F.-D Collin

A Estoup

J.-M Marin

L Raynal

A fast and scalable random forest library for ABC model choice and parameter estimation

First building block : ABC simulations

Compute summary statistic µ from observed data Prior distribution of model parameter θ

Compute summary statistic µ i for each simulation

Given a certain model, perform n simulations, each with a parameter drawn from the prior distribution Based on a distance ρ(* , *) and a tolerance ε, decide whether the summary statistic value is close enough to the corresponding value on obseved data We store all selected simulations (parameters and summary statistics) in a reference table. Given an observed data, the basic idea of ABC, Approximate Bayesian Computations [START_REF] Marin | Approximate bayesian computational methods[END_REF], is to approximate the likelihood of a parametrized model with selected simulations, by comparing the observed data and simulated ones via computed summary statistics. The table of summary statistics for simulated data is called the reference table .

ABC posterior methodologies

Model choice: Simulate data for several models and choose the best model to fit our data Parameter estimation: Simulate data for one model and infer one or several parameters for this model given the observed data A sensible workflow is to first choose a model and then infer its parameters.

Compute simulations with several models, and the reference table with model-indexed lines using a simulator (DIYAC, PyABC etc.) Apply Model Choice Methodology with AbcRanger Apply Parameter Estimation Methodology with AbcRanger

Challenges of ABC

In the context of population genetics recent advances

Number of simulated data : could be > 100 000 Number of summary statistics : could range from several hundred to tens of thousands (scenario with several populations and combinatory "explosion") : how to select the meaningful ones?

Classical Methods for ABC (k-nn and local methods) doesn't cope very well with this situation.

Our solution [START_REF] Pudlo | Reliable abc model choice via random forests[END_REF] and [START_REF] Raynal | ABC random forests for Bayesian parameter inference[END_REF] proposed a novel approach, relying on Random Forests to provide both model choice and parameter estimation methodologies

Second building block : Random Forests

CART

Random Forests are based on a CART, Classification and Regression Trees, algorithm [START_REF] Breiman | Classification and Regression Trees[END_REF].

ŷ1 ŷ2 ŷ3 ŷ4 ŷ5 s 1 s 2 s 3 s 4 X 1 X 2 X 2 ≤ s 1 X 1 ≤ s 2 ŷ1
ŷ2

X 1 ≤ s 3 ŷ3 X 2 ≤ s 4 ŷ4 ŷ5 Figure 3
. An example of CART and the associated partition of the two dimensional predictor space. Each splitting condition takes the form X j ≤ s and the prediction at a leaf is denoted ŷ .

A CART is a machine learning algorithm whose principle is to partition the predictor space into disjoint subspaces, in an iterative manner, and each one is assigned a prediction value which will be used for test data falling in this subspace.

Once the partitioning is done, we have a binary tree structure which could predict outcomes from an input data, either classes or continuous values.

Random Forests

Bootstrapping Training Trees

For each node Choose the best split over a random subset of features

Predictor obtained by majority vote (for classification) or mean (for regression)

Computational challenges with ABC/Random Forests

With 100 000 lines and more than 10 000 summary statistics, each tree could reach over 1 gigabyte of memory size. Typically we need 500 or 1000 trees for good prediction performance, so, even with state of the art RF packages like [START_REF] Marvin | Ranger: a fast implementation of random forests for high dimensional data in c++ and r[END_REF], memory constraints are preventing completion of the training.

A new implementation of Random Forest for ABC

Since ABC procedures only use trained Random Forests on a known set of observations, we have altered the random forest training computation by using only a subset of in-memory trees at a time and accumulating the required outcomes (predictions and statistics). Memory footprint is vastly improved and there is no performance cost.

Not in memory anymore Growing trees in memory

To be computed

Just Finished

Accumulated values Observed data

Computed values for this tree Time Now Ongoing project LeafLitter intends to pursue that line even further: for a growing tree, only encountered leaves are stored. Thus, the memory footprint of the trees becomes negligible, and their growing could finally be parallelized at full scale.

Figure 1 .

 1 Figure 1. ABC details

Figure 2 .

 2 Figure 2. ABC workflow with AbcRanger

Figure 4 .

 4 Figure 4. Random Forest

Figure 5 .

 5 Figure 5. Window of growing trees