N
N

N

HAL

open science

MultiVae: A Python library for Multimodal Generative
Autoencoders

Agathe Senellart, Clément Chadebec, Stéphanie Allassonniére

» To cite this version:

Agathe Senellart, Clément Chadebec, Stéphanie Allassonniere. MultiVae: A Python library for Mul-
timodal Generative Autoencoders. 2023. hal-04207151

HAL Id: hal-04207151
https://hal.science/hal-04207151

Preprint submitted on 14 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-04207151
https://hal.archives-ouvertes.fr

MultiVae: A Python library for Multimodal
Generative Autoencoders

Agathe Senellart Clément Chadebec
Université de Paris-Cité,Inria, Inserm, SU Université de Paris-Cité,Inria, Inserm, SU
Centre de Recherche des Cordeliers Centre de Recherche des Cordeliers
agathe.senellart@inria.fr clement.chadebec@inria.fr

Stéphanie Allassonniére
Université de Paris-Cité,Inria, Inserm, SU
Centre de Recherche des Cordeliers
stephanie.allassonniere@u-paris.fr

Abstract

In recent years, there has been a major boom in the development of multimodal
machine learning models. Among open topics, representation (fusion) and genera-
tion of multimodal data are very active fields of research. Recently, multimodal
variational autoencoders have been attracting growing interest for both tasks, thanks
to their versatility, scalability, and interpretability as probabilistic latent variable
models. They are also particularly interesting models in the partially observed
setting, as some models can learn even with missing data. In this article, we present
MultiVae, an open-source Python library designed to bring together unified imple-
mentations of multimodal generative autoencoders models. It has been designed
for easy, customizable use of these models on partially or fully observed data. This
library facilitates the development and benchmarking of algorithms by integrating
several popular datasets, variety of evaluation metrics and tools for monitoring and
sharing models. For each model included, a key result is reproduced to validate our
implementation. We also propose a case study in the less studied partially observed
setting, evaluating the robustness of the models as a function of the missing ratio
in a five-modalities dataset.

1 Introduction

Over the past few years, there has been growing interest for deep generative models and in particular
multimodal models. In particular, Variational Autoencoders (VAEs) [29] have demonstrated promising
results to model complex data distributions such as images or text. Their ability to learn a lower
dimensional representation of potentially high dimensional data makes them attractive models to
perform various tasks such as clustering [[12]], image synthesis [38]], speech modelling [6]] or multi-
omics data representation and generation [33]]. Initially used in a unimodal setting, VAEs have
also rapidly drawn interest in multimodal contexts as well. Multimodal Variational Autoencoders
aim to embed all the different modalities in a common representation and learn inference encoder
distributions to estimate that embedding from any single modality. This inference of the latent code
then allows to perform cross-modal data generation from any modality. Sampling from a prior
distribution in the latent space would also enable joint generation of all modalities simultaneously,
creating multimodal synthetic samples. So far, many variants of the unimodal VAE have been
proposed to adapt it to the multimodal framework. Among them, we can distinguish the joint encoder
models [46} 50, |40]] using a dedicated network to model the joint posterior, aggregated models [41,
54} 43]] modelling the joint posterior distribution as an aggregation of the unimodal encoders, and

Preprint. Under review.

coordinated models (51, 24, 47] where different unimodal VAEs are trained per modality while
enforcing the learned latent spaces to share similarity. The flexibility of these models to various
modality types through the choice of encoders and decoders architectures, their scalability to the
number of modalities as well as their interpretability as latent variable models have contributed to the
popularity of multimodal VAEs. For some of them, another advantage is that they can be applied in
a weakly-supervised setting where not all modalities are observed for all samples which can reveal
useful in medical applications for instance.

However, to the best of our knowledge, there exists no unifying framework for those models providing
easy-to-use, flexible implementations while replicating the results given in the original papers. This
absence slows down benchmarking as well as the development of new methods and their deployment
in other application fields. Moreover, the original implementations are often no longer maintained or
only available with hard-coded parameters, making them difficult to adapt and test for other use-cases.
In particular, although many models are theoretically able to learn on partially observed datasets
with missing modalities, most available implementations do not handle that setting. Hence, in this
paper we propose the following contributions:

* We introduce the MultiVae (https://github.com/AgatheSenellart/MultiVae) li-
brary that implements and unifies implementation of multimodal generative autoencoders
proposed in the literature. MultiVae has a modular structure that enables a flexible use of
these models on any dataset with or without missing samples.

* We pay particular attention to the validation of the implementations available in MultiVae by
reproducing one key result from the original publication.

* We propose several small case studies illustrating the flexibility of the proposed library and
its usability for benchmarking and comparison purposes.

2 Multimodal Variational Autoencoders

In Multimodal Machine Learning, two goals are generally targeted: (1) Learn a shared representation
from multiple modalities; (2) Perform cross-modal generation from one modality to another. In the
literature, many models have been proposed to tackle either one or both of these tasks. For instance,
on the one hand, Contrastive Learning approaches [16} |27, |I5| 9] impose to learn representations
of the multimodal data that are invariant to modalities and to given transformations of the data.
On the other hand, many models like Pix2Pix and more generally CycleGANSs tackle the issue of
cross-modal generation by modelling the conditional distribution of one modality x; given another
X9, p(aa|x) [55, 21} 56].

In this paper, we decide to specifically focus on models referred to as Multimodal Generative
Autoencoders [45]] which aim at solving both issues at the same time. These models learn a latent
representation z of all modalities in a lower dimensional common space and are able to infer z from
any modality to generate the others. In other words, given a set of observations with M modalities
X = (x1,x9,...xpr), it is assumed that a shared latent representation z exists, from which all
modalities can be generated with decoding parametric distributions (pg(z;]2)) eq1,...,ar}- In most
cases, each modality is supposed to be conditionally independent of the others given z such that the
joint model writes:

M
po(X, 2) = po(X|[2)pe(2) = po(2) Hpa(l‘ﬂz)) (D

where py(2) is a prior distribution set over the latent variables. The choice of the decoding distri-
butions (pg(x;|z))1<;<nm depends on the modality type. For instance, for an image modality z1,
po(z|21) can be a Gaussian distribution M (ug(2), Xg(z)) with the parameters pp(2), Xg(z) being
the output of a decoder neural network taking z as input. In that framework, the two goals mentioned
above translate as follows. First, we want to learn the best possible 6 to model the observations.
Second, we want to approximate the inference distributions pg(z|(z;),eg) to infer the latent variable
from any given subset of modalities S € P({1,..., M}). For the sake of scalability to the number
of modalities, most models focus on inferring the unimodal posteriors pg(z|(z;)) for all modalities
1 < j < M, and then aggregate those distributions with a simple operation to model any subset
posterior pg(2|(x;)jes) (4154, 43} 20, [35].

https://github.com/AgatheSenellart/MultiVae

Estimating the generative model’s parameter § Given N observations, a natural objective to
estimate 6 is to optimize the log-likelihood of the data:

N N
0* = argmax Y lo X)) = arg max <10 / X@ 5 dz> 2)
g1 > logpe(X) g1 > 5 | pol)

=1 i=1

Since this objective is often intractable, one can recourse to Variational Inference [25]] in a similar
fashion as the Variational Autoencoder (VAE) [29] by introducing an auxiliary parametric distribution
¢4(2|X) allowing to derive an unbiased estimate of the likelihood of the data:

N po(X, 2) N
Po(X,2) = ——"2 suchthat pyg(X) =T, x) [Po] - 3)
46 (21X) e
Then, using Jensen’s inequality allows to derive a lower bound on pg(X), referred to as the Evidence
Lower Bound (ELBO).

log pe(X) = logEy, (2 1x) [Pe] = g, (1) [log po(X|2)] = KL (g4 (2[X)[Ipe(2)) = L(X). (4

This bound is tractable and can be optimized through Stochastic Gradient Descent. Noteworthy, the
first term can be seen as a reconstruction error and the second as a regularization term imposing the
latent codes to follow the prior distribution [14]. The distribution g4 (2|X) is generally called the
encoder and one may notice that the optimization of the ELBO leads to minimizing the Kullback-
Leibler divergence between the true posterior distribution pg(z|X) and g4(z|X) [29]]. While most
Multimodal VAEs use such an auxiliary distribution and optimize Eq. (@) to learn 6, some models
also rely on variations of Eq. {@). For instance, the MMVAE [41]] model uses a k-sampled importance
weighted estimate of the log-likelihood IWAE bound) 7] because it promotes a higher entropy of
the learned posterior g4 (z|X). Other models such as MoPoE [43], MVTCAE [20], MMVAE+ [35]
use a [factor in the ELBO to weigh the regularization term. That hyperparameter can be tuned to
promote disentanglement in the latent space [|19].

Choice of the approximate inference distribution A natural choice is to model ¢4(z|X) as a
Gaussian distribution NV (114(X), X4 (X)) where a dedicated joint encoder network takes all modal-
ities as input and outputs the parameters (14(X), ¥4(X). By doing so, we obtain an estimation
of 6 and an approximation of the joint posterior py(z|X) by q4(2|X). However, we do not have
access to the unimodal posteriors (pg(z|z;))1<j<n Which are needed for cross-modal generation.
Indeed, we want to be able to infer z from any modality to then decode z to generate other modal-
ities. To estimate these posterior distributions, two approaches have been proposed. First, several
models, referred to as aggregated models, suggest to introduce a dedicated encoder g, (z|x;) per
modality 1 < 5 < M, which models the unimodal posterior distribution, and to aggregate them to
model ¢4 (2| X). As an example, the MVAE [54] model uses a Product-of-Experts (PoE) operation
qs(2|X) o< po(2) [1; g9, (2|z;) while the MMVAE [41] model uses a Mixture-of-Experts (MoE)
and the MoPoE-VAE [43]] model uses a Mixture of Product of Experts (MoPoE). Such a choice
for g4 (2| X)) allows to obtain trained unimodal inference distributions when optimizing Eq. 4| In
particular, [43] rewrites the ELBO to explicitly highlight how those aggregation methods encourage
the estimated posteriors gy, (2|z;) to be close to the true joint posterior pg(z|X).

Moreover, additional terms might be added to the ELBO to further ensure certain properties of the
unimodal encoders. For instance, the product of experts in the MVAE model may cause some of
the unimodal encoders gy, (z|z;) to be uninformative if the others already contain all the necessary
information. To solve that issue, the MVTCAE model derives a bound from a Total Correlation
Analysis that adds Conditional Variational Information Bottleneck (CVIB) terms to the ELBO to
avoid that issue [20]].

However, aggregated models restrict the flexibility of the inference distribution g4(z|X'). Hence, other
approaches choose to still use a joint encoder network modeling ¢, (z|X') and introduce additional
terms to Eq. (@) to learn the unimodal approximate posteriors (¢e(2|2;))1<j<am. Some models
introduce similar CVIB terms as used in the MVTCAE [46| 40], while the TELBO model uses
additional unimodal ELBOs terms [50].

Coordinated models A slightly different approach than the one detailed above, referred to as
coordinated models and proposed for instance in [51}, 24, [47]], does not directly optimize Eq. @)

Joint
encoder

Figure 1: Graphical representation of the three presented types of multimodal VAEs: a) models using
a joint encoder network, b) aggregated models, c) coordinated models. Plain lines represent encoders
and dashed lines represent decoders.

but starts from learning individual representations z; for each modality x; (using unimodal ELBOs)
while enforcing the representations from each modality to be similar z; ~ zj, for paired modalities
2, 2. This notion of similarity is defined differently depending on the model. Figuresummarizes
the graphical models of families of models we have presented here. [45]] presents a more in-depth
survey of multimodal generative autoencoders.

Recent developments Recently, methods have been proposed with a more complex generative
model including multiple, separated [31} 42[] or hierarchical latent variables [49, |40]. For instance,
having multiple latent spaces allows to improve the diversity in the generation of certain aggregated
models [10]. An additional goal of these models is to separate into different latent spaces the
information shared across modalities from modality specific factors. Models using those multiple
latent variables are sometimes sensitive to the shortcut issue referring to shared information leaking
into the modality specific latent spaces. Recently, the MMVAE+ model was proposed with an
amended ELBO loss to limit that phenomenon [35]].

