossing
with the frequency of the pair-breaking mode frequency ωIIb above the threshold, accompanied by the crossing of their
damping factors. The other gapless mode zIb exhibits crossing with the Higgs mode for frequencies but no crossing for

damping factors. The two gapless branches ω
(1)
Ia and ω

(2)
Ia manifest the crossing in the BCS regime at 1/kFas = −0.5,

which is changed to the avoided crossing at a strong coupling with 1/kFas = 0. Correspondingly, the damping factors

γ
(1)
Ia and γ

(2)
Ia are crossed in the BCS regime and exhibit an avoided crossing at unitarity. The aforesaid behavior

of complex poles is qualitatively similar to that found for collective excitations in a neutral superfluid, where they
behave as particles interacting with each other via a repulsive potential.
Comparing the solutions of the dispersion equation (18) with the peaks of the spectral weight functions in Figure 2,

it can be seen that the gapless modes with the frequencies ω
(1)
Ia and ωIb are related to the phase response because

there are no visible fingerprints of these modes in the modulus spectral weight functions. The other gapless mode

ω
(2)
Ia is distinctively manifested in the spectral weight functions of the modulus response, and consequently contains

a significant part of the amplitude oscillations. When the temperature shifts toward Tc, the relative weight of this
(lowest energy at small q) gapless mode in the modulus response increases with respect to the relative weight of the
Higgs mode, while the relative weights of the gapless modes in the phase response vary only slightly.

The dispersion of the gapless mode ω
(2)
Ia is linear at a sufficiently small momentum. When the momentum increases

further, we can observe a range of q, where ω
(2)
Ia (q) is a convex function. When T approaches a vicinity of Tc, the

interval of linearity gradually shrinks so that the gapless branch ω
(2)
Ia apparently tends to the mode with a quadratic

dispersion, similarly to the analogous mode in a neutral superfluid [11, 17].
In general, the real part of a complex pole is interpreted as the eigenfrequency of the collective mode, and the

imaginary part determines the damping factor, which is the inverse lifetime of the mode. This physical picture is
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FIG. 5: Eigenfrequency (a,c) and damping factor (b,d) of low-lying collective excitations for the inverse scattering length
1/kF as = −0.5 (a,b) and 1/kF as = 0 (c,d) at the relative temperature T/Tc = 0.99. The notations are the same as in
Figure 4.

adequate at relatively small damping factors, when complex poles are well-determined quasiparticle excitations. For
stronger damping, this understanding gradually becomes rather conventional. Nevertheless, we can observe this about
collective excitations even when damping is not small, just describing the obtained complex poles as they appear.
The broadening of collective excitations hardly can be subdivided into the quantum and thermal parts precisely.

Within the GPDF/RPA methods, they come together in the matrix elements. The broadening of collective modes
at T = 0 is of course only quantum, and it is nonzero only for the nonzero momentum. At zero temperature, the
gapless modes do not survive in charged superfluids. Therefore, the purely quantum broadening of Carlson–Goldman
excitations hardly can be observed. As we can see from the obtained results in the figures, the broadening of all
modes increases when rising the temperature.

IV. CONCLUSIONS

We considered collective excitations in superconductors and charged Fermi superfluids in the case when the plasma
frequency substantially exceeds the gap and pair-breaking threshold, focusing on the low-lying collective modes with
energies of the order of the superconducting/superfluid gap. Within the present study, we find several low-lying collec-
tive modes existing in a charged superfluid/superconductor. The pair-breaking Higgs branch of collective excitations
survives both in neutral and charged superfluid systems. It is relatively slightly influenced by the Coulomb interac-
tion, except for the case of resonance of the plasma excitation branch with the pair-breaking threshold considered in
Refs. [9, 10]. In the BCS–BEC crossover, we found more than one pair-breaking collective excitation branch.
When the temperature rises toward Tc, gapless collective excitation branches can appear in the BCS–BEC crossover.

The physical origin of these modes is the presence of a normal fluid fraction when T is sufficiently close to Tc, the same
reason as for Carlson–Goldman excitations [3]. There can appear several gapless modes, distinct from a single mode
in the far BCS limit. At the small momentum, one of the gapless modes with a linear dispersion can be attributed to
the Carlson–Goldman collective mode as in Ref. [7]. The other gapless excitation branch, which has a lower energy
at small momentum, contains a resolvable part of the modulus response. Despite the amplitude contribution to this
mode, it is quite different from the pair-breaking Higgs modes, which are gapped and pinned to the pair-breaking
threshold. When T approaches Tc, this mode exhibits a quadratic dispersion and is analogous to the excitation branch
for a neutral Fermi superfluid described in Ref. [11]. Finally, the other gapless mode, which is sound-like at a small
momentum, appears in the BCS–BEC crossover for charged superfluids, being new with respect to the previously
considered neutral superfluids.
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The spectral weight function for the phase response reveals the gapless modes but does not contain a resolvable
contribution of the Higgs modes. On the contrary, the modulus response is dominated by the Higgs modes and the
second gapless mode without a visible fingerprint of the Carlson–Goldman branch, which remains, therefore, a phase
mode both in the BCS and crossover regimes.
The evolution of low-lying collective excitation spectra as functions of the interaction strength and on the temper-

ature can reveal a resonant interaction of different modes, particularly their avoided crossing. Additionally, multiple
branches of gapless and pair-breaking excitations can be observable. Because the collective excitations analyzed in
the present work are common for superconductors and charged superfluid systems, they are an example of a bridge
between the physics of superconductors and condensed quantum gases, and can thus represent a particular interest
for both theoretical and experimental investigations.
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