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Abstract 10 

A new radiolarian image database was used to train a Convolutional Neural Network (CNN) 11 

for automatic image classification. The focus was on 39 commonly occurring nassellarian 12 

species, which are important for biostratigraphy. 13 

 14 

The database consisted of tropical radiolarian assemblages from 129 middle Eocene samples 15 

retrieved from ODP Holes 1258A, 1259A, and 1260A (Demerara Rise). A total of 116 16 

taxonomic classes were established, with 96 classes used for training a ResNet50 CNN. To 17 

represent the diverse radiolarian assemblage, some classes were formed by grouping forms 18 

based on external morphological criteria. This approach resulted in an 86.6% training 19 

accuracy. 20 

 21 

A test set of 800 images from new samples obtained from Hole 1260A was used to validate 22 

the CNN, achieving a 75.69% accuracy. The focus then shifted to 39 well-known nassellarian 23 
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species, using a total of 15 932 images from the new samples. The goal was to determine if 24 

the targeted species were correctly classified and explore potential real-world applications of 25 

the trained CNN. 26 

 27 

Different prediction threshold values were experimented with. In most cases, a lower 28 

threshold value was preferred to ensure that all species were captured in the correct groups, 29 

even if it resulted in lower accuracies within the classes. 30 

Keywords: middle Eocene, radiolaria, convolutional neural network, image database, 31 

automated identification, image recognition 32 

1 Introduction 33 

Polycystine radiolaria are microscopic unicellular protists living currently in all modern 34 

oceans; they are characterized by an aesthetically pleasing siliceous skeleton known in the 35 

fossil record since the Cambrian (Pouille et al., 2011; Aitchison et al., 2017). Their fossil 36 

record is thus of much interest for evolutionary studies (i.e., Danelian and Johnson, 2001; 37 

Renaudie and Lazarus, 2013; Tetard et al., 2017; Trubovitz et al., 2020). They are usually the 38 

only fossils capable of dating siliceous sedimentary sequences (i.e., Danelian et al., 2012; 39 

Vrielynck et al., 2003) and are commonly used in paleoceanography (Matsuzaki et al., 2018; 40 

Itaki et al., 2020). Due to the small number of experts, radiolarian taxonomy is less well-41 

elaborated than the one of other microfossil groups, such as foraminifera and nannofossils.  42 

 43 

Today, most of the studies involving identification and counting of microfossils, such as 44 

radiolarians, are conducted manually and require substantial taxonomic expertise. This 45 

process is known to be time-consuming, particularly when microfossils are used for 46 

paleoceanography. Moreover, consistency in species classification may be difficult to achieve 47 
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between different taxonomic experts. Therefore, artificial intelligence (AI) has been 48 

introduced to this field to simplify or automate the work done by micropaleontologists, as for 49 

example through automatic image recognition and counting. Several applications of CNNs for 50 

automatic image recognition were developed over the last 20 years, since the introduction of 51 

SYRACO by Dollfus and Beaufort (1999). Nowadays, CNNs are used on various microfossil 52 

groups, such as foraminifera (ex. Mitra et al., 2019, Hsiang et al., 2019; Marchant et al., 53 

2020), coccoliths (ex. Dollfus and Beaufort, 1999; Beaufort and Dollfus, 2004), pollen (ex. 54 

Bourel et al., 2020), or even radiolarians (Itaki et al., 2020; Renaudie et al., 2018; Tetard et 55 

al., 2020). 56 

 57 

Sediments recovered from the Demerara Rise (tropical Atlantic Ocean) during the Leg 207 58 

are rich in middle Eocene radiolarians, preserved in a continuous and expanded carbonate 59 

sequence. The encountered radiolarian diversity is immense and based on our estimates it 60 

accounts for ca. 500 species, many of which are not described yet. Indeed, although Eocene 61 

radiolarians have been studied for about 150 years (since Ehrenberg, 1874) and more in depth 62 

for the last 50 years (Riedel and Sanfilippo, 1970, 1978), past research was mainly focused on 63 

their biostratigraphic applications (see Meunier and Danelian, 2022 and references therein). 64 

 65 

Taking advantage of today's technological achievements, our objective was to design a 66 

reliable approach to automatically classify middle Eocene tropical radiolarians from 67 

Demerara Rise. The main question addressed in this study is whether a CNN can accurately 68 

classify 39 commonly observed nassellarian radiolarian species, most of which have an 69 

established biostratigraphic significance. We thus trained a CNN on a newly established 70 

image database of middle Eocene radiolarians with a focus on some common nassellarian 71 

species. To do this we classified every single object appearing on prepared radiolarian slides. 72 
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We were inspired by a recent similar study, conducted by Tetard et al. (2020), who studied 73 

middle Miocene to Quaternary radiolarians from the West Pacific Warm Pool. We also 74 

included additional Podocyrtis species prepared for an earlier dataset (Carlsson, 2022). 75 

Finally, a new set of a small number of samples was imaged to test the consistency of our 76 

trained CNN, which was double checked with manual identifications made by a taxonomist. 77 

 78 

2 Materials and methods 79 

2.1 Core setting and sample preparation 80 

The middle Eocene samples used in this study were collected during ODP Leg 207 from 81 

Demerara Rise, situated off the coast of Suriname (Erbacher et al., 2004, Danelian et al. 82 

2005). This dataset includes samples from several cores recovered from sites 1258, 1259 and 83 

1260. It is noteworthy that the middle Eocene sequence at site 1260 is thick and contains 84 

radiolarians of an excellent state of preservation (Danelian et al., 2007). The full sample list 85 

used in this study may be found in Supplements 1, Table S1. The sediment samples consist 86 

primarily of nannofossil and foraminifera chalk, but also contain abundant and well-preserved 87 

siliceous microfossils, composed essentially of radiolarians (Danelian et al. 2007, Meunier 88 

and Danelian, 2022), as well as diatoms (Danelian et al. 2007, Renaudie et al. 2010). 89 

 90 

Sediment samples from ODP holes 1258A, 1259A, and 1260A were first processed to 91 

disaggregate organic matter and dissolve carbonates and were then sieved through a 45 µm 92 

mesh to remove smaller particles. Thereafter, the samples were prepared using a recent 93 

random settling protocol described in Tetard et al. (2020). About 1/3 to ¼ of a microspoon 94 

spatula was used from the dried residues, corresponding to approximately 0.2-1.0 g for each 95 

sample. Samples were uniformly settled onto 12 mm x 12 mm cover slides using a 3D-printed 96 

decanter, as in Tetard et al. (2020), preventing contact between radiolarians and other 97 
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remaining objects on the slide. The cover slides were allowed to dry overnight before being 98 

mounted with NOA81 optical glue. A total of eight different cover slips, all from the same 99 

samples, were placed onto one 76 mm x 26 mm glass slide, forming one sample. 100 

 101 

Finally, a new set of four samples (see Supplements 1, Table S1) was prepared for manually 102 

testing the actual accuracy of the trained CNN. An improved cleaning technique was used, 103 

which kept only siliceous particles that are larger than 63 µm, and completely removed all 104 

clay, calcite and smaller or broken radiolarians (Sanfilippo et al., 1985, Tetard et al., 2020). In 105 

fact, most radiolarians are larger, so using a 63 µm sieve will probably just remove smaller 106 

broken pieces or radiolarians rather than the radiolarians themselves. At first, about 2-3 cm of 107 

raw sediment sample was placed in a plastic beaker. Thereafter 30 ml of 30 % hydrochloric 108 

acid was added and left for two hours and until there was no more reaction. Furthermore, 200 109 

ml of distilled water was added to the beaker, which was stirred gently and left to settle for 110 

two additional hours. The supernatant was removed and exchanged with 30 ml of 10 % 111 

hydrogen peroxide and was left to rest for another two hours. The residue was thereafter 112 

washed with a 63 µm sieve into a 100 ml beaker. To remove remaining clay particles, the 113 

samples were processed in ultrasonic bath for ten minutes; they were later sieved again with a 114 

63 µm mesh and collected afterwards in a filter. Next, the residues were dried in an oven at 50 115 

°C and transferred into a glass vial.  116 

 117 

 118 

2.2 Image collection and processing 119 

All samples were photographed using a Nikon Eclipse Ni automatic microscope equipped 120 

with a Nikon DS-Ri2 microscope camera and Nikon NIS Element software, using a 20 x 121 

objective, allowing a 200 x magnification and 0.36 µm/pixel resolution. The lowest and 122 
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highest focal points on the Z-axis were manually determined for each sample since the depth 123 

varied depending on the thickness of the glass, coverslip, optical glue, and individual 124 

radiolarian specimens. For each field of view (FOV), an image was taken at different focal 125 

depths, every 10 µm, depending on the minimum and maximum focal points determined for 126 

each sample. The microscope then automatically stacked all images, taken at different focal 127 

points for each FOV, in order to create a composite image. The microscope was programmed 128 

to capture small images in 20 x 20 (400) FOV, covering about 10 x 10 mm out of the 12 x 12 129 

mm available surface for each individual sample. The individual FOV images were 130 

subsequently merged into one large mosaic image (see Fig. 1), which has as a result to lose 131 

less images of specimens located on the edges of FOVs. 132 

 133 

 134 

Figure 1. 1) For each sample, 20 × 20 images are automatically photographed in a convolving way and merged into one large 135 

“mosaic composed” image, which enables preserving more complete specimens which are not cut in half. 2) The mosaic 136 
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composed image thereafter went through grayscale conversion. 3) Segmentation of each unique particle into vignettes and 137 

image conversion into 8-bit black and white with black background. 138 

 139 

 140 

The composite mosaic pattern images received from the automatic microscope were first 141 

converted from RGB to 8-bit grayscale using Adobe Photoshop to decrease its size. The 142 

images were then segmented into ImageJ using the ImageJ BioVoxxel plugin (Brocher, 143 

2022), and a modified script of the Autoradio_Segmenter plugin (Tetard et al., 2020), which 144 

enabled each individual particle to become its own individual image, or vignette. For more 145 

details, the reader is referred to Tetard et al. (2020). 146 

 147 

Finally, we also included additional Podocyrtis species images prepared for an earlier dataset 148 

(Carlsson, 2022). 149 

 150 

2.3 Taxa selection and dataset 151 

For this study we decided to focus on 39 species (Plates 1 and 2), which are the most common 152 

in the Middle Eocene interval of Demerara Rise and most of which are used in biostratigraphy 153 

(Riedel and Sanfilippo, 1970, 1978; Sanfilippo and Nigrini, 1998;  Meunier and Danelian 154 

2022).  155 

 156 

Plate 1. Nassellarian radiolarian species commonly occurring in Middle Eocene sediments of Demerara Rise; species names 157 

are followed by the ODP site and hole, core, section and sampled level from which it comes from. A) Dendrospyris 158 

stylophora (Ehrenberg, 1874) from 1259A-20R-4 W, 53–55 cm, B) Elaphospyris didiceros (Ehrenberg, 1874) group from 159 

1258A-2R-4 W, 55–57 cm, C) Liriospyris clathrata (Ehrenberg, 1874) group from 1259A-20R-4 W, 53–55 cm, 160 

D) Rhabdolithis pipa Ehrenberg 1854 from 1260A-15R-1 W, 55–57 cm, E) Lophophaena radians (Ehrenberg, 1874) group 161 

from 1259A-16R-2 W, 55–57 cm, F) Dictyoprora mongolfieri (Ehrenberg, 1854) from 1260A-6R-2 W, 55–57 cm, 162 

G) Dictyoprora amphora (Haeckel, 1887) group from 1258A-2R-4 W, 55–57 cm, 163 
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H) Rhopalosyringium? auriculaleporis (Clark and Campbell, 1942) from 1260A-14R-6 W, 55–57 cm, 164 

I) Rhopalosyringium? biauritum (Ehrenberg, 1874) from 1260A-12R-3 W, 55–57 cm, J) Dictyomitra parva (Kim, 1992) 165 

from 1258A-2R-4 W, 55–57 cm, K) Lithochytris vespertilio Ehrenberg, 1874 from 1260A-10R-5 W, 55–57 cm, 166 

L) Sethochytris triconiscus (Haeckel 1887) from 1259A-20R-4 W, 53–55 cm, M) Lychnocanium babylonis (Clark and 167 

Campbell 1942) group from 1258A-3R-3 W, 56–58 cm, N) Lychnocanoma bajunensis (Renz, 1984) from 1258A-2R-4 W, 168 

55–57 cm, O) Stichopterygium microporum (Ehrenberg, 1874) from 1260A-8R-4 W, 54–56 cm, P) Carpocanopsis 169 

ornata (Ehrenberg, 1874) group from 1260A-6R-5 W, 55–57 cm, Q) Cycladophora spatiosa (Ehrenberg, 1874) group from 170 

1259A-20R-1 W, 55–57 cm, R) Anthocyrtis mespilus (Ehrenberg, 1847) group from 1259A-16R-2 W, 55–57 cm, 171 

S) Zealithapium mitra (Ehrenberg, 1874) from 1258A-2R-3 W, 55–57 cm. 172 
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Plate 2. Nassellarian radiolarian species commonly occurring in Middle Eocene sediments of Demerara Rise; species names 174 

are followed by the ODP site and hole, core, section and sampled level from which it comes from. A) Lophocyrtis 175 

alauda (Ehrenberg, 1874) from 1260A-15R-1 W, 55–57 cm, B) Aphetocyrtis zamenhofi Meunier and Danelian, 2023 from 176 

1259A-26R-5 W, 54–56 cm, C) Theocyrtis scolopax (Ehrenberg, 1874) from 1260A-15R-3 W, 55–57 cm, D) Phormocyrtis 177 

embolum (Ehrenberg, 1874) from 1258A-2R-4 W, 55–57 cm, E) Phormocyrtis lazari Meunier and Danelian, 2023 from 178 

1260A-8R-6 W, 54–56 cm, F) Podocyrtis (Lampterium) goetheana (Haeckel, 1887) from 1259A-18R-1 W, 53–55 cm, 179 

G) Podocyrtis (Lampterium) chalara Riedel and Sanfilippo, 1970 from 1260A-6R-CC, 63–177 cm, H) Podocyrtis 180 

(Lampterium) mitra Ehrenberg group, 1854 from 1260A-9R-1 W, 55–57 cm, I) Podocyrtis (Lampterium) sinuosa Ehrenberg, 181 

1874 from 1259A-15R-1 W, 55–57 cm, J) Podocyrtis papalis Ehrenberg, 1847 from 1258A-2R-4 W, 55–57 cm, 182 

K) Podocyrtis (Podocyrtoges) ampla Ehrenberg, 1874 from 1260A-10R-5 W, 55–57 cm, L) Podocyrtis (Podocyrtoges) 183 

phyxis Sanfilippo and Riedel, 1973 from 1259A-16R-1 W, 55–57 cm, M) Podocyrtis (Podocyrtoges) diamesa Riedel and 184 

Sanfilippo, 1970 from 1259A-26R-3 W, N) Podocyrtis (Lampterium) puellasinensis Ehrenberg, 1874 from 1259A-20R-4 W, 185 

53–55 cm, O) Calocyclas hispida (Ehrenberg, 1874) from 1260A-6R-4 W, 55–57 cm, P) Thyrsocyrtis (Thyrsocyrtis) 186 

rhizodon Ehrenberg, 1874 from 1260A-6R-CC, 63–177 cm, Q) Thyrsocyrtis (Pentalocorys) triacantha (Ehrenberg, 1874) 187 

from 1260A-8R-6 W, 54–56 cm, R) Eusyringium lagena (Ehrenberg, 1874) from 1259A-25R-2 W, 55–57 cm, 188 

S) Eusyringium fistuligerum (Ehrenberg, 1874) group from 1259 to 18R-1 W, 53–55 cm, T) Rhopalocanium 189 

ornatum (Ehrenberg, 1874) from 1259A-22R-1 W, 55–57 cm. 190 
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 193 

Synonymy lists are given in the supplementary catalogue (Supplements 3), thus allowing the 194 

reader to understand the species concept followed in this study. Taxonomic information for all 195 

the other radiolarian classes used in the analysis is also presented in there; most of the other 196 

radiolarians were grouped in supraspecific taxa, with taxonomic information and some typical 197 

forms given in the catalogue (Supplements 3). 198 

 199 

The ParticleTrieur software version 2.4.10, developed by Marchant et al. (2020), was used to 200 

label our dataset. It includes a built-in k-nearest neighbor (KNN) algorithm, which is a 201 

machine learning algorithm that can be used for supervising the classification tasks. It 202 

identifies the k-nearest training data points or neighbors for a new data point and predicts a 203 

label for the new data based on already labeled data. In the context of image classification, the 204 

data points correspond to the pixels in the image. Therefore, ParticleTrieur can recognize 205 

patterns in the images for individual classes and suggest classification for new or unclassified 206 

images, after some classes have already been added in a semi-supervised way but have of 207 

course been validated by a human expert. 208 

 209 

We managed to build a dataset consisting of 12,217 images out of a total of ca. 50 000 210 

images, distributed in 116 classes, including the 39 important key-classes of well-known 211 

nassellarian species (Plates 1 and 2). Some of the classes consisted of as few as one specimen 212 

per class, while others contained up to nearly a thousand images (i.e. the largest class). 213 

Classes with fewer than ten specimens were excluded from the CNN training, resulting in 214 

only 96 classes to be trained by the model. The taxonomic framework is in many cases 215 

classified based on Meunier and Danelian (2022 and 2023) at the species level, and higher 216 

taxonomic ranks are classified, mainly based on Suzuki et al. (2021).  217 
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 218 

2.4 CNN training 219 

Earlier studies that attempted to compare the accuracy of several CNNs on microfossil 220 

assemblages found that Resnet50 usually performed very well for this purpose (Marchant et 221 

al., 2020; Tetard et al., 2020; Mitra et al., 2018); we therefore chose to apply this model for 222 

this particular study, instead of MobileNet v1 (Howard et al., 2017), which was we used 223 

previously (Carlsson et al. 2022) in study focusing on eight closely related species of the 224 

Eocene genus Podocyrtis.  ResNet50 is a deep Convolutional Neural Network architecture 225 

(He et al., 2016), and is one of the variations of the ResNet (short for "Residual Network") 226 

family of models. The idea behind the formation of ResNet50 is to use residual learning to 227 

avoid disappearing gradients in very deep neural networks. Because when the networks get 228 

deeper, it becomes more difficult to update the weights of the earlier layers through 229 

backpropagation and by using residual learning; the network can thus propagate the gradient 230 

signal more easily, which improves the training of deeper networks. The weights of ResNet50 231 

have also been pre-trained on a large dataset, for instance ImageNet, which includes millions 232 

of labelled images of about 1,000 classes (He et al., 2016). Our training set consisted of 80 % 233 

randomized images, chosen for each individual class present in the database, while the 234 

remaining 20 % was used for validation.  235 

 236 

2.5 Performance metrics 237 

The CNN training calculates automatically the classification accuracy and recall values based 238 

on the labeled dataset; both of them represent different ways of displaying the CNN 239 

performance (Fig. 2). For instance, if the aim is to detect all specimens belonging to a specific 240 

species (high recall value), sacrificing accuracy by including other objects not belonging to 241 

that species might be acceptable. This allows for easier tracking of the true abundance of that 242 
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specific species, and misclassified objects may be identified and ignored. However, if 243 

misclassified objects, which may belong to another important species, end up in another 244 

species class, this would lower their recall value. Therefore, it is important to have a high 245 

accuracy overall, but when examining individual classes separately, recall value holds a 246 

significant importance. Both indices are of great interest for different applications, more 247 

focused on biostratigraphy or paleoceanography for example.  248 

 249 

 250 

Figure 2. A theoretical example showing the importance of a high accuracy and a high recall value for individual classes. 251 

 252 

2.6. Test set to validate the CNN 253 

To validate the consistency of the CNN training and testing from our dataset, we once again 254 

estimated how accurately the trained CNN performed and we compared it with a human 255 

operator. The neural network training produced a prediction model that was inserted into 256 

ParticleTrieur version 3.0.0. A threshold value can be set directly in ParticleTrieur before 257 

classifying new images. The threshold value constrains the degree of accuracy desired for an 258 

image needed to be classified into a given class. If the probability for an image/specimen to be 259 

classified to a specific class is too low, this image will be left unclassified.  260 
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We randomly let the ParticleTrieur software pick 200 images selected from four new samples 261 

(800 in total), which were unlabeled and contained all particles segmented from composed 262 

images, from ODP site 1260, coming from different intervals within those used initially to 263 

train the CNN, which were 1260A-6R-3W, 18-20 cm; 1260A-8R-5W, 70-72 cm; 1260A-13R-264 

5W, 66-68 cm; and 1260A-15R-4W, 69-71 cm.  In ParticleTrieur we let the trained CNN 265 

identify all of them, using a threshold value of 0.5. We selected this low threshold value since 266 

it is better having more images classified, even if that will give a somewhat lower accuracy, 267 

recall, precision to classify more images rather than that they unclassified. We then examined 268 

afterwards what was correctly or incorrectly classified. 269 

 270 

2.7 Application on 39 species 271 

With the same four samples, we then this time entered all segmented particles from the entire 272 

mosaic composed images covering most parts of the coverslips, resulting in a total of 15 932 273 

images, which were automatically classified with the CNN. Here we focused on the targeted 274 

39 classes representing the selected well-known species. We applied different threshold (1-275 

0.5) values for the pre-trained network and checked how the CNN could recognize these 39 276 

most common nassellarian species. The aim of this test was to try future potential 277 

applications. 278 

 279 

 280 

3 Results  281 

3.1 Training of the initial dataset 282 

Our trained CNN obtained 86.6 % in overall accuracy, with 75.6 % in precision/accuracy 283 

(Fig. 2); the latter measures the ability to avoid false positives and corresponds to the number 284 
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of specimens classified as a class and also belonging to that class, divided by all specimens 285 

classified to that class. Our CNN obtained 78 % of recall, which calculates the ability to 286 

detect all correct classifications, as it corresponds to the number of specimens in a class that 287 

were correctly classified divided by the total number of specimens in that class. The training 288 

and validation iterations are given in Supplements 2 figure S1, which confirms that the data is 289 

neither overfit, nor underfit.  290 

 291 

 292 

Figure 3. Simplified confusion matrix, showing the classification between different classes, with a focus on nassellarian 293 

super families. The x-axis on the left shows the true classes while the right axis shows recall values; the y-axis at the bottom 294 

shows the predicted classes while the top shows the precision value. 295 
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 296 

 297 

Some of the classes that are visible in the confusion matrix (Fig. 2 or Fig. S2 in Supplements 298 

2 for a more detailed confusion matrix) show a low individual score (diagonal numbers), 299 

mainly due to the low number of available specimens (see number next to the label name), or 300 

to a high degree of resemblance between closely related or similar looking species. Most of 301 

the 39 important species of nassellarians we focused on were classified with a high accuracy 302 

(Fig. S2 in Supplements 2).  303 

 304 

Table 1. Precision, recall and F1 score for the 39 most important nassellarian species focused in this study. 305 

Species Training (#) Test (#) Precision Recall F1 score 

Dendrospyris stylophora 35 7 0.71 0.71 0.71 

Elaphospyris didiceros group 295 59 0.85 0.90 0.88 

Liriospyris clathrata group 77 15 0.78 0.93 0.85 

Dictyomitra parva 229 46 0.98 0.98 0.98 

Dictyoprora amphora group 124 25 0.75 0.72 0.73 

Dictyoprora mongolfieri 271 54 0.89 0.94 0.92 

Rhopalosyringium auriculaleporis 104 21 0.84 0.76 0.80 

Rhopalosyringium biaurata 24 5 0.83 1.00 0.91 

Carpocanopsis ornata group 21 4 0.33 0.50 0.40 

Stichopterygium microporum 64 13 0.93 1.00 0.96 

Sethochytris triconiscus 22 4 1.00 1.00 1.00 

Lithochytris vespertilio 20 4 1.00 1.00 1.00 



18 

 

Species Training (#) Test (#) Precision Recall F1 score 

Lychnocanoma bajunensis 103 21 1.00 1.00 1.00 

Lychnocanium babylonis group 56 11 0.75 0.82 0.78 

Lophophaena radians group 48 10 0.70 0.70 0.70 

Rhabdolithis pipa 28 6 0.75 1.00 0.86 

Aphetocyrtis zamenhofi 40 8 0.60 0.75 0.67 

Lophocyrtis alauda 17 3 0.75 1.00 0.86 

Theocyrtis scolopax 22 4 0.00 0.00 0.00 

Phormocyrtis embolum 130 26 0.71 0.92 0.80 

Phormocyrtis lazari 68 14 0.77 0.71 0.74 

Calocyclas hispida 29 6 0.57 0.67 

 
Podocyrtis (Lampterium) chalara 207 41 0.98 1.00 0.99 

Podocyrtis (Lampterium) goetheana 115 23 1.00 1.00 1.00 

Podocyrtis (Lampterium) mitra 184 37 0.97 1.00 0.99 

Podocyrtis (Lampterium) sinuosa 93 19 1.00 0.79 0.88 

Podocyrtis (Podocyrtoges) ampla 42 8 1.00 0.88 0.93 

Podocyrtis (Podocyrtoges) diamesa 62 12 0.58 0.92 0.71 

Podocyrtis (Podocyrtoges) phyxis 44 9 0.89 0.89 0.89 

Podocyrtis (Podocyrtis) papalis 302 60 0.95 0.83 0.83 

Podocyrtis (Lampterium) puellasinensis 24 5 0.80 0.80 0.80 

Pentalocorys triacantha 100 20 0.78 0.90 0.84 

Thyrsocyrtis rhizodon 43 9 1.00 0.67 0.80 
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Species Training (#) Test (#) Precision Recall F1 score 

Eusyringium fistuligerum group 38 8 0.86 0.75 0.80 

Eusyringium lagena 16 3 0.50 0.67 0.57 

Rhopalocanium ornatum group 21 4 0.67 0.67 0.57 

Zealithapium mitra 33 7 0.54 1.00 0.70 

Anthocyrtis mespilus group 53 11 0.78 0.64 0.70 

Cycladophora spatiosa group 53 11 1.00 0.91 0.95 

 306 

3.2 Performance validation from the test set 307 

By using a threshold value of 0.5 the CNN classification resulted in that 769 images, out of a 308 

total of 800, were correctly classified. All classes were individually examined and the 309 

precision and recall values were calculated for each detected class (see Supplements 4). The 310 

CNN could classify these images into 76 different classes, while the human classifier 311 

considered that these groups belonged to 63 classes, excluding rare species which could not 312 

be classified into a proper class and were therefore referred to the class “others”. Finally, an 313 

overall accuracy, recall, precision and F1 score were calculated (see Fig. 4). 314 

 315 
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Figure 4. CNN performance metrics based on a test set consisting of a total of 800 images, which were validated by a human 316 

expert. 317 

3.3 Application on new samples 318 

The manual validation of the classification made by a CNN on the four new samples using a 319 

threshold value of 1, always provided a correct interpretation without having any 320 

misclassified species, although it was far from detecting all classes and all true specimens for 321 

each class. Interestingly, with a threshold value of 0.9, we could in some sense detect almost 322 

all classes present in the dataset with a 69-73 % accuracy (see Supplements 5) and get some 323 

estimates for the number of taxa present in the samples. Some possible misclassifications can 324 

be easily reviewed at a later stage. Lowering the threshold values increased indeed the number 325 

of truly correct specimens in the right species, but it also increased the number of false 326 

classifications (see Supplements 5). Regarding the average score of predicted key-species 327 

using several threshold values (Table 2), the CNN was usually able to correctly identify 328 

between 24 to 34 out of the 39 targeted species and also not falsely detect species which do 329 

not exist (see Supplements 5). 330 

 331 

Table 2. Average prediction results of the 39 key-species and its accuracy for different threshold values along with the total 332 

number of images. 333 

Threshold 

value 

Predicted key-

species 

Correctly 

predicted key 

species 

Accuracy key-

species 

Predicted 

images 

Total amount 

of images 

1.00 77 77 1.00 1664 15,932 

0.90 1144 784 0.69 11,074 15,932 

0.80 1336 865 0.65 12,438 15,932 

0.70 1501 943 0.63 13,462 15,932 

0.60 1653 998 0.60 14,370 15,932 
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Threshold 

value 

Predicted key-

species 

Correctly 

predicted key 

species 

Accuracy key-

species 

Predicted 

images 

Total amount 

of images 

0.50 1799 1043 0.58 15,232 15,932 

 334 

4 Discussion 335 

4.1 Classification 336 

Due to the high radiolarian diversity preserved in the studied samples obtained from the 337 

equatorial Atlantic, the correct assignment of every single image to a class may be 338 

challenging. One of the particularities of the studied radiolarian fauna is that it contains a lot 339 

of rare and undescribed species. In addition, the current state of the art does not allow 340 

confident taxonomic divisions in higher classes, as there are often unclear taxonomic 341 

boundaries. A lot of taxa are also morphologically similar to each other, and a lot of 342 

similarities sometimes exist between different families, giving us often hard time to find for 343 

them a proper affinity and even acceptable taxonomic names. As an example, we may state 344 

the confusion of Carpocanopsis ornata group with juvenile/broken Nassellaria group B and 345 

Pterocorythoid group (see the catalogue in Supplements 3 and the confusion matrix in Fig. S2, 346 

Supplements 2). 347 

 348 

There have been challenges in determining the most commonly occurring nassellarian 349 

species. We aimed to ensure taxonomic clarity within these groups and only included taxa for 350 

which we are very confident for their assignment to that specific class. Consequently, 351 

numerous similar-looking species have been excluded from the classified dataset. This is 352 

because they did not fit into other groups or we judged that they would be confused with the 353 

taxon they most resemble with. However, this may be challenging as we strive to represent as 354 

much as possible from these samples, while also collecting new samples for automatic 355 
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classification. As is the case of an example mentioned above, we encountered many 356 

specimens that resemble Carpocanopsis ornata group, but which do not always display the 357 

discriminatory characters of the species. Those specimens would also always be misidentified 358 

as C. ornata group and were therefore removed from the dataset. It is possible that these 359 

forms may be misidentified as C. ornata group in future samples, but they have to be looked 360 

upon individually afterwards. The important point is to obtain a dataset that consists of clean 361 

C. ornata group specimens identified with high confidence, so that there can be a clear 362 

reference of what a C. ornata group looks like (see the catalogue in Supplements 3 and the 363 

confusion matrix in Fig. S2, Supplements 2).  364 

 365 

In addition, difficulties have also been met when we attempted to consistently classify a high 366 

number of images. Also, differences in individual specimen orientation and bubble inclusions 367 

played a big role in getting the CNN to work and to find the proper classes. 368 

 369 

Since all objects appearing on a slide are trained and given a class, some of the included 370 

classes may be artificially defined and therefore correspond to taxonomically “bin” classes. 371 

We focused mainly on nassellarian radiolarians, trying to include as many classes as possible 372 

neatly defined at the species level. Although, for some nassellarian classes presented at higher 373 

taxonomic levels, we were obliged to accept a very large taxonomic concept. Regarding 374 

spumellarians, as the recognition of their inner structures is important, but difficult to detect 375 

with computer vision, identifications are even more challenging. 376 

 377 

4.2 CNN training and new test set score 378 

It is not a shock that the test accuracy, which randomly selected 800 images from four new 379 

samples, performed less than the test of the 20 % of the labeled dataset, from which 80 % 380 
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were used to train the CNN. The accuracy of the test is 75.69 %, whereas the training 381 

accuracy is 85.6 %. From our labeled dataset, we have purposely removed a lot of “trash” 382 

particles, that will say particles which are broken fragments of radiolarians, blurry 383 

background particles etc. because if we kept these images, the CNN would rather be 384 

overtrained by the thousands of trash images and perform less. Besides that, rare species 385 

which consisted of too few species were left untrained by the neural network and therefore the 386 

20 % of test did not include that many “trash” images or any rare species, in contrast to the 387 

new test set, which were completely randomly selected among any kind of particle that had 388 

been segmented. This last test was just to confirm how well the CNN was generally trained. 389 

For our last application we tried to just focus on the 39 well known radiolarian species, since 390 

it is the radiolarians that are of interest.  391 

 392 

4.3 Feedback on individual species 393 

By examining the 39 targeted species individually in every single sample, we observed that 394 

some species were easily identified correctly, while others performed poorly during the CNN 395 

training iteration and ended up in different classes. Table 3 presents the examined species and 396 

samples, along with their training performance. This arrangement facilitates a better 397 

understanding of the high or low number of correctly predicted species based on the training 398 

performance of the CNN. 399 

 400 

Table 3. Training accuracy, recall and number of correctly identified specimens for each one of the 39 targeted species in this 401 

study and sample using a threshold value of 0.5, which is the lowest value we used in the test to identify all species which 402 

have an identification correctness equal or higher than 0.5. Hyphens “-” correspond to species not found in the samples 403 

(Meunier and Danelian, 2022; Meunier and Danelian, 2023). 404 
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Species Accuracy Recall 1260A 

6R-3 W, 

18-20 cm 

1260A 

8R-5 W, 

70-72 cm 

1260A 

13R-

5 W, 66-

68 cm 

1260A 

15R-

4 W, 69-

71 cm 

Dendrospyris stylophora 0.71 0.71 1 4 1 0 

Elaphospyris didiceros group 0.85 0.90 16 27 10 48 

Liriospyris clathrata group 0.78 0.93 12 2 7 10 

Dictyomitra parva 0.98 0.98 – – – 108 

Dictyoprora mongolfieri 0.89 0.94 36 9 38 14 

Dictyoprora amphora group 0.75 0.72 1 2 8 68 

Rhopalosyringium? auriculaleporis 0.84 0.76 – 2 3 3 

Rhopalosyringium? biaurata 0.83 1.00 – 0 1 0 

Carpocanopsis ornata group 0.33 0.50 12 0 1 – 

Stichopterygium microporum 0.93 1.00 2 3 6 3 

Sethochytris triconiscus 1.00 1.00 0 10 – – 

Lithochytris vespertilio 1.00 1.00 – 3 3 6 

Lychnocanoma bajunensis 1.00 1.00 46 25 23 10 

Lychnocanium babylonis group 0.75 0.82 – 5 14 8 

Lophophaena radians group 0.70 0.70 2 0 2 – 

Rhabdolithis pipa 0.75 1.00 2 6 1 3 

Lophocyrtis alauda 0.75 1.00 – – 8 9 

Aphetocyrtis zamenhofi 0.60 0.75 – – 0 20 

Theocyrtis scolopax 0.00 0.00 – – 2 1 

Calocyclas hispida 0.57 0.67 4 12 0 0 
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Species Accuracy Recall 1260A 

6R-3 W, 

18-20 cm 

1260A 

8R-5 W, 

70-72 cm 

1260A 

13R-

5 W, 66-

68 cm 

1260A 

15R-

4 W, 69-

71 cm 

Phormocyrtis embolum 0.71 0.92 – – 16 3 

Phormocyrtis lazari 0.77 0.71 9 4 – – 

Podocyrtis (Lampterium) chalara 0.98 1.00 7 20 – – 

Podocyrtis (Lampterium) 

goetheana 
1.00 1.00 2 – – – 

Podocyrtis (Lampterium) mitra 0.97 1.00 – 2 1 – 

Podocyrtis (Lampterium) sinuosa 1.00 0.79 – – 1 2 

Podocyrtis (Podocyrtoges) ampla 1.00 0.88 – – 4 0 

Podocyrtis (Podocyrtoges) phyxis 0.89 0.89 – – – 0 

Podocyrtis (Podocyrtoges) diamesa 0.58 0.92 – – – 0 

Podocyrtis (Podocyrtis) papalis 0.94 0.83 8 6 1 6 

Podocyrtis (Lampterium) 

puellasinensis 
0.80 0.80 0 0 – – 

Thyrsocyrtis rhizodon 1.00 0.67 15 2 4 11 

Pentalocorys triacantha 0.78 0.90 12 43 7 4 

Eusyringium lagena 0.50 0.67 – – 3 7 

Eusyringium fistuligerum group 0.86 0.75 9 5 2 0 

Rhopalocanium ornatum group 0.67 0.67 3 0 6 1 

Cycladophora spatiosa group 1.00 0.91 31 20 2 1 

Anthocyrtis mespilus group 0.78 0.64 14 3 10 3 

Zealithapium mitra 0.54 1.00 7 7 7 1 

 405 
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In general, the classes with good performance are Elaphospyris didiceros group (Plate 1.B), 406 

Dictyomitra parva (Plate 1.J), Sethochytris triconiscus (Plate 1.L), Lithochytris vespertilio 407 

(Plate 1.K), Lychnocanoma bajunensis (Plate 1.N), Lychnocanium babylonis group (Plate 408 

1.M) and Thyrsocyrts (Pentalocorys) triacantha (Plate 1.Q). They are well-classified with few 409 

misclassified objects in their respective classes and they rarely appear in other classes. 410 

 411 

The CNN was able to detect some of the true specimens of Dendrospyris stylophora (Plate 412 

1.A). However, in many cases some trissocyclids/cephalospyrids with long feet were also 413 

misclassified as D. stylophora. Since this class is quite rare, it is difficult to make any accurate 414 

estimate about the application accuracy. For the training iteration the CNN obtained an 415 

accuracy of about 70 %. 416 

 417 

Liriospyris clathrata group is a simple single-segmented nassellarian with large pores on its 418 

cephalis (Plate 1.C). Occasionally, some specimens may be misclassified into higher-ranked 419 

taxonomic classes, but overall, it performs well. It has about 80 % accuracy in the CNN 420 

training. 421 

 422 

Overall, the CNN was able to correctly identify all forms of Dictyoprora amphora (Plate 1.G) 423 

group, but many other broken and unusual radiolarian forms, including some Dictyoprora 424 

spp. and Dictyoprora mongolfieri (Plate 1.F), were confused with this species group. 425 

Although the majority of D. mongolfieri) were identified in their true class, a smaller number 426 

of radiolarians or objects in the class were misclassified, indicating that these particular 427 

classes have been well-trained with a 90 % accuracy. 428 

 429 
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Although some Rhopalosyringium ? auriculaleporis specimens (Plate 1.H) were identified 430 

correctly, there are still several other objects that are misclassified as this species. The same 431 

goes for R. ? biauratum (Plate 1.I), but since not many have been observed in our test 432 

samples, it is difficult to make any fair estimates for this particular species. 433 

 434 

Carpocanopsis ornata group (Plate 1.P) is poorly trained and is largely misclassified in the 435 

training process, with a training accuracy of only ca. 30 %. This is likely due to its very 436 

simple, smooth outline that is similar to many other taxa.  437 

 438 

Stichopterigyum microporum (Plate 1.O) is classified well, despite having many similarities 439 

with Euctyrtidium levisaltarix, a species that was not individualized in this study, but was 440 

included in the Eucyrtidium genus class. Occasionally, some of these species may be mixed 441 

up if there are no morphologically distinct morphotypes. However, in those cases where there 442 

are distinct morphotypes, they are classified correctly. 443 

 444 

The training accuracy of Lophophaena radians group (Plate 1.E) was ca. 70%, although there 445 

are not many estimates on how well this species is classified in the new samples obtained.  446 

 447 

Rhabdolithis pipa (Plate 1.D) was detected frequently in our samples. However, a lot of other 448 

particles also ended up being included in this class, alike some types of spumellarians, since 449 

R. pipa has only one simple segment and it does not display any radial symmetry and bears 450 

two very long spines. 451 

 452 

Lophocyrtis alauda (Plate 2.A) is well detected in samples coming from 1260A-13R-5W, 66-453 

68 cm and 1260A-15R-4W, 69-71 cm. The somewhat similar looking species, Aphetocyrtis 454 
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zamenhofi (Meunier and Danelian 2023) was only found present in 1260A-15R-4W, 69-71 455 

cm but other objects or specimens were also mistakenly classified as A. zamenhofi, even at 456 

samples in which they do not exist. The training accuracies are 60 % for A. zamenhofi and 75 457 

% for L. alauda. 458 

 459 

Not many specimens of Calocyclas hispida (Plate 2.O) have been trained by the CNN, and it 460 

is only in sample 1260A-8R-5W, 70-72 cm that they appeared more often; they were 461 

classified well, without having a lot of misidentified radiolaria or other objects appearing in 462 

that class. 463 

 464 

We did not encounter many typical specimens of Podocyrtis goetheana (Plate 2.F), but 465 

mainly early/transitional forms that do not display the elongated abdomen with the typical 466 

long straight bars on the median row of pores. In any case, most transitional forms were 467 

classified as Podocyrtis chalara (Plate 2.G) and exceptionally as P. goetheana. Otherwise, P. 468 

goetheana has a unique morphology compared to the rest of radiolarians present in our 469 

samples and it was therefore trained very well with a perfect F1 score; both accuracy and 470 

precision were 100 %. 471 

 472 

Podocyrtis chalara (Plate 2.G) is well classified and recognized by the CNN and is easy to 473 

detect in our test samples. However, when it comes to Podocyrtis mitra (Plate 2.H), our 474 

samples contained transitional forms between Podocyrtis sinuosa (Plate 2.I) and P. mitra or 475 

P. mitra and P. chalara. In the latter case, most specimens we captured were actually closer to 476 

P. chalara than P. mitra and were therefore classified as P. chalara rather than P. mitra. In 477 

the studied material there were too few typical specimens of P. sinuosa and P. mitra to make 478 

up a clear mind, but most of them were transitional forms and the CNN had two specimens 479 
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classified as P. sinuosa and one as P. mitra. Individually, P. sinuosa from other samples are 480 

rather well-detected, even though it happened to have samples with a lower abundance of P. 481 

sinuosa. 482 

 483 

The CNN can detect well Podocyrtis papalis (Plate 2.J). However, some forms that do not 484 

belong to P. papalis were incorrectly classified, quite often as Podocyrtis ampla (Plate 2.K) or 485 

Podocyrtis diamesa (Plate 2.M). Theocyrtis scolopax was also found classified as P. papalis. 486 

There were not many specimens of P. diamesa in these samples; therefore, none was 487 

classified as P. diamesa, and the few specimens of P. diamesa were actually classified as P. 488 

papalis, which is logical since they are very similar (see also Carlsson et al., 2022). Finally, P. 489 

ampla was always confused with P. papalis, as regrettably the CNN could not correctly detect 490 

any single P. ampla. 491 

 492 

Podocyrtis phyxis (Plate 2.L), an important biostratigraphic index species occurring only 493 

within a short interval, was trained in the CNN with an 89 % accuracy and a recall value of 88 494 

%; however, it was never classified correctly into its own class in the new test set of four 495 

samples. Instead, it was frequently misidentified as Thyrsocyrtis rhizodon (Plate 2.P), which 496 

is understandable, given that both species have an equal number of segments and consist of a 497 

horn and feet (although they differ in size and shape) and are more or less barrel shaped. 498 

Unfortunately, the CNN cannot detect size differences because all images are resized to the 499 

same dimensions. 500 

 501 

In conclusion, the Podocyrtoges lineage, which includes P. ampla, P. phyxis, and P. diamesa, 502 

cannot be reliably detected in the new set of test samples using our currently trained CNN. 503 

The different morphospecies of this lineage are difficult to be identified correctly due to the 504 
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frequent occurrence of transitional forms that look very similar to other taxa in our dataset. 505 

Although we have a sufficient dataset of these species, more data and adjustments to similar-506 

looking classes may be necessary to allow the CNN to more clearly distinguish them with a 507 

high degree of accuracy, as humans are able to do. 508 

 509 

We did not encounter any Podocyrtis puellasinensis (Plate 2.N) species but it was originally 510 

trained with an accuracy and precision of 80 %.  511 

 512 

Eusyringium lagena (Plate 2.R) can be easily detected by the CNN, and Eusyringium 513 

fistuligerum group (Plate 2.S) is occasionally misclassified as L. vespertilio (Plate. 1.K) or S. 514 

triconiscus (Plate 1.L). This is understandable since their proximal parts (thorax, cephalis, and 515 

thick conical horn) look almost identical. 516 

 517 

Not many specimens of Rhopalocanium ornatum group (Plate 2.T) were detected. This 518 

species was trained on a small number of specimens and therefore only obtained a training 519 

accuracy of about 70 %. Some specimens of the R. ornatum group were found in its true class 520 

but were also appearing in other species and higher taxonomic leveled classes, which implies 521 

a lower recall number.  522 

 523 

Both Cycladophora spatiosa group (Plate 1.Q) and Anthocyrtis mespilus group (Plate 1.R) 524 

could be detected well with a high accuracy in the samples in which they existed. In other 525 

samples, they had a lower prediction accuracy with more specimens incorrectly classified as 526 

either A. spatiosa group or A. mespilus group. 527 

 528 
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The classification of Zealithapium mitra (Plate 1.S) is not reliable due to its insufficient 529 

training dataset, which comprises only a small number of images. As a result, many broken 530 

radiolarians with large pores are frequently misidentified as Z. mitra, despite the fact that this 531 

species is characterized by large pores with a more conical shape. 532 

 533 

The results we obtained suggest that many of the classes we distinguished may be confidently 534 

used in future applications (biostratigraphic or paleoceanographic). Well distinct species that 535 

the CNN can easily detect in whole assemblage analyses have a low recall value and appear 536 

rarely in wrong classes. As in many cases, the presence/absence of an index species is 537 

sufficient for biostratigraphy, the automated classification of targeted species in whole 538 

assemblage studies described in this paper, enables us to quickly confirm the correct 539 

classification of species and thus opens new perspectives for the application of Artificial 540 

Intelligence to radiolarian biostratigraphic studies. Apart from the 39 targeted species, many 541 

of the other classes had a worse performance; indeed, many half-complete or blurry 542 

specimens were classified as other objects. This makes it difficult for the moment to fully 543 

trust the CNN classification for counting all radiolarian species in order to get information 544 

about their relative abundances. 545 

5 Conclusions 546 

The newly established dataset of middle Eocene tropical radiolarians is well adjusted to fit a 547 

CNN. We obtained a high training accuracy of 86.6 % for its training in a CNN. 548 

 549 

We evaluated the performance of our trained Convolutional Neural Network (CNN) on new 550 

tests and compared it to human performance, and obtained a testing accuracy of about 75.69 551 

%. We thereafter specifically focused on 39 different species which the CNN demonstrated 552 

notable success in accurately identifying those species that had been well-trained. 553 
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 554 

In order to obtain an acceptable accuracy of the CNN for further studies, the labeling of 555 

classes was also revised to groups or separate taxa and reached the best compromise between 556 

CNN accuracy and consistent taxonomy. For example, when two morphologically close 557 

species or subspecies where often confused by the CNN, we found it better to fuse them 558 

together in an acceptable taxonomic framework, unless they were individually of 559 

biostratigraphic importance, instead of artificially biasing the CNN accuracy by often 560 

mistaking these two taxa with each other, in the same way as they may be confused by an 561 

operator.  562 

 563 

This has proved to be an efficient way, both in speed and easiness, to quickly see what kind of 564 

radiolarian species exist and how many of them. However, since we focused only on a few 565 

classes, we cannot compare the relative abundance with certain taxa in relation to all 566 

radiolarians yet, but with improved methods and building a stronger dataset, it will be 567 

possible to get a closer estimate of the relative abundance of many taxa. This also highlights 568 

the importance of building good taxonomic datasets. 569 

Overall, applying automatic image classification to the studied samples is time-saving, 570 

particularly for detecting the presence of the selected nassellarian species. This approach 571 

eliminates the need to manually count and track by an operator the targeted taxa present in a 572 

sample and avoids the risk of identification bias between different operators. 573 

 574 

Data availability 575 

Microscope slides from Leg 207, Hole 1258A, 1259A and 1260A, which were used for our 576 

dataset and application to a trained CNN, are stored at the University of Lille, France. The 577 
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dataset (https://doi.org/10.57745/E9YXW6, Carlsson, 2023) is published in the University of 578 

Lille repository at Recherche Data Gouv. 579 
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Figure 1. 1) For each sample, 20 x 20 images are automatically photographed in a convolving 761 

way and merged into one large “mosaic composed” image, which enables preserving more 762 

complete specimens which are not cut in half. 2) The mosaic composed image thereafter went 763 

through grayscale conversion. 3) Segmentation of each unique particle into vignettes and 764 

image conversion into 8-bit black and white with black background. 765 

 766 

Figure 2. A theoretical example showing the importance of a high accuracy and a high recall 767 

value for individual classes. 768 

 769 

Figure 3. Simplified confusion matrix, showing the classification between different classes, 770 

with a focus on nassellarian super families. The x-axis on the left shows the true classes while 771 

the right axis shows recall values; the y-axis at the bottom shows the predicted classes while 772 

the top shows the precision value. 773 

 774 

Figure 4. CNN performance metrics based on a test set consisting of a total of 800 images, 775 

which were validated by a human expert. 776 

 777 

Plate 1. Nassellarian radiolarian species commonly occurring in Middle Eocene sediments of 778 

Demerara Rise; species names are followed by the ODP site and hole, core, section and 779 

sampled level from which it comes from. A) Dendrospyris stylophora (Ehrenberg 1874) from 780 

1259A-20R-4W, 53-55 cm, B) Elaphospyris didiceros (Ehrenberg 1874) group from 1258A-781 

2R-4W, 55-57 cm, C) Liriospyris clathrata (Ehrenberg, 1854) group from 1259A-20R-4W, 782 

53-55 cm, D) Rhabdolithis pipa Ehrenberg 1854 from 1260A-15R-1W, 55-57 cm, E) 783 
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Lophophaena radians (Ehrenberg, 1874) group from 1259A-16R-2W, 55-57 cm, F) 784 

Dictyoprora mongolfieri (Ehrenberg 1854) from 1260A-6R-2W, 55-57 cm, G) Dictyoprora 785 

amphora (Haeckel, 1887) group from 1258A-2R-4W, 55-57 cm, H) Rhopalosyringium ? 786 

auriculaleporis (Clark and Campbell, 1942) from 1260A-14R-6W, 55-57 cm, I) 787 

Rhopalosyringium ? biauritum (Ehrenberg, 1874) from 1260A-12R-3W, 55-57 cm, J) 788 

Dictyomitra parva (Kim 1992) from 1258A-2R-4W, 55-57 cm, K) Lithochytris vespertilio 789 

Ehrenberg 1874 from 1260A-10R-5W, 55-57 cm, L) Sethochytris triconiscus (Haeckel 1887) 790 

from 1259A-20R-4W, 53-55 cm, M) Lychnocanium babylonis (Clark and Campbell 1942) 791 

group from 1258A-3R-3W, 56-58 cm, N) Lychnocanoma bajunensis (Renz 1984) from 792 

1258A-2R-4W, 55-57 cm, O) Stichopterygium microporum (Ehrenberg 1874) from 1260A-793 

8R-4W, 54-56 cm, P) Carpocanopsis ornata (Ehrenberg, 1874) group from 1260A-6R-5W, 794 

55-57 cm, Q) Cycladophora spatiosa (Ehrenberg 1874) group from 1259A-20R-1W, 55-57 795 

cm, R) Anthocyrtis mespilus (Ehrenberg 1847) group from 1259A-16R-2W, 55-57 cm, S) 796 

Zealithapium mitra (Ehrenberg 1874) from 1258A-2R-3W, 55-57 cm. 797 

 798 

Plate 2. Nassellarian radiolarian species commonly occurring in Middle Eocene sediments of 799 

Demerara Rise; species names are followed by the ODP site and hole, core, section and 800 

sampled level from which it comes from. A) Lophocyrtis alauda (Ehrenberg, 1874) from 801 

1260A-15R-1W, 55-57 cm, B) Aphetocyrtis zamenhofi Meunier and Danelian, 2023 from 802 

1259A-26R-5W, 54-56 cm, C) Theocyrtis scolopax (Ehrenberg, 1874) from 1260A-15R-3W, 803 

55-57 cm, D) Phormocyrtis embolum (Ehrenberg, 1874) from 1258A-2R-4W, 55-57 cm, E) 804 

Phormocyrtis lazari Meunier and Danelian, 2023 from 1260A-8R-6W, 54-56 cm, F) 805 

Podocyrtis (Lampterium) goetheana (Haeckel, 1887) from 1259A-18R-1W, 53-55 cm, G) 806 

Podocyrtis (Lampterium) chalara Riedel and Sanfilippo 1970 from 1260A-6R-CC, 63-177 807 

cm, H) Podocyrtis (Lampterium) mitra Ehrenberg group, 1854 from 1260A-9R-1W, 55-57 808 
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cm, I) Podocyrtis (Lampterium) sinuosa Ehrenberg 1874 from 1259A-15R-1W, 55-57 cm, J) 809 

Podocyrtis papalis Ehrenberg, 1847 from 1258A-2R-4W, 55-57 cm, K) Podocyrtis 810 

(Podocyrtoges) ampla Ehrenberg 1874 from 1260A-10R-5W, 55-57 cm, L) Podocyrtis 811 

(Podocyrtoges) phyxis Sanfilippo and Riedel, 1973 from 1259A-16R-1W, 55-57 cm, M) 812 

Podocyrtis (Podocyrtoges) diamesa Riedel and Sanfilippo, 1970 from 1259A-26R-3W, N) 813 

Podocyrtis (Lampterium) puellasinensis Ehrenberg 1874 from 1259A-20R-4W, 53-55 cm, O) 814 

Calocyclas hispida (Ehrenberg, 1874) from 1260A-6R-4W, 55-57 cm, P) Thyrsocyrtis 815 

(Thyrsocyrtis) rhizodon Ehrenberg 1874 from 1260A-6R-CC, 63-177 cm, Q) Thyrsocyrtis 816 

(Pentalocorys) triacantha (Ehrenberg 1874) from 1260A-8R-6W, 54-56 cm, R) Eusyringium 817 

lagena (Ehrenberg 1874) from 1259A-25R-2W, 55-57 cm, S) Eusyringium fistuligerum 818 

(Ehrenberg 1874) group from 1259-18R-1W, 53-55 cm, T) Rhopalocanium ornatum 819 

(Ehrenberg 1874) from 1259A-22R-1W, 55-57 cm.    820 