Learning with incomplete datasets An important issue in multimodal machine learning is to
design models that can learn from partially observed data, i.e. datasets where each sample contains
some, but not necessarily all modalities. Models using a joint network encoder for ¢4 (2| X) in the
ELBO are not easily adaptable to this setting since the joint network requires all modalities as inputs
to compute the latent representation. On the other hand, aggregated models have a natural extension
to the partially observed setting: for each sample, the ELBO bound can be computed using only
observed modalities:

pﬁ((xs)sés b |z)p(z)
IE 1 obs
ZACCRRERNY o8 Q¢(Z|(m8)3650bs) ©

with Sops the subset of observed modalities, and gy (2|(2s)ses,,.,) being computed by aggregating
the unimodal encoders for observed modalities: g4, (2|(zs))ses,,.. Even when the loss is a modified
version of the ELBO, for instance with additional objective terms for the unimodal encoders or an
IWAE bound, it can easily be computed with only the observed modalities. Appendix [A]summarizes
the loss of the aggregated models we implemented and their adaptation to the partially observed
setting. That setting has been explored by [54,20] but not for all aggregated models.

3 The MultiVae Library

Why MultiVae? Since they are generic generative methods that are scalable to an arbitrary number
of views, Multimodal VAEs have applications in many different fields: biomedicine [33]], fake-news
detection [28]] and robotics [22] to cite a few. However, original implementations of the models are not
always available, maintained or easy to adapt to a new use case. Easy to use, flexible and reproducible
implementations in a unified framework is a key step to foster applied research. Furthermore, such
unifying framework promotes the development of new algorithms by facilitating experiments and
benchmark of existing models.

Project Vision Starting from these observations, we created MultiVae, a Python library that
implements Multimodal Autoencoder models in a unified framework. MultiVae is designed with the
following points in mind:

* Modular and easy to use. The library is designed to be easy to use, even for people that
are beginners in the field of multimodal machine learning. Its modular structure means
that it can be plugged in any Pytorch project with any user-defined dataset and custom
architectures. A complete online documentation is provided along with tutorial notebooks.
A model instance can be created and trained with only a few lines of code.

* Reliable implementations. Most of the implementations have been verified by reproducing
results from original papers (cf. Table[3). This means that the models are implemented
as closely as possible to the original code, including all modelling choices, recommended
training scheme, and implementations details. This way, each model can be used following
the papers’ guidelines. Nonetheless, all options included can also be easily tuned by the user
to experiment with other parameter choices.

* Including data and metrics. Our framework includes easy loading of several datasets
including Mnist-SVHN [[11} [34], PolyMNIST [43], CelebA [32] and CUB [17]. For
easy benchmarking of models, we also include modules to visualize results and compute
several metrics: coherences, likelihoods, Fréchet Inception Distance (FID), clustering and
reconstruction metrics. This allows for a unified and straightforward evaluation of models.
By taking work out of data management and metrics computing, our library helps focusing
on model benchmarking and design.

* Monitoring and sharing tools for transparent benchmarks. MultiVae integrates easy
logging of metrics and models configurations on the Wandb [5] platform and straightforward
uploading/downloading of models on the HuggingFace Hub [|13]]. This allows to perform a
completely open-source and reproducible benchmarking of models.

* A framework compatible with the partially observed setting As mentioned above,
aggregated models can be applied to the setting where the training data is only partially
observed (e.g. missing modalities). That setting was explored in [54, |20], however in
those studies, the available implementations are not flexible enough to handle any arbitrary
partially observed dataset. This is why, in our library, we propose a simple framework for
working with incomplete datasets using any of the aggregated models.

Related work To the best of our knowledge, three available python frameworks exist attempting to
regroup multimodal variational autoencoders implementations in a unified package. The Multimodal
VAE Comparison Toolkit [39] only contains implementations of some of the aggregated models
leaving behind models using a joint encoder network. The Pixyz library [44] regroups generative
models including only two multimodal VAEs: the JIMVAE/JMVAE-GAN. Very recently, the multi-
view-ae library [1]] was released implementing several Multimodal Autoencoders in a modular way.
This library is the most similar to ours. However, it is not (yet) usable with completely customizable
architectures and does not handle the partially observed setting. Importantly, none of the libraries
mentioned above validated their implementations by reproducing results from the original papers nor
support incomplete datasets.

Code Structure Our implementation is based on PyTorch [37]] and is inspired by the architecture
of [8] and [53]]. The code has been designed with simplicity in mind, allowing quick and easy model
setup and training, and with a strong emphasis on reproducibility. The implementations of the models
are collected in the module multivae.models. For each of the models, the actual implementation
of the model is accompanied by a configuration as a dataclass gathering the collection of any relevant
hyperparameter which enables them to be saved and loaded straightforwardly. The models are
implemented in a unified way, so that they can be easily integrated within the multivae.trainers.
Like the models, the trainers are also accompanied by a training configuration dataclass used
to specify any training-related hyperparameters (number of epochs, optimizers, schedulers, etc..).
Models that have a multistage training [50} |40] benefit from their dedicated trainer that makes
them as straightforward to use as other models. MultiVae also supports distributed training, allowing
users to train their models on multiple GPUs straightforwardly. Partially observed datasets can be
conveniently handled using the IncompleteDataset class that contains masks informing on missing
or corrupted modalities in each sample. Finally, the MultiVae library also integrates an evaluation
pipeline for all models where common metrics such as likelihoods, coherences, FID scores [18] and
visualizations can be computed in a unified and reliable way.

loads

A 4
\ = = logs - = “logs
‘e
=
emodels || model ¥ muni —_model | multivae.metric
modelcontig training config "saves
[optional inputs A evaluator config
. encoders/decoders
[mandatory inputs distributed training

Figure 2: Schematic diagram of the MultiVae library.

Furthermore, a significant advantage of the MultiVae library is its capacity to enable users in defining
their own encoder and decoder architectures, which can be supplied as arguments to any implemented
model. This allows the training of any model on any type of modality without affecting the model’s
implementation. This is made possible by the library’s design, which imposes a unified API for
all models. In addition, the library integrates wandb [3]], a callback-based experiment tracker that
lets users monitor and compare their model trainings or evaluations using a graphical interface.
MultiVae also supports the sharing of trained models via the Hugging Face Hub[13]]. Code examples
in Appendix [Hillustrates ease of use of these functionalities.

The library is unit-tested with a code coverage above 84 % to ensure code quality and continuous
collaborative development. The main features are illustrated through tutorials made available either
as notebooks or scripts allowing users to get started easily. An online documentation is also made
available at https://multivae.readthedocs.io/en/latest!.

Validating our implementation Most models implemented have been validated by reproducing
a key result of the original paper. One experiment presented in the paper was reproduced using
MultiVaE implementation with the same exact architectures and training parameters. Table 3| presents
a summary of reproduced results for each model. More details and visualizations are given in the
Appendix [D] The scripts used for reproducing results are available in the library and saved models
can be downloaded from Hugging Face Hub[13]]. In addition to the models present in Table. 3] the
TELBO model has been implemented but not yet validated. The library also contains the original
implementations of the JNF and JNF-DCCA models used to produced the results in [40|] of which we
are the authors. A brief description of each implemented model is given in Appendix [A]

MODEL DATASET METRICS ORIGINAL PAPER VALUES OUR VALUES
JMVAE BINARYMNIST JOINT LIKELIHOOD —86.86 —86.85 + 0.03
MMVAE MNIST-SVHN COHERENCES 59+ 11/87+2/39+3 60+£6/87+2/38+3
MVAE BINARYMNIST ELBO 188.8 188.3 £ 0.4
MOPOE POLYMNIST COHERENCES 66/77/81/83 67/79/84/85
MVTCAE POLYMNIST COHERENCES 59/77/83/86 64/82/88/91
MMVAE+ POLYMNIST COHERENCE/FID 86.9/92.81 88.6 £0.8/93 &+ 5

4 Case Study: Training Models on a Incomplete Dataset

Although a few papers have experimented with the partially observed setting [20} |54], most results
on multimodal autoencoders have been obtained on complete and relatively large datasets. The
MNIST-SVHN dataset used in [41} [26] contains (60,000x5 or x20) samples depending on how
many pairings are done, the CelebA [46 43| dataset contains 200,000 samples and the PolyMNIST
dataset [46, 35| 20] contains 60,000 training samples. In this section, we propose to compare
models trained on partially observed or small datasets. In sections {.T]and d.2] we use the PolyM-
NIST dataset that contains 5 modalities (or views). Each view is an image with a MNIST digit
overlayed on top of a random crop from a background image specific to that view [43]]. For each
multimodal sample, the digit in each view has the same numerical value but not the same handwriting.

https://multivae.readthedocs.io/en/latest

To create a partially observed dataset, we simulated a bernoulli
distribution for each of the last four views of each sample. We kept
the view available with probability 1 and discarded it otherwise. The
first view is kept for all samples to ensure that each sample had at
least one available modality. For n = 1,0.8,0.5 we compared
all models with two paradigms: training with all samples even
incomplete ones, or training only on complete samples. In that
second case, the size of obtained datasets were N = 24576 when Figure 3: PolyMNIST dataset.

1 =08and N = 3750 when 7 = 0.5. Each row presents a modality and

In all study cases presented below, we test the models on the com- the columns present samples.
plete test set containing 10,000 samples.

4.1 Example: cross-modal generation using the MM VAE+
model

As an aggregated model using additional modality specific latent spaces, the MMVAE+ [35]] benefits
of a natural adapted objective for the partially observed setting, where for each sample, the objective
is computed for the largest available subset of modalities (cf. Eq. (3)). Using the same architecture
and training paradigm for PolyMNIST as in the original paper, we trained the model on the partially
observed datasets. Presented results are obtained with 3 = 2.5 in the ELBO. Figure [shows that the
model adapts well to this setting and still produces diverse and coherent generations when 1 = 0.5.
The coherence of cross-modal generation shown on the right part of the figure is defined as the
percentage of matching digits between the conditioning modality and the generated modality. It is
assessed using pretrained classifiers. The advantage of keeping incomplete samples when training the
model is evident as the coherence drops from 0.8 to 0.5 when they are set aside.

094

/
L] 0.8 % -—==wmm e
y n
g — 05
v v 0.8
Y So7 .
: = — 10
’ o Keep incomplete
f_ 0.6+ —e— False
| W4 -u- True
i ————*——
/ T T — T
" 1 2 3 4
| K

Number of conditioning modalities

Figure 4: Left: Cross-modal generations for the MM VAE+ model. The generations are conditioned
on the first line, then two rows of generations per modality are presented. Right: We plot the mean
coherences of the cross-modal generations as a function of the number of conditioning modalities.
The coherences are averaged over all subsets of a given length. The color of the line indicates the
degree of missing modalities 7, the style of the line indicates the training paradigm (keep incomplete
samples or not).

4.2 Comparing metrics across models

In this paragraph, we present results for different models in the partially observed PolyMNIST setting
presented above. The same simple convolutional architectures and latent dimension of 512 were used
for all models as done in 20]]. Parameters for each model were chosen according to original
papers and are specified in Appendix [B.2] In particular we set 3 = 2.5 for the MVAE, MoPoE and
MVTCAE models following 20]. However we use the K = 10 sampled version of the MMVAE
objective to follow the author’s guidelines. Note that we do not tune the models’ hyperparameters on
each task but fix them following author’s recommendations and then evaluate the trained models on
different tasks. For all aggregated models, we use the natural adaptation of the objective functions to
the partially observed setting recalled in Appendix [A]

Cross-modal generation Figure 5] presents all coherences for cross-modal generations of seven
models, for the three degrees of missing data when training with all samples or only complete samples.
Figure 5] shows that for all aggregated models, learning with all observations gives better results that

] . —
£ 0.8 //; e d . PSS o S —— MoPoE
P = =, | — e
& e - —
G067 4 ;/’/.,/—”"” L L+ . 2 INF
- > % - - x —
S b | . ¥ —§—=——== $ —— MMVAE
S 0.4+ /4/ _ x7’/ g 2/ === e
2 " . == /i/i —— MVTCAE
go02q* - d4—— 4 44—+ keep incomplete
—e— False
T T T T T T T T T T T T
1 2 3 4 1 2 3 4 1 4 %= True
Number of conditioning modalities Number of conditioning modalities Number of conditioning modalities

Figure 5: Coherences of cross-modal generation for different degrees of missing data. The accuracies
of cross-modal generations are averaged over conditioning subsets of same length. The presented
results are averaged on four different seeds. The color of the line indicates the model, and the style of
the line indicates the training paradigm: keep all samples or only the complete ones.

n=1.0 n=0.8

300

Keep Incomplete Keep Incomplete Keep Incomplete

= False === False 250 m False

s True s True

o W NG'*EN\”*e WS PE gpo™ oo W NN—(GP‘E‘\N\\IP*E WS (NP oot o W wmlﬁwhﬁ WS (NPE oot

Figure 6: FID Scores ({) for conditional generation of the first modality given all the others. For FID
scores, we recall that lower is better. The results are averaged over four seeds. The color of the bar
plot indicates the training paradigm. The error bars indicates the 0.95 confidence interval.

learning with only the complete observations. This is most remarkable in the case 7 = 0.5 where the
MMVAE maintains a high accuracy in all cross-modal generations. Figure [5]also allows to evaluate
the robustness of the models on smaller datasets: the plain lines on the right plot (n = 0.5) present the
results of all models when trained on complete, smaller datasets (3750 training samples). The MoPoE,
MVTCAE and JNFDcca models seem to perform best in that setting, whereas the performance of the
JMVAE and MMVAE model are drastically reduced. Figure [f] presents the FID scores of generated
samples for the first modality given all the others. The FID score gives an indication on the diversity
and realism of generated images [18]. Examples of images are presented in Appendix [C] Once again,
learning with all samples results in an improved (lower) FID score compared to learning only with
complete ones. When training on smaller datasets, we observe that the FID score tends to increase
for all models while mainly keeping the same ordering; the JNF, JNFDcca, MVTCAE and MVAE
model having the best values.

Sampler
B Prior
. MAF
s GMM

Coherence

JNFDcca

10004

FID

INFDcca INF MVAE JMVAE

Figure 7: Joint coherence (1) and FID ({.) for models trained on the complete dataset () = 1) using
different samplers in the latent space.

Joint generation with samplers The most natural way to sample from a generative model latent
space is to use the prior distribution on the latent variables. However, using another, a-posteriori,
estimated sampling distribution on the latent space can lead to improved quality of the generated
samples [14]. In MultiVae, we propose a Gaussian-Mixture Model Sampler (GMM) and a Masked
Autoregressive Flow (MAF) [36]] Sampler plugins that can be used to sample from the latent space
of any model. In both cases, the samplers’ parameters are estimated on the training dataset, using
latent codes sampled from g, (2| X). Samplers can also be used within the evaluation modules of
MultiVae to compute metrics (coherences and FIDs) on samples generated with one of these samplers.
In particular, to perform data augmentation of a multimodal dataset, joint coherence is a particularly
important metric. On the PolyMNIST dataset, it is defined as the ratio of generated samples having
the same digit for all modalities. Figure [7] presents how joint coherence as well as FID scores can be
drastically improved when using a GMM sampler. Here the GMM performs best for most models,
which also informs on the structure of the latent space: a GMM distribution can have multiple modes
where MAF models a smoother, unimodal distribution. The fact that the GMM works best tends to
indicate that the data is not distributed continuously, across the latent space which is coherent with
the fact that the latent space is large (512 dimensions) in this experiment.

Clustering on the latent representation Finally we investigate, the relevance of the joint latent
representation, taken as the mean of g4 (z|X), for clustering. Here we perform a K-means [3] on the
training latent embeddings with K = 10. To each cluster is assigned the majority label among the
training samples in that cluster. That model is used to predict the labels for the test set in Figure 8]
As a general comment, we observe that aggregated models tend to perform best on that task and are
able to learn a meaningful representation even with incomplete datasets.

n=0.8 n=05

10 Keep Incomplete n 4 I I 10 N I X
. False
0.8 True 0.8

Accuracy
Accuracy
Accuracy

0 N (PSR (NRE P Nmolﬁ oo N (PSS (NRE B NOPE 0% N (P (P IRE et ‘Nol>~E

Figure 8: Accuracy of the K-means computing on latent representations for all the models. The color
of the bar specifies the training paradigm. Standard deviations on 4 seeds are indicated.

4.3 Exploring another incomplete dataset

In section[d.2) we compared models on an incomplete dataset where gaps in the data where simulated at
random, independently of the data. In real world incomplete datasets, missingness is often correlated
with the data variables. To further explore the robustness of models to gaps in the data, we simulated
another incomplete dataset where the probability of a modality sample to be missing depends on the
label of the samples: samples with higher labels have a higher chance of being removed. Following
such a principle, we create gaps in the multimodal *Multimodal Handwritten Digits’ (MHD) dataset
introduced in which contains digits in three modalities; image, sound and trajectory coordinates.
Results for these experiments are given in Appendix [E]

5 Conclusion

We have introduced MultiVae, a Python library unifying implementations of multimodal VAEs. The
implementations were verified by reproducing a key result from the original papers and the library
enables a flexible use of the models on new use-cases including incomplete datasets. This library
intends to evolve through time with the addition of more models and tutorials. An interesting addition
would be to include the impartial optimization training paradigm that [23]] proposed to improve
performance of aggregated models.

Impact statement and Ethics MultiVae was designed to foster research and development in the field
of multimodal machine learning and its applications. Like other generative models, ill-intentionned
or misuse of these models might facilitate misinformation. Developing safeguards around this issue
is a crucial and active field of research [30] [2]. Another possible issue is representation biases which
might occur when the models are trained on datasets that contains intrinsic biases [4]]. We encourage
users to check the distribution biases that may be contained in their dataset with regard to relevant
sensitive attributes.

10

References

(1]

(2]
(3]
(4]

(5]
(6]

(7]

(8]

(9]
[10]
[11]
[12]
[13]
[14]
[15]

[16]

[17]

[18]

[19]

[20]

[21]

Ana Lawry Aguila et al. “Multi-view-AE: A Python package for multi-view autoencoder
models”. In: Journal of Open Source Software 8.85 (2023), p. 5093. DOI1:110.21105/joss |
05093, URL: https://doi.org/10.21105/joss.05093

Alim Al Ayub Ahmed et al. “Detecting fake news using machine learning: A systematic
literature review”. In: arXiv preprint arXiv:2102.04458 (2021).

Khaled Alsabti, Sanjay Ranka, and Vineet Singh. “An efficient k-means clustering algorithm”.
In: (1997).

Federico Bianchi et al. “Easily Accessible Text-to-Image Generation Amplifies Demographic
Stereotypes at Large Scale”. In: 2023 ACM Conference on Fairness, Accountability, and
Transparency. ACM, June 2023. DOI: |10.1145/3593013. 3594095, URL: https://doi |
org/10.1145%2F3593013. 3594095,

Lukas Biewald. Experiment Tracking with Weights and Biases. Software available from
wandb.com. 2020. URL: https://www.wandb.com/!

Merlijn Blaauw and Jordi Bonada. “Modeling and transforming speech using variational au-
toencoders”. In: Morgan N, editor. Interspeech 2016; 2016 Sep 8-12; San Francisco, CA.[place
unknown]: ISCA; 2016. p. 1770-4. (2016).

Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. Importance Weighted Autoencoders.
arXiv:1509.00519 [cs, stat]. Nov. 2016. DOI:|10.48550/arXiv.1509.00519. URL: http:
//arxiv.org/abs/1509.00519) (visited on 01/12/2023).

Clément Chadebec, Louis J Vincent, and Stéphanie Allassonniere. “Pythae: Unifying Gen-
erative Autoencoders in Python—A Benchmarking Use Case”. In: Proceedings of the Neural
Information Processing Systems Track on Datasets and Benchmarks (2022).

Xinlei Chen et al. “Improved baselines with momentum contrastive learning”. In: arXiv
preprint arXiv:2003.04297 (2020).

Imant Daunhawer et al. “ON THE LIMITATIONS OF MULTIMODAL VAES”. en. In: (2022),
p. 27.

Li Deng. “The mnist database of handwritten digit images for machine learning research”. In:
IEEFE Signal Processing Magazine 29.6 (2012), pp. 141-142.

Nat Dilokthanakul et al. “Deep unsupervised clustering with gaussian mixture variational
autoencoders”. In: arXiv preprint arXiv:1611.02648 (2016).

Hugging Face. Hugging Face Hub. 2023. URL: https://huggingface.co/docs/hub/
index.

Partha Ghosh et al. From Variational to Deterministic Autoencoders. en. arXiv:1903.12436
[cs, stat]. May 2020. URL: http://arxiv.org/abs/1903. 12436 (visited on 08/18/2022).

Jean-Bastien Grill et al. “Bootstrap your own latent-a new approach to self-supervised learning”.
In: Advances in neural information processing systems 33 (2020), pp. 21271-21284.
Kaiming He et al. “Deep Residual Learning for Image Recognition”. In: 2016, pp. 770-778.
URL: https : //openaccess . thecvf . com/ content _cvpr _2016/html /He _Deep _
Residual_Learning_ CVPR_2016_paper.html (visited on 01/25/2023).

Xiangteng He and Yuxin Peng. “Fine-Grained Visual-Textual Representation Learning”. In:
IEEE Transactions on Circuits and Systems for Video Technology 30.2 (Feb. 2020), pp. 520-
531.DOI:/110.1109/tcsvt.2019.2892802. URL: https://doi.org/10.1109%2Ftcsvt .,
2019.2892802.

Martin Heusel et al. “Gans trained by a two time-scale update rule converge to a local nash
equilibrium”. In: Advances in Neural Information Processing Systems. 2017.

Irina Higgins et al. “beta-VAE: Learning Basic Visual Concepts with a Constrained Variational
Framework.” In: ICLR 2.5 (2017), p. 6.

HyeongJoo Hwang et al. “Multi-View Representation Learning via Total Correlation Objec-
tive”. In: Advances in Neural Information Processing Systems. Vol. 34. Curran Associates,
Inc., 2021, pp. 12194-12207. URL: https://proceedings.neurips.cc/paper/2021/
hash/65a99bb7a3115fdede20da98b08a370f - Abstract.html (visited on 03/20/2023).
Phillip Isola et al. Image-to-Image Translation with Conditional Adversarial Networks.
arXiv:1611.07004 [cs]. Nov. 2018. DOI: |10 . 48550 / arXiv . 1611 . 07004, URL: http :
//arxiv.org/abs/1611.07004 (visited on 01/17/2023).

11

https://doi.org/10.21105/joss.05093
https://doi.org/10.21105/joss.05093
https://doi.org/10.21105/joss.05093
https://doi.org/10.1145/3593013.3594095
https://doi.org/10.1145%2F3593013.3594095
https://doi.org/10.1145%2F3593013.3594095
https://www.wandb.com/
https://doi.org/10.48550/arXiv.1509.00519
http://arxiv.org/abs/1509.00519
http://arxiv.org/abs/1509.00519
https://huggingface.co/docs/hub/index
https://huggingface.co/docs/hub/index
http://arxiv.org/abs/1903.12436
https://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
https://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
https://doi.org/10.1109/tcsvt.2019.2892802
https://doi.org/10.1109%2Ftcsvt.2019.2892802
https://doi.org/10.1109%2Ftcsvt.2019.2892802
https://proceedings.neurips.cc/paper/2021/hash/65a99bb7a3115fdede20da98b08a370f-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/65a99bb7a3115fdede20da98b08a370f-Abstract.html
https://doi.org/10.48550/arXiv.1611.07004
http://arxiv.org/abs/1611.07004
http://arxiv.org/abs/1611.07004

[22]

[23]

[24]

[25]

[26]

[27]

(28]
[29]
[30]

[31]

[32]

[33]
[34]

[35]

[36]

[37]
[38]

[39]

[40]

[41]

Boris Ivanovic et al. “Multimodal deep generative models for trajectory prediction: A con-
ditional variational autoencoder approach”. In: IEEE Robotics and Automation Letters 6.2
(2020), pp. 295-302.

Adrian Javaloy, Maryam Meghdadi, and Isabel Valera. “Mitigating Modality Collapse in Multi-
modal VAEs via Impartial Optimization”. In: Proceedings of the 39th International Conference
on Machine Learning. Ed. by Kamalika Chaudhuri et al. Vol. 162. Proceedings of Machine
Learning Research. PMLR, July 2022, pp. 9938-9964. URL: https://proceedings.mlr|
press/v162/javaloy22a.html,

Dae Ung Jo et al. “Associative variational auto-encoder with distributed latent spaces and
associators”. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 34. 07.
2020, pp. 11197-11204.

Michael I. Jordan et al. “An Introduction to Variational Methods for Graphical Models”. en.
In: Learning in Graphical Models. Ed. by Michael 1. Jordan. Dordrecht: Springer Netherlands,
1998, pp. 105-161. DOI: 10 . 1007 /978 -94 - 011 - 5014 -9 _5, URL: http://1link|
springer.com/10.1007/978-94-011-5014-9_5|(visited on 01/17/2023).

Tom Joy et al. “Learning multimodal VAEs through mutual supervision”. In: arXiv preprint
arXiv:2106.12570 (2021).

Phuc H. Le-Khac, Graham Healy, and Alan F. Smeaton. “Contrastive Representation Learning:
A Framework and Review”. In: IEEE Access 8 (2020), pp. 193907-193934. DO1:/10.1109/
ACCESS.2020.3031549.

Dhruv Khattar et al. “Mvae: Multimodal variational autoencoder for fake news detection”. In:
The world wide web conference. 2019, pp. 2915-2921.

Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes. en. arXiv:1312.6114
[cs, stat]. May 2014. URL: http://arxiv.org/abs/1312.6114|(visited on 07/20/2022).
Pavel Korshunov and Sébastien Marcel. “Deepfakes: a new threat to face recognition? assess-
ment and detection”. In: arXiv preprint arXiv:1812.08685 (2018).

Mihee Lee and Vladimir Pavlovic. “Private-shared disentangled multimodal vae for learning
of latent representations”. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 2021, pp. 1692-1700.

Ziwei Liu et al. “Deep Learning Face Attributes in the Wild”. In: 2015, pp. 3730-3738.
URL: https://openaccess . thecvf . com/content _iccv_2015/html/Liu_Deep_
Learning_Face_ICCV_2015_paper.html|(visited on 01/24/2023).

Kodai Minoura et al. “A mixture-of-experts deep generative model for integrated analysis of
single-cell multiomics data”. In: Cell reports methods 1.5 (2021), p. 100071.

Yuval Netzer et al. “Reading Digits in Natural Images with Unsupervised Feature Learning”.
In: NIPS (Jan. 2011).

Emanuele Palumbo, Imant Daunhawer, and Julia E Vogt. “MMVAE+: ENHANCING THE
GENERATIVE QUALITY OF MULTIMODAL VAES WITHOUT COMPROMISES”. en. In:
(2023).

George Papamakarios, Theo Pavlakou, and Iain Murray. “Masked Autoregressive Flow for
Density Estimation”. In: Advances in Neural Information Processing Systems. Vol. 30. Curran
Associates, Inc., 2017. URL: https://proceedings.neurips.cc/paper/2017/hash/
6c1da886822c67822bcf3679d04369fa-Abstract . html (visited on 01/17/2023).

Adam Paszke et al. “Automatic differentiation in pytorch”. In: (2017).

Ali Razavi, Aaron van den Oord, and Oriol Vinyals. Generating Diverse High-Fidelity Images
with VQ-VAE-2. arXiv:1906.00446 [cs, stat]. June 2019. DOI: 10 . 48550/ arXiv . 1906 .
00446| URL: http://arxiv.org/abs/1906.00446 (visited on 08/31/2022).

Gabriela Sejnova, Michal Vavrecka, and Karla Stepanova. “Benchmarking Multimodal Varia-
tional Autoencoders: GeBiD Dataset and Toolkit”. In: (2022). arXiv: 2209.03048 [cs.LG].
Agathe Senellart, Clément Chadebec, and Stéphanie Allassonniere. “Improving Multimodal
Joint Variational Autoencoders through Normalizing Flows and Correlation Analysis”. In:
arXiv preprint arXiv:2305.11832 (2023).

Yuge Shi et al. “Variational Mixture-of-Experts Autoencoders for Multi-Modal Deep Genera-
tive Models”. In: arXiv:1911.03393 [cs, stat] (Nov. 2019). arXiv: 1911.03393. URL: http:
//arxiv.org/abs/1911.03393 (visited on 04/20/2022).

12

https://proceedings.mlr.press/v162/javaloy22a.html
https://proceedings.mlr.press/v162/javaloy22a.html
https://doi.org/10.1007/978-94-011-5014-9_5
http://link.springer.com/10.1007/978-94-011-5014-9_5
http://link.springer.com/10.1007/978-94-011-5014-9_5
https://doi.org/10.1109/ACCESS.2020.3031549
https://doi.org/10.1109/ACCESS.2020.3031549
http://arxiv.org/abs/1312.6114
https://openaccess.thecvf.com/content_iccv_2015/html/Liu_Deep_Learning_Face_ICCV_2015_paper.html
https://openaccess.thecvf.com/content_iccv_2015/html/Liu_Deep_Learning_Face_ICCV_2015_paper.html
https://proceedings.neurips.cc/paper/2017/hash/6c1da886822c67822bcf3679d04369fa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/6c1da886822c67822bcf3679d04369fa-Abstract.html
https://doi.org/10.48550/arXiv.1906.00446
https://doi.org/10.48550/arXiv.1906.00446
http://arxiv.org/abs/1906.00446
https://arxiv.org/abs/2209.03048
http://arxiv.org/abs/1911.03393
http://arxiv.org/abs/1911.03393

[42] Thomas Sutter, Imant Daunhawer, and Julia Vogt. “Multimodal generative learning utilizing
jensen-shannon-divergence”. In: Advances in neural information processing systems 33 (2020),
pp. 6100-6110.

[43] Thomas M. Sutter, Imant Daunhawer, and Julia E. Vogt. “Generalized Multimodal ELBO”. In:
ICLR (2021).

[44] Masahiro Suzuki, Takaaki Kaneko, and Yutaka Matsuo. Pixyz: a library for developing deep
generative models. 2021. arXiv: 2107.13109 [cs.LG].

[45] Masahiro Suzuki and Yutaka Matsuo. “A survey of multimodal deep generative models”.
en. In: Advanced Robotics 36.5-6 (Mar. 2022). arXiv:2207.02127 [cs, stat], pp. 261-278.
ISSN: 0169-1864, 1568-5535. DOI: |10 . 1080 /01691864 . 2022 . 2035253 URL: http :
//arxiv.org/abs/2207.02127 (visited on 12/09/2022).

[46] Masahiro Suzuki, Kotaro Nakayama, and Yutaka Matsuo. “Joint Multimodal Learning with
Deep Generative Models”. In: arXiv:1611.01891 [cs, stat] (Nov. 2016). arXiv: 1611.01891.
URL: http://arxiv.org/abs/1611.01891 (visited on 04/15/2022).

[47] Yingtao Tian and Jesse Engel. “Latent Translation: Crossing Modalities by Bridging Generative
Models”. In: ArXiv (2019).

[48] George Tucker et al. “Doubly reparameterized gradient estimators for monte carlo objectives”.
In: arXiv preprint arXiv:1810.04152 (2018).

[49] Miguel Vasco et al. “Leveraging hierarchy in multimodal generative models for effective cross-
modality inference”. en. In: Neural Networks 146 (Feb. 2022), pp. 238-255. 1SSN: 0893-6080.
DOI: [10.1016/j .neunet .2021.11.019. URL: https://www.sciencedirect.com/
science/article/pii/S0893608021004470|(visited on 03/20/2023).

[50] Ramakrishna Vedantam et al. “Generative Models of Visually Grounded Imagination”. en.
In: arXiv:1705.10762 [cs, stat] (Nov. 2018). arXiv: 1705.10762. URL: http://arxiv.org/
abs/1705.10762 (visited on 05/12/2022).

[51] Weiran Wang et al. “Deep Variational Canonical Correlation Analysis”. In: (2017). arXiv:
1610.03454 [cs.LG].

[52] Zhou Wang et al. “Image quality assessment: from error visibility to structural similarity”. In:
IEEE transactions on image processing 13.4 (2004), pp. 600-612.

[53] Thomas Wolf et al. “Transformers: State-of-the-Art Natural Language Processing”. In: Pro-
ceedings of the 2020 Conference on Empirical Methods in Natural Language Processing:
System Demonstrations. Online: Association for Computational Linguistics, Oct. 2020, pp. 38—
45. URL: https://www.aclweb.org/anthology/2020.emnlp-demos. 6,

[54] Mike Wu and Noah Goodman. “Multimodal Generative Models for Scalable Weakly-
Supervised Learning”. In: Advances in Neural Information Processing Systems. Vol. 31.
Curran Associates, Inc., 2018. URL: https://proceedings.neurips.cc/paper/2018/
hash/1102a326d5f7c9e04fc3c89d0ede88c9-Abstract.html (visited on 04/15/2022).

[55] Jun-Yan Zhu et al. Toward Multimodal Image-to-Image Translation. arXiv:1711.11586 [cs,
stat]. Oct. 2018. DOI:|10.48550/arXiv.1711.11586. URL: http://arxiv.org/abs/
1711.11586| (visited on 01/17/2023).

[56] Jun-Yan Zhu et al. “Unpaired image-to-image translation using cycle-consistent adversarial
networks”. In: Proceedings of the IEEE international conference on computer vision. 2017,

pp. 2223-2232.

ChecKklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]

(c) Did you discuss any potential negative societal impacts of your work? [N/A] This
paper presents a Open-source Python library meant to facilitates the development and
benchmark of models.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

13

https://arxiv.org/abs/2107.13109
https://doi.org/10.1080/01691864.2022.2035253
http://arxiv.org/abs/2207.02127
http://arxiv.org/abs/2207.02127
http://arxiv.org/abs/1611.01891
https://doi.org/10.1016/j.neunet.2021.11.019
https://www.sciencedirect.com/science/article/pii/S0893608021004470
https://www.sciencedirect.com/science/article/pii/S0893608021004470
http://arxiv.org/abs/1705.10762
http://arxiv.org/abs/1705.10762
https://arxiv.org/abs/1610.03454
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://proceedings.neurips.cc/paper/2018/hash/1102a326d5f7c9e04fc3c89d0ede88c9-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/1102a326d5f7c9e04fc3c89d0ede88c9-Abstract.html
https://doi.org/10.48550/arXiv.1711.11586
http://arxiv.org/abs/1711.11586
http://arxiv.org/abs/1711.11586

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [N/A] This paper
doesn’t introduce any new theoretical results.
(b) Did you include complete proofs of all theoretical results? [N/A]
3. If you ran experiments (e.g. for benchmarks)...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A] We use well-known database.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A| We use well-known database.
5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

14

A Details on the models implemented in the library

In this appendix, we provide a brief explanation of each model and, when possible, how they have
been adapted for incomplete datasets in the MultiVae library. Table [A] summarize key informations
about the models. Note that when a model uses a multistage training, a specific trainer has been
implemented in MultiVae to handle it without further complications. The trainer module suited to
each model is indicated in Appendix [F along with snippets of code.

MODEL TYPE INCOMPLETE MULTIPLE LA- MULTISTAGE HIGHER INFERENCE
DATA TENT SPACES TRAINING TIME
JMVAE JOINT ENCODER, NoO No No
FIGE}A)
TELBO JOINT ENCODER, No No YES
FiG|l{A)
MVAE AGGREGATED, FIG YES No No
B)
MMVAE [%GGREGATED,FIG YES No No
B)
MVTCAE @GGREGATED,FIG YES No No
B)
MoPOE AGGREGATED, FIG YES POSSIBLE No
B)
JNF EJOINT ENCODER, No No YES X
FIGE}A)
JNFDccA JOINT ENCODER, NoO No YES X
FIGE}A)
MMVAE+ AGGREGATED, FIG YES YES No
i)

Table 1: For each model, we indicate if it is a joint encoder model or an aggregated model. The
relevant diagram depicting the model can be found in Figure[I}] We also indicate the possibility to
train with incomplete data, and if they consider multiple latent spaces. For the JNF, INFDcca models,
we indicate a higher inference time, because Monte-Carlo sampling is involved for infering the latent
code from a subset of modalities when it is not a singleton.

A.1 JMVAE

The JMVAE model [46] is one of the first multimodal variational autoencoders models that were
proposed by [46]. It has a dedicated joint encoder network g, (z|X) and surrogate unimodal encoders
q¢, (z|x;). The IMVAE-KL loss has additional terms to the ELBO to fit the unimodal encoders:

M
Lonvar(X) = Eq, 1) [po(z1X)] = KL (a5(z1X)|lpa(2)) — @D KL (a5(21X)llag, (1))

j=1
(6)

Those additional terms are interpreted in [46]] in terms of of minimizing the Variation of Information
(VI) between modalities. Another insightful interpretation is provided in [50]]. « is the parameter that
controls a trade-off between the quality of reconstruction and the quality of cross-modal generation
[46[]. This model has been proposed for only two-modalities, but an extension has been proposed
in [40] for dealing with more modalities. During inference, when M < 2, the subset posteriors
po(2|(x;)jes) can be approximated by the product of experts (PoE) of the already trained unimodal
encoders ¢y (2|2j)1<j<m. Since the unimodal posteriors are normal distributions, the PoE has a
closed-form and can easily be computed.

The original IMVAE model uses annealing during training: which means that a weighting factor that
ponders the regularizations terms is linearly augmented from O to 1 during the [V, first epochs.

As it uses a joint encoder network, this model can not be trained with partially observed samples.

15

A.2 TELBO
The TELBO [50] model use a joint encoder as the JMVAE but uses the following Triple ELBO loss:

L(X) =Eq,zx) [] +2Eq¢<z|wj) [pe (Z|Zﬂ ©)

It is trained with a two-steps training, first learning the joint encoder and decoders then, training the
unimodal encoders with previous parameters fixed.

As it uses a joint encoder network, this model can not be trained with partially observed samples.

A3 MVAE

The MVAE model was the first aggregated model proposed by [54]]. To solve the scalability is-
sue of the JIMVAE model, the MVAE suggest to model the joint posterior as a PoE ¢4(z|X) o
p(2) 1, g¢, (2|z;). The ELBO is then optimized:

Lyvap(X) =Ey, zx) [logpe(X|2)] — K L(qg(2|X)]|pe(2)) (®)
This ELBO can be computed on a subset .S by taking only the modalities in the subset to compute the
PoE:
ge(2|X) x p(z Hq¢a (z|z;) ©
JES

To ensure all unimodal encoders are correctly trained, the MVAE uses a sub-sampling training
paradigm, meaning that at iteration, the ELBO is computed for several subsets: the joint subset
{1, .., M }, the unimodal subsets and for K random subsets. For each sample X, the objective then
becomes

Lavap(X)+ > Luvap(z;) + Z Lyvae((z;)jes,) (10)

J k=1
where sj, are random subsets. As an aggregated model, this model can be used in the partially
observed setting. In the partially observed setting, we don’t use the sub-sampling paradigm since the
dataset is naturally sub-sampled, and we compute the ELBO with only the observed modalities in

Sobs (X)) 4g(2]X) o< p(2) [Tjes,,. (x) 965 (2]25)-

A4 MMVAE

The MMVAE model [41]] uses a mixture-of-experts (MoE) aggregation. It also uses a k-samples
IWAE lower bound. The MMVAE loss writes as follows:

(k) X
z
MZEZ“) 2 gy (2]2;) Ongpe an

Note the sum over the modahtles, for each sample X, K latent codes are sampled from gg, (z|z;) for
each1l < j < M. Intotal M x K latent codes are sampled per data-point. The original MM VAE
model uses Laplace posteriors while constraining their scaling in each direction to sum to D, the
dimension of the latent space. This favours disentanglement in the latent space [41].

A DreG estimator [48] is used to train the IWAE objective.

To use this model in the partially observed setting, it suffices to sum over the available modalities and
to take the mixture of experts g4(z|X') over the available modalities as well.

For instance, if S,ps(X) is the subset of observed modalities for sample X the loss becomes:

1 Do z(k) X
B2 Eethstima e 108 7 S 12
* JESoba(X) k

with the joint posterior ¢, (z|X) computed as the mixture of available experts.

16

A.5 MoPoE-VAE

The MoPoE-VAE [43] suggest to combines the advantages of the two models above by using a
Mixture of Product of Experts. Formally, for each subset S € P({1,..., M }) a PoE distribution is
defined Gy (2|(7;) es) = PoE((qe,(2|;));es). Then the joint posterior is defined as:

1 ~
q4(2X) = oM _1 Z o (2](z;)jes)
SeP({1,...M},5#{}

. The ELBO is optimized:
L(X) = Eq, (z1x) [npe(X|2)] = KL(gs (2| X)|po(2)) (13)
The MoPoE loss resemble the MVAE subsampled objective with several notable differences:
* The MoPoE objective includes all subsets while the MVAE objective only include the joint,

unimodal subsets and K others random subsets.

* The Product of experts in MoPoE does not include the prior distribution except for the entire
subset S = {1,...,M}.

* In the MVAE subsampled objective, all the subsampled ELBOs are computed for each
datapoint X. In the MoPoE objective, for each datapoint a subset is sampled at each
iteration and only that subset ELBO is computed.

The MoPoE uses a § parameter to tune the regularization in the ELBO. To adapt this model to
the partially observed setting, the loss is computed with all available subsets S € S5 (X), where
Sobs (X)) is the set of observed modalities for the sample X at hand, instead of all subsets S €
P{1,...,M}.

A.6 MVTCAE
The MVTCAE [20] model uses a PoE in a similar fashion as the MVAE but without the prior:
46(21X) ~ [] a6, (212)) (14)
J

The MVTCAE loss is derived from a Total Correlation Analysis and writes as follows:

M-«
‘C(X) = M E%(Z\X) Ung@(X|Z)]

M (15)

— 8| (1=) K L{gs(120)lIpo(2)) + 7= > K L(s(=|X)l g, (2];)
Jj=1

Although this loss derives from a different analysis, it uses same terms that in the JMVAE model. A
factor weighs the regularization, while the o parameters is used to weight out the different divergence
terms: the Kullback-Leilbler divergence of the joint encoder to the prior refered to as Variational
Information Bottleneck (VIB), and the Kullback-Leibler divergence between posteriors referred to as
Conditional Variational Information Bottlenecks (CVIB).

For the partially observed setting, we follow the authors’ indications setting the variance for the
missing modalities’ decoders to oo which amounts to setting the reconstruction loss to O for those
modalities. The KL terms for missing modalities are also set to 0.

A.7 JNF, JNFDcca
The JNF, JNFDcca [40] models use a joint encoder to model ¢,(z|X) and surrogate unimodal
encoders g, (z|z;) for 1 < j < M.

For the JNF model, the loss used is the same as the JMVAE (with o = 1) but the unimodal encoders
q¢,(z|z;) are modelled with Masked Autoregressive Flows [36] to improve the flexibility and
correctness of the inference.

17

po(z, X) M
Lonr(X) = Eqx) [M] — 3" K L(go(2|X) lag, (25)) (16)

j=1
For the INFDcca model, the unimodal encoders distributions are conditioned not on the modality
samples directly but on a DCCA embedding: gy, (2|f;(x;)) where f;(x;) are pretrained DCCA
embeddings for j = 1,..M. The loss then writes:

po(z, X)

M
%(ZIX)} _ZKL(%(Z‘X)W@(ZUJ‘(%)) (17)

EJNFDcca(X) =]EQ¢(Z|X) |:

Conditioning on DCCA embeddings allows improve coherence by extracting the shared information
relevant for cross-modal generation.

Those two models are trained with a two-steps training as the TELBO model; first the joint encoder
and decoders are trained, and then those parameters are fixed while the unimodal encoders are trained.
This two steps training replaces the o parameter in the original JIMVAE loss.

A.8 MMVAE+

The MMVAE+ model [35] is an aggregated model that uses multiple latent spaces : z is the latent
code shared accross modalities and w; is private latent code of modality j for 1 < j < M.

It has twice as many encoders as the MMVAE: ¢, (z|2,,) is the encoder for shared latent code
given the modality m, q¢,, (wm|7,,) is the encoder for private latent code given the modality .

It also uses specific prior distributions for each private latent spaces r,, (w,,) with a scale parameter
that is tuned.

As for the MMVAE, the joint posterior for the shared latent code is a mixture of experts of the
unimodal posteriors:

M
1
Go.(21X) = 37 > to.,, (2lm) (18)
m=1

The loss of the MM VAE+ model then writes as follows:

2K
Zon | A, (ZlTm)
Wy g, (2lwm)
717,1;:#}7(” ~rp (W)

K
1Z e -
log?k—l Dg,@(Xv Zkvwllcvwé)?”VwQ ,..711}?\/[) (19)

with
Nk ook k E\\8
B k ~k ~k ~k 7p6m(lm|z 7wm)(p(z)p(wm)) p k ~k
Dé’@(X,Z ,wl,wz,..,wén, ..,U)Z\/I) - (q¢z (z’f|X)q¢w7m(w,’§l|xm))5 H p9n(In|Z ,’U.)n)

n#m

(20)
It uses a k-importance sampled estimator of the likelihood and a 3 factor that can be tuned to promote
disentanglement in the latent space. In this objective function, the modality private information w,, is
only used for self reconstruction and not for cross-modal generation. For cross modal reconstruction,
only the shared latent code can be used which forces it to contain the information shared across
modalities.

For the partially observed case, that loss can be computed using only available sample instead of all
modalities.

For instance if we only observe modalities in S,ps(X) the computed loss for sample X becomes:

18

1 -
m Z E 20 K gy, (2lTm) OgK ZD (X, 2 w’f’w§7,,,w£n,..,w§4) @D
008 MESops (X) wl qmum(z\“’m) k=1

m
@711 #m™~Tn (wn)

with
k ok
Dﬁ - X Zk wk,lbk7 ,wm’“,ﬁ)k _ pgm(xm|z 7wm)(p() Do, xn 2 ’LU
.6 1, W2 2 M) (4p. (2F[X)gg,,, (w m|$m NE n].;!n 2%, @)
(22)
computed with the joint posterior computed with available modalities:
1
Go.(21X) = e Y s, (2l7m) (23)

|Sobs()l

meESops (X)

B Technical details on the experiments

B.1 PolyMMNIST dataset

In Figure[B:1] we plot example images of the incomplete PolyMNIST dataset used in the experiments.

Complete dataset Incomplete dataset

Figure 9: Examples from a complete PolyMNIST dataset and an incomplete one obtained with
n = 0.5. Each row represents a modality and each column a sample.

B.2 Architectures

We use Laplace decoder distribution for all five modalities, with scaling parameter o = 0.75 and a
latent dimension of size 512, as done in [33].

The convolutional architectures used in section [4.2] are very similar to the ones used in 20].
Figure [T0]describes the encoders and decoders architectures used on the PolyMNIST images.

For more details on the training of each model, we refer to the scripts available at https://github,
com/AgatheSenellart/nips_experiments|

B.3 Retrieving trained models

All models trained in this project are hosted on the HuggingFace Hub and can be downloaded. For in-
stance seehttps://huggingface.co/asenella/mmnist_MMVAEconfig2_seed_O_ratio_02_

19

https://github.com/AgatheSenellart/nips_experiments
https://github.com/AgatheSenellart/nips_experiments
https://huggingface.co/asenella/mmnist_MMVAEconfig2_seed_0_ratio_02_i
https://huggingface.co/asenella/mmnist_MMVAEconfig2_seed_0_ratio_02_i

Encoder Decoder

Convolutional Layer with bias
(32,33)
[RelU }

[RelU }
Unflatten 2048 -> (128,4,4)
Convolutional Layer with bias
(64,3.3)

ConvTranspose
(64, 3,3)
Convolutional Layer with bias
(128, 3,3)

ConvTranspose
32,3,3)

¥
Convolutional Layer with bias Convolutional Layer with bias
(latent dim = 512, 4,4) (latent dim = 512, 4,4) ConvTranspose
(3,33

Figure 10: The encoder, decoder architectures used for the comparison between models in section

42

il Each run has a specific id corresponding to its configuration. To see how to retrieve them all,
please look at the file "eval_hf models.py’ as well the ' README.md’ in the github repository of the
project: https://github.com/AgatheSenellart/nips_experiments.

C Additional experimental results

C.1 Visualization of generated samples
C.1.1 Conditional generation and reconstruction

In this section, we present conditionally generated samples for all models, for the different degrees of
missing data (best viewed with zoom). For the aggregated models, presented samples corresponds to
models trained using all, even incomplete samples. For the joint encoder models that don’t handle
missing data, the presented samples correspond to models trained only on complete samples.

In Figure. we condition on two modalities (presented as the first two rows) to infer a latent code
and reconstruct all modalities from that latent code.

In Figure. [I2] we condition on all five modalities (presented as the first five rows) to infer a latent
code and reconstruct all modalities from that latent code.

C.1.2 Unconditional generations

Figure[I3] presents unconditionally generated samples, when sampling the latent code from a), the
prior and b) a Gaussian Mixture Model (GMM) with 10 components, fit on training latent codes (best
viewed with zoom). For all models, the generated samples are much more realistic and coherent
when using the GMM sampler.

20

https://huggingface.co/asenella/mmnist_MMVAEconfig2_seed_0_ratio_02_i
https://huggingface.co/asenella/mmnist_MMVAEconfig2_seed_0_ratio_02_i
https://github.com/AgatheSenellart/nips_experiments

MoPoE MVTCAE

el =l el o -

eta=1

=I5

e |
5]

7|
(1]
7]
5]
B
7]

2 Al

I N
FEEEEEET]

-]

Figure 11: Conditional generation for all models for different 7. For aggregated models, we present
the results when training on all samples even incomplete ones. For joint encoder models, we only
use complete samples. The first two lines are the conditioning images, while all the next rows are
generated images.

21

N RN

o

Figure 12: Joint reconstruction of all modalities simultaneously. For aggregated models, we present
the results when training on all samples even incomplete ones. For joint encoder models, we only use
complete samples. The first five lines are the conditioning images, while all the next rows present the
reconstructions.

MoPoE MVAE JNFDcca JNF MMVAE MVTCAE JMVA
% 4 T 7] B 8

1] [0y E]

Figure 13: Unconditional generation sampling a) from the prior, b) from the Gaussian Mixture Model
Prior. This generation are obtained in the case = 1. Note that each column represent samples
generated from the same shared latent code, and therefore are supposed to be coherent meaning
sharing digit information.

C.2 Joint likelihoods for all models

In Figure [T4 we present computed likelihoods for all models and all configurations. The likelihoods
are computed by taking the joint posterior g4(z|X) as importance sampling distribution and 1000
importance samples for all datapoints.

We see that joint encoders models and the MVTCAE tend to obtain better joint likelihoods values.

n=10 n=08 n=05
Keep Incomplete Keep Incomplete
- False 700 - False 7000
—True

6000
5000 5000

4000

Joint Likelivood

Joint Likelivood
g

Join Likelivood
g

2000

2000

Keep Incomplete:
- alse
—True

1000

O W O e WE N e N SE e et

R N ‘wchﬁ aNKE W Wwﬁ g

60 W

Figure 14: Negative log likelihoods for all models and configurations, averaged on 4 seeds.

22

C.3 Training times for all models

In Table. 2] we indicate approximate training times for the experiments in 4.2l with n = 1. To
do so, we have used the training curves available in the Wandb workspace https://wandb.ai/
multimodal_vaes/compare_on_mmnist/ to get the number of epochs necessary for each model
to reach convergence and the average computing time for each epoch. Note that the training time for
each model may vary depending on the GPU used, the architectures, and the dataset.

MODEL TIME FOR ONE EPOCH NUMBER OF EPOCHS FOR CONVERGENCE TIME FOR CONVERGENCE
IMVAE 19s 200 61 MIN
MMVAE (K=10) 85s 50 71 MIN
MVAE 24s 200 80 MIN
MOPOE 24s 150 59 MIN
MVTCAE 14s 400 92MIN
INF 13s 500 108 MIN
JNFDccA 10s 700 112MIN

Table 2: Approximate training times for each model to reach convergence on the validation set. The
indicated values refer to the experiments in paragraph obtained in the complete dataset scenario
(n = 1.0). For the JNF and JNFDcca model that have a multistage training, the values refer to the
entire training process. The GPUs used for those values are Quadro RTX 6000.

C.4 Inference times for all models

In Table. 3] we provide a comparison in inference times for all models trained in the case-study 4.2]
with 7 = 1.0, and seed = 0. As expected the JNF, INFDcca models have a larger inference time since
it uses Monte-Carlo Sampling when infering the latent code from a subset of modalities that is not a
singleton [40].

NUMBER OF INPUT MODALITIES MVTCAE MoOPOE MMVAE JNFDcca JNF JMVAE

1 0.05 0.08 0.04 0.95 1.16 0.06
2 0.03 0.07 0.03 12.54 20.75 0.04
3 0.04 0.09 0.03 19.17 31.75 0.04
4 0.05 0.08 0.03 26.01 42.26 0.05
5 0.06 0.07 0.03 0.03 0.06 0.06

Table 3: Inference time in seconds to generate all modalities from a subset of modalities for a
minibatch of a hundred samples. These results are obtained on CPU.

C.5 Reconstruction metrics for all models

In this section, we provide metrics that quantify the quality of the reconstructions for each model, in
each scenario of the case study. To compare original and reconstructed images, we use two different
metrics:

e The Mean Squared Error (MSE) https://en.wikipedia.org/wiki/Mean_squared_
error that is summed over the image’s pixels.

* The Structural Similarity Index Measure (SSIM) (https://fr.wikipedia.org/wiki/
Structural_Similarity) [52]

The SSIM metric was constructed to better reflect human perception of resemblance between images
than MSE. [52]

C.5.1 Unimodal reconstructions

First we investigate the quality of reconstructed images when using the unimodal posteriors to
reconstruct each modality independently of the others. More specifically, for each modality 1 <
J < M, we sample a latent code z ~ gy, (z|z;) from the unimodal posterior and reconstruct the
modality sample by taking the mean of the decoder distribution py(x;|z). Figure. present the MSE

23

https://wandb.ai/multimodal_vaes/compare_on_mmnist/
https://wandb.ai/multimodal_vaes/compare_on_mmnist/
https://en.wikipedia.org/wiki/Mean_squared_error
https://en.wikipedia.org/wiki/Mean_squared_error
https://fr.wikipedia.org/wiki/Structural_Similarity
https://fr.wikipedia.org/wiki/Structural_Similarity

=10 n=108 n=05

Keep Incomplete Keep Incomplete Keep Incomplete
250 - False 250 250 - False
- e
200

200 200

o WE O NRE et M\j‘(}ﬁ MWAE e W N R et VN«_AE »:WF‘E O W N et W‘@E MWAE

Figure 15: MSE (]) averaged over the 5 modalities for unimodal reconstructions. We present the
mean over four seeds with standard errors. For this metric, smaller is better.

n=10 n=08 7=05

Keep Incomplete Keep Incomplete
07 - ke o1 - False
- True

Mean SSIM

0.0 0.0

Nﬁ;m W Wmﬁ WNRE Mopoﬁ “N‘;_pﬁ M‘Npi mﬁ;m WF 5 GPE (e Mo\me M\“;_pﬁ M‘pr m““m WF 5 aE (e Mo\m(. M"‘Lhﬁ M‘Npt

Figure 16: SSIM (1) averaged over the 5 modalities for unimodal reconstructions. We present the
mean over four seeds with standard errors. For this metric, higher is better.

values, averaged over the five modalities for the entire test set of PolyMNIST. Similarly, Figure. 16|
presents the SSIM values, averaged over the five modalities for the entire test set of PolyMNIST.
The JNFDcca model is the worst performing model for those metrics, which is coherent with the
model design. In this method the unimodal posteriors learned are gy, (2| f;(x;)) are conditioned on
the DCCA representation of the modality which extract the information shared accross modalities.
The unimodal posteriors in that model are designed to perform well in cross-modal generation but
not in the reconstruction task.

C.5.2 Joint reconstruction

Secondly, we present results for the joint reconstruction of all the modalities. To be precise, we
sample a latent code z ~ gy (2|(xj)1<j<m) from the joint posterior distribution and reconstruct
all modalities from this latent code by taking the mean of each decoder distribution pg(x;|z) for
1<j<M.

Figure. [I7] presents the MSE for joint reconstruction, while Figure. [I8] show the SSIM for joint
reconstruction. Both metrics are computed over the entire test set and averaged over the four seeds.

For joint reconstruction, the MMVAE is the worst performing model because reconstructed images
are somewhat averaged and do not preserve the background as can be seen in Figure.[I2] On the
other hand, we note that the MVTCAE obtain excellent values, even in with incomplete datasets.

D Details on the reproduction of previous results

D.1 JMVAE
To validate the IMVAE model, we reproduce the experiment on the binary MNIST dataset. For this

dataset, the images are randomly binarized (with bernoulli laws that have for parameters the intensity
of the grey-level MNIST images) at each epoch.

24

n=10 n=08 =05
200 200 200
Keep Incomplete Keep Incomplete Keep Incomplete

- False - False - False
75 - Tre - True

100

e W RE e e M\ﬁ‘—“ﬁ w‘“‘\i WO W E (R et M\,«_hﬁ »:WF‘E W W e M\[‘(}E MWAE

Figure 17: MSE ({) for joint reconstruction. We present the mean over four seeds with standard
errors. For this metric, smaller is better.

n=10 n=08 n=05

Keep Incomplete
- False

Keep Incomplete Keep Incomplete
- False — False
- True - Tre

Joint reconstruction SSIM
Joint reconstruction SSIM

01

00
x*‘“m WE M\mﬁ WA Mopog M‘f‘(}& " ANBE r WFo W r ANRE (e Mopog " \[(@E " ANRE ““_wa W r ANPE (e Mo\;oe » \ﬁckﬁ " ANPE

Figure 18: SSIM (1) for joint reconstruction. We present the mean over four seeds with standard
errors. For this metric, higher is better.

The script used for reproducing this model is under "/reproducing_experiments/jmvae" in https:
//github.com/AgatheSenellart/nips_experiments|

The wandb training runs can be visualized on wandb athttps://wandb.ai/multimodal_vaes/
reproduce_jmvael with some sample images.

Three pretrained models can be downloaded from HuggingFace Hub at:

* https://huggingface.co/asenella/reproduce_jmvae_seed_1
* https://huggingface.co/asenella/reproduce_jmvae_seed_2

* https://huggingface.co/asenella/reproduce_jmvae_seed_8

Validation scripts in https://github.com/AgatheSenellart/nips_experiments detail how
to load the models.

The metric we reproduced is the likelihood of the image modality log p(z) where z is the image using
the joint posterior g4 (z|x,y) as the importance sampling distribution. We obtain —86.85 £ 0.03 on
three different runs while the value presented in the original paper is —86.86.

D.2 MMVAE

For the MMVAE model, we reproduce the MNIST-SVHN experiment. The metrics we focus on
reproducing are the accuracies of cross-modal generation. The values presented in the original paper
are 86.4% for (MNIST — SVHN) and 69.1 for (SVHN — MNIST). However those results are
obtained on one specific seed. When running the original code on four different seeds, we obtain
87+ 2 and 59 + 11.

Using our implementation, we obtain similar values; 60 & 6 and 87 = 2 when averaging on four seeds
as well. We also obtain similar joint generation coherence: 39 = 3 with the original code, 38 £ 3
with our implementation.

25

https://github.com/AgatheSenellart/nips_experiments
https://github.com/AgatheSenellart/nips_experiments
https://wandb.ai/multimodal_vaes/reproduce_jmvae
https://wandb.ai/multimodal_vaes/reproduce_jmvae
https://huggingface.co/asenella/reproduce_jmvae_seed_1
https://huggingface.co/asenella/reproduce_jmvae_seed_2
https://huggingface.co/asenella/reproduce_jmvae_seed_8
https://github.com/AgatheSenellart/nips_experiments

The script used for reproducing the experiment are available under /reproducing_experiments/mmvae
inhttps://github.com/AgatheSenellart/nips_experiments.

One trained model is available at https://huggingface.co/asenella/reproduce_mmvae_
model.

The training runs of the four models used for reproduction can be visualized at https://wandb.ai/
multimodal_vaes/reproducing_mmvae,

D.3 MVAE

For the MVAE model, we reproduce the Binary MNIST experiment using the same dataset as for the
JMVAE experiment. Unfortunatly we weren’t able to reproduce the likelihoods presented in the paper,
as the code for computing the likelihoods have not been made available by the authors. Therefore we
validated our implementation by running the original code and our code, and comparing the final
ELBO values on the test dataset: we obtain 188.8 with the original code and 188.3 + 0.4 with our
implementation.

The script used for reproducing the experiment are available under /reproduc-
ing_experiments/mvae/mnist in https://github.com/AgatheSenellart/nips_experiments,

The runs can be visualized on Wandb at https://wandb.ai/multimodal_vaes/reproduce_
mvae_mnist.

The trained models can be retrieved on the HuggingFace Hub under:

* https://huggingface.co/asenella/reproduce_mvae_mnist_0
* https://huggingface.co/asenella/reproduce_mvae_mnist_1

e https://huggingface.co/asenella/reproduce_mvae_mnist_2

D.4 MoPoE
For the MoPoE model, we reproduce the PolyMNIST experiment. We focus on reproducing the
cross-modal generation coherence, averaged on three different runs.

The script used for reproducing the experiment are available under /reproducing_experiments/mopoe
inhttps://github.com/AgatheSenellart/nips_experiments.

The runs can be visualized on Wandb at https://wandb.ai/multimodal_vaes/reproducing_
mopoe,

The trained models can be retrieved at

* https://huggingface.co/asenella/reproducing_mopoe_seed_0

* https://huggingface.co/asenella/reproducing_mopoe_seed_1

* https://huggingface.co/asenella/reproducing_mopoe_seed_2
The coherences presented in[3|are averaged on the five runs and correspond to Figure 3. in the original
paper. The results we obtain on our side are slightly better than the ones obtained in the original paper.

After investigating the original code, we found that this small discrepancy comes from forgetting
setting the classifiers in eval mode in the original code.

D.5 MVTCAE

For the MVTCAE model we also reproduce the PolyMNIST experiment using the same dataset as
the one used in MoPoE.

The script used for reproducing the experiment are available under /reproducing_experiments/mvtcae
inhttps://github.com/AgatheSenellart/nips_experiments.

The runs can be visualized on Wandb at https://wandb.ai/multimodal_vaes/reproducing_
mvtcae.

The trained models can be retrieved at

26

https://github.com/AgatheSenellart/nips_experiments
https://huggingface.co/asenella/reproduce_mmvae_model
https://huggingface.co/asenella/reproduce_mmvae_model
https://wandb.ai/multimodal_vaes/reproducing_mmvae
https://wandb.ai/multimodal_vaes/reproducing_mmvae
https://github.com/AgatheSenellart/nips_experiments
https://wandb.ai/multimodal_vaes/reproduce_mvae_mnist
https://wandb.ai/multimodal_vaes/reproduce_mvae_mnist
https://huggingface.co/asenella/reproduce_mvae_mnist_0
https://huggingface.co/asenella/reproduce_mvae_mnist_1
https://huggingface.co/asenella/reproduce_mvae_mnist_2
https://github.com/AgatheSenellart/nips_experiments
https://wandb.ai/multimodal_vaes/reproducing_mopoe
https://wandb.ai/multimodal_vaes/reproducing_mopoe
https://huggingface.co/asenella/reproducing_mopoe_seed_0
https://huggingface.co/asenella/reproducing_mopoe_seed_1
https://huggingface.co/asenella/reproducing_mopoe_seed_2
https://github.com/AgatheSenellart/nips_experiments
https://wandb.ai/multimodal_vaes/reproducing_mvtcae
https://wandb.ai/multimodal_vaes/reproducing_mvtcae

FID values for MVTCAE

80

90

100

110

120

2 2.3 2,34 2345

Figure 19: FID values computed on three seeds with the standard deviations plotted as error bars.
This Figure is the reproduction of the rightmost graph of Figure 2. in the original paper.

* https://huggingface.co/asenella/reproducing_mvtcae_seed_0
* https://huggingface.co/asenella/reproducing_mvtcae_seed_1
* https://huggingface.co/asenella/reproducing_mvtcae_seed_2
For this model, in addition to the cross-modal coherences we also computed the FID values that are

presented [I9)and are similar to the ones presented in the rightmost plot of Figure 2 in the original
paper [20].

D.6 MMVAE+
To validate the MM VAE+ model, we reproduce the PolyMNIST experiment using the same dataset
as above with K = 1 and g = 2.5.

The script used for reproducing the experiment are available under /reproduc-
ing_experiments/mmvae_plus in https://github.com/AgatheSenellart/nips_
experiments.

The runs can be visualized on Wandb at https://wandb.ai/multimodal_vaes/reproducing_
mmvae_plus.

The trained models can be retrieved at

* https://huggingface.co/asenella/reproduce_mmvaep_K__1__seed_0

* https://huggingface.co/asenella/reproduce_mmvaep_K__1__seed_1

* https://huggingface.co/asenella/reproduce_mmvaep_K__1__seed_2
In table [3] we compared the mean coherence from one modality to another and the mean FID
generating each modality from the prior. We found 88.6 & 0.8 for the coherences, a value close to the

one in the paper 86.9 £ 1.3, and 93 £ 5 for the unconditional FID reported at 96 £ 2 in the paper. In
the original paper, those values can be found in Appendix G. Table 3.

E Additional experimental results on the MHD dataset
E.1 The Multimodal Handwritten Digits dataset
The Multimodal Handwritten Digits’ (MHD) introduced in [49] contains 4 modalities:

* Image: gray digit images with one channel and size (28,28)
* Audio: spectrograms images with shape (1,32,128)

* Trajectory : flat arrays with 128 values

27

https://huggingface.co/asenella/reproducing_mvtcae_seed_0
https://huggingface.co/asenella/reproducing_mvtcae_seed_1
https://huggingface.co/asenella/reproducing_mvtcae_seed_2
https://github.com/AgatheSenellart/nips_experiments
https://github.com/AgatheSenellart/nips_experiments
https://wandb.ai/multimodal_vaes/reproducing_mmvae_plus
https://wandb.ai/multimodal_vaes/reproducing_mmvae_plus
https://huggingface.co/asenella/reproduce_mmvaep_K__1__seed_0
https://huggingface.co/asenella/reproduce_mmvaep_K__1__seed_1
https://huggingface.co/asenella/reproduce_mmvaep_K__1__seed_2

» Label : 10 categorical values

In our experiments, we don’t use the label modality to make the task more challenging.

E.2 Incomplete version of the MHD dataset

To create an incomplete version of this dataset, we defined missing probabilities for each modality,
depending on the label.

* For the image modality, we kept all samples.

* For the audio modality, the missing probabilities were evenly distributed between 0.1 for the
class 0 and 0.8 for the class 9.

* For the trajectory modality, the missing probabilites were evenly distributed between 0.3
(for the class 0) and 0.4 (for the class 9).

This procedure creates an incomplete dataset of type MAR (Missing at Random) while the incomplete
dataset in section 4.2} was of type MCAR (Missing Completely At Random). It is more realistic and
more challenging as it creates imbalance between the classes.

E.3 Architectures and training parameters

On the complete dataset we train seven models while on the incomplete dataset we only train the
5 aggregated models available in the library. We use Normal decoder distributions for all three
modalities and a latent dimension of size 64. For MMVAE+ that uses private and shared latent
spaces, the shared space is of size 32 and each private latent space has size 32. We use the same
encoders and decoders architectures for all models. Those architectures are very close to the ones
used in [49]], except that we don’t pretrain the architectures for the audio modality. The MMVAE,
and MMVAE+ models are trained with X' = 10. For models that had a § parameter we tried
three values 8 € [0.5,1,2.5]. = 0.5 was the best parameter for all models on the complete
dataset and so we used that parameter on the incomplete dataset as well. The code used for the
experiments is available at https://github.com/AgatheSenellart/nips_experiments|and
all training parameters can be retrieved on the Wandb workspaces:

* For the complete dataset: https://wandb.ai/multimodal_vaes/MHD
* For the incomplete one: https://wandb.ai/multimodal_vaes/incomplete_MHD

E.4 Experimental results
E.5 Metrics

E.5.1 Coherences

In Figure. 20| we present the mean coherences results for all trained models. The coherences are
averaged over all classes and modalities. In Figure.[21) we present detailed coherences results for each
label for models trained on the incomplete dataset. As expected, higher labels have lower coherences
as they were more often missing in this dataset.

From the results in Figure. [2;0] it seems that the MM VAE and MM VAE+ model with (K=10) are less
robust in this setting than the MVTCAE and MoPoE model.

E.5.2 Reconstruction metrics

Reconstruction metrics are presented for the models trained on the complete dataset in Figure. [22]
and the incomplete one in Figure. On both the complete and incomplete dataset, it seems that the
MoPoE, MVTCAE and MVAE model reach the best reconstructions metrics.

E.5.3 Quantitative evaluation of the diversity of generations

Finally we present metrics to quantify the diversity of the cross-modality generation. In the case-study
presented in we used the Fréchet Inception Distance to quantify this diversity. However in the

28

https://github.com/AgatheSenellart/nips_experiments
https://wandb.ai/multimodal_vaes/MHD
https://wandb.ai/multimodal_vaes/incomplete_MHD

Incomplete = False Incomplete = True

1.0
0.8 model

° —— JMVAE

[}

G 0.6 MVAE

5 —— MMVAEPIus

S —— MMVAE

©o4 —— MoPoE

—— MVTCAE

02 —— UNF

0.0 0.5 1.0 15 20 00 0.5 1.0 15 2.0
Number of input modalities Number of input modalities

Figure 20: Coherence results for models trained on the complete dataset (on the left) and the
incomplete dataset (on the right). The x-axis indicates the number of input modalities for computing
the coherences. For zero input modalities, it is the joint coherence value when sampling from the
prior that is plotted. Each value is averaged on four different seeds.

0.9 4

0.8 1

0.79

model_config.name

MVAE

067 MMVAEPIus
MMVAE
MVTCAE

0.5 MoPoE

T T T T T

0 2 4 6 8
Label

Coherence from one modality to another

Figure 21: Detailed coherences results per classes, on the incomplete dataset, when generating from
one modality to another. The results are averaged over all possible pairs of modalities. Standard
errors on the four different seeds are shown. As expected the coherence is decreased for higher labels
that were more often missing.

name

m— JMVAE 054
2 - MVAE

= MoPoE

== MVTCAE
204 - NF 064

- MMVAE
s MMVAEPlus

SSIM

- JVVAE
— MVAE
me MoPoE
02 wem MVTCAE
— NF

— MMVAE
e MMVAEPIuS

00-
audio image audio image
modality modality

Figure 22: Reconstruction metrics for the models trained on the complete MHD dataset. On the left,
we present the MSE (lower is better) and on the right the SSIM (higher is better). The models are
averaged over four seeds. For both the audio and image modality, we sample a latent code from the
considered modality and reconstruct it.

case of the MHD dataset, the Inception network is not appropriate to quantify the diversity of the
different modalities. Indeed, the Inception network is trained on natural images and the MHD dataset

29

name name
- MVAE - MVAE

m— MoPoE 087 mem MoPoE
m— MVTCAE m— MVTCAE
— MMVAE — MMVAE

. MMVAEPIus

064 . MMVAEPIus

SSIM

044

024

0- 00 -
audio image audio image
modality modality

Figure 23: Reconstruction metrics for the models trained on the incomplete MHD dataset. On the
left, we present the MSE (lower is better) and on the right the SSIM (higher is better). The models
are averaged over four seeds. For both the audio and image modality, we sample a latent code from
the considered modality and reconstruct it.

contains a black and white image modality along with audio and trajectory modalities. Therefore,
we used the methodology used in [49] to quantify the diversity of the generations. For each class of
each of modality, we trained a dedicated unimodal variational encoder. Then we used these encoders
to compute latent representations of each original sample and cross-modal generated sample and
compute a Mean Fréchet Distance between the true and generated distributions in the encoding space.
More specifically, for every pair of modalities, and for each class of samples in the test set:

* We encoded the first modality with the dedicated pretrained encoder.

* We used the second modality to conditionally generate samples in the first modality.

* We encoded the generated samples with the same pretrained encoder.

* We computed the Fréchet Distance to compare the distribution of encodings of the true and

generated samples.

In Figure. [24] we present Mean Fréchet Distance results for each model trained on the complete and
incomplete dataset.

Incomplete dataset
N False
2.0 4 s True

=
uu
L

=
o
.

Mean Fréchet distance

e
[T

0.0 -
MMVAEPIus MMVAE INF MoPoE MVTCAE MVAE JMVAE

Figure 24: Mean Fréchet distance (lower is better) results for each model in the complete and
incomplete setting. We average the Fréchet distance accross modalities and labels. The presented
results are averaged on 4 seeds.

Interestingly we notice that for the MoPoE and MVAE model, the Mean Fréchet Distance are smaller
when the models are trained on the incomplete dataset instead of complete one. These models seem
to benefit from the gaps in the data which is already something that is known for the MVAE model
that even uses a subsampling training paradigm to benefit from that effect [54]. As in the case study
presented in[d.2} we see that joint models (JNF and JMVAE) as well as the MVTCAE reach the best
performances in terms of the diversity of generated samples.

30

All codes wused to compute these metrics are provided at https://github.com/
AgatheSenellart/nips_experiments,

E.6 Visualization of generated samples and reconstructions

We present some examples of conditionally generated samples and reconstruction for each model
trained on the complete dataset (in Figure. 25]and Figure.[27) and on the incomplete dataset (Figure.[26]

and figure. [28).

E.7 Retrieving models on the HuggingFace Hub

All models trained in this project are made available on the HuggingFace Hub and can be down-
loaded. For instance see: https://huggingface.co/asenella/incomplete_mhd_MMVAE_
beta_b_scale_True_seed_1.

Each run has a specific id corresponding to its experiment’s configuration. To see how to retrieve them
all, please look at the python file ’compute_mfd.py’ in the github repository of the project: https://
github.com/AgatheSenellart/nips_experiments|in either the folder ’Comparison_on_MHD’
or the folder ’Comparison_on_incomplete. MHD’.

31

https://github.com/AgatheSenellart/nips_experiments
https://github.com/AgatheSenellart/nips_experiments
https://huggingface.co/asenella/incomplete_mhd_MMVAE_beta_5_scale_True_seed_1
https://huggingface.co/asenella/incomplete_mhd_MMVAE_beta_5_scale_True_seed_1
https://github.com/AgatheSenellart/nips_experiments
https://github.com/AgatheSenellart/nips_experiments

JMVAE

3
&
<
=
B
H

Figure 25: For each model, we sample a latent code from the audio modality to conditionally generate
images and reconstruct the audio spectrogram. 32

MMWVAE

MVAE

MVTCAE

MoPoE

MMVAEPIus

Figure 26: For each model trained on the incomplete dataset, we sample a latent code from the audio
modality to conditionally generate images and reconstruct the audio spectrogram.

33

JMVAE

NF MMVAE MVAE MVTCAE MoPoE ~ MMVAEPIus

J

Figure 27: For each model trained on the complete dataset, we sample a latent code from the image
modality and reconstruct the image from that latent code.

MMVAE MVAE MVTCAE MoPoE MMVAEPIus

Y A

Z 3 3
A 3
2 3 3
2 3

L

Figure 28: For each model trained on the incomplete dataset, we sample a latent code from the image
modality and reconstruct the image from that latent code.

34

F How to use MultiVae ? Basic examples.

In Table.] we provide basic indications to use each model in MultiVae. You can find additional
details in the MultiVae documentation.

MODEL SUITED MULTIVAE TRAINER ARCHITECTURAL COMPONENTS
JMVAE BASETRAINER JOINT ENCODER
TELBO TWOSTEPSTRAINER JOINT ENCODER
MVAE BASETRAINER /
MMVAE BASETRAINER /
MVTCAE BASETRAINER /
MoPOE BASETRAINER /
JNF TWOSTEPSTRAINER JOINT ENCODER, FLOWS
JNFDcca ADDDCCATRAINER JOINT ENCODER, DCCA NETWORKS, FLOWS
MMVAE+ BASETRAINER EACH ENCODER MUST OUTPUT THE SHARED AND PRIVATE LATENT VARIABLE

Table 4: For each model, we present the MultiVae trainer that it must be used with to respect original
guidelines from the authors. The second column mentions the architectural components used in each
model in addition to the encoders, decoders for each modality. For each architectural component a
default version is provided but can be customized by the user. See the example codes in Figures ??

In Figure [29] we present a simple snippet of code on how to create a model (in the example a
JMVAE model) and train it. This examples also illustrate how to integrate Wandb monitoring and
HuggingFace model sharing in just a few lines.

For a model using a more complex training (for instance multistage), you simply have to adapt the
trainer according to 4} Figure [30|provides another code example using a two-steps trainer.

Finally, Figure 31| provides a last example of code that shows how to evaluate the models, with quick
loading from HuggingFace Hub and metric computing with the MultiVae metrics modules.

35

from multivae.models import JMVAE, JMVAEConfig
from multivae.trainers import BaseTrainer, BaseTrainerConfig
from multivae.trainers.base.callbacks import WandbCallback

train_dataset = ... # import your multimodal dataset class

W oo NOU B WNBRP

A A A WWWWWWWWwWwWwWNNNNNNNNNNRRERRERRPRREPRP R
W NP OVWONOODUEAE WNRPSSOWLNODWUPEWNRPSOOONOUL BEAEWNERES®

Set the model configuration
model_config = JMVAEConfig(
n_modalities = 2, # set the numbe

r of modalities corresponding

to your dataset

latent_dim = 10,

input_dims = {'modality 1' : (1,28,28),

alpha = 0.1)

Create the model

model = JMVAE(
model_config=model_config,
encoders = None, # Default MLPs w
decoders=None) # Otherwise, yo

Set the training configuration
trainer_config = BaseTrainerConfig(
output_dir = ..., # choose your o
num_epochs=100,
optimizer_cls='Adam') # There are
See the do

Create a Wandb Callbacks to monitor
wandb_cb = WandbCallback()
wandb_cb.setup(trainer_config, model_

Create the trainer

trainer = BaseTrainer(
model=model,
train_dataset=train_dataset,
training_config=trainer_config,
callbacks=[wandb_cb])

Train
trainer.train()

Save to Hugging Face Hub

trainer._best_model.push_to_hf_hub('your_user_name/your_repo_name")

Figure 29: Simple example code on how

ill be used for each modality

u can provide your architectures.

utput_directorys

many other parameters that you can set
cumentation for details

config, project_name='your_wandb_project')

to create a model and train it in MultiVae.

36

'modality 2':

1 from multivae.models import JINF, INFConfig
2 from multivae.trainers import TwoStepsTrainer, TwoStepsTrainerConfig
3
4 train_dataset = ... # import your multimodal dataset class
5
6 # Set the model configuration
7 model_config = INFConfig(
8 n_modalities = 2, # set the number of modalities corresponding
9 # to your dataset
10 latent_dim = 10,
11 input_dims = {'modality 1' : (1,28,28), 'modality 2': (3,32,32)},
12 warmup=200 # number of epochs for the first step of training
13)
14
15 # Create the model
16 model = JNF(
17 model_config=model_config,
18 encoders = None, # Default MLPs will be used for each modality
19 # Otherwise, provide your architectures.
20 decoders = None, # Default MLPs will be used for each modality
21 flows = None) # Default MAF flows will be used. You can also provide
22 # custom flows.
23
24
25 # Set the training configuration
26 trainer_config = TwoStepsTrainerConfig(
27 output_dir = ..., # choose your output_directorys
28 per_device_train_batch_size= 64,
29 num_epochs=100,
30 optimizer_cls='Adam') # There are many other parameters that you can set
31 # See the documentation for details
32
33 # Create the trainer
34 trainer = TwoStepsTrainer(
35 model=model,
36 train_dataset=train_dataset,
37 training_config=trainer_config
38)
39 # Train
49 trainer.train()
41
42 # Save to HuggingFace Hub
43 trainer._best_model.push_to_hf_hub('your_user_name/your_repo_name')

Figure 30: Simple example code that shows how to train the JNF model using the dedicated
TwoStepsTrainer class.

37

1 from multivae.models import AutoModel
2 from multivae.metrics import LikelihoodsEvaluator, LikelihoodsEvaluatorConfig
3 from multivae.metrics import Visualization, VisualizationConfig
4
5 # Load model from HuggingFace Hub (or from a folder with ‘load_from_folder‘b
6 model = AutoModel.load_from_hf_hub('your_user_name/your_repo_name')
7
8
9 # Compute joint likelihood
10 likelihood_config = LikelihoodsEvaluatorConfig(
11 batch_size=128,
12 wandb_path="'your_wandb_run_path', # (you can use the same as for training
13 # or create a new wandb path)
14 num_samples=1000
15)
16
17 likelihood = LikelihoodsEvaluator(
18 model=model,
19 test_dataset=..., # provide your dataset
20 eval_config=1likelihood_config
21)
22
23 likelihood.eval()
24
25 # Visualize some conditionally generated/ jointly generated samples
26 vis_config = VisualizationConfig(
27 wandb_path="your_wandb_path',
28 n_samples=4
29)
30 vis_module = Visualization&
31 model=model,
32 test_dataset=... # your test dataset for conditional generation
33 output='your_path', # where to save the images
34 sampler=..., # eventually provide a sampler for joint generation
35)
36
37 vis_module.eval() # computes unconditional samples.
38
39 # you can also use more specific functions for conditional generation
40 # on a subset
41 vis_module.conditional_samples_subset(subset=['modality_1"', 'modality_2'])
42

Figure 31: Simple example code that shows how to reload a model with AutoModel and compute
metrics.

38

	Introduction
	Multimodal Variational Autoencoders
	The MultiVae Library
	Case Study: Training Models on a Incomplete Dataset
	Example: cross-modal generation using the MMVAE+ model
	Comparing metrics across models
	Exploring another incomplete dataset

	Conclusion
	Details on the models implemented in the library
	JMVAE
	TELBO
	MVAE
	MMVAE
	MoPoE-VAE
	MVTCAE
	JNF, JNFDcca
	MMVAE+

	Technical details on the experiments
	PolyMMNIST dataset
	Architectures
	Retrieving trained models

	Additional experimental results
	Visualization of generated samples
	Conditional generation and reconstruction
	Unconditional generations

	Joint likelihoods for all models
	Training times for all models
	Inference times for all models
	Reconstruction metrics for all models
	Unimodal reconstructions
	Joint reconstruction

	Details on the reproduction of previous results
	JMVAE
	MMVAE
	MVAE
	MoPoE
	MVTCAE
	MMVAE+

	Additional experimental results on the MHD dataset
	The Multimodal Handwritten Digits dataset
	Incomplete version of the MHD dataset
	Architectures and training parameters
	Experimental results
	Metrics
	Coherences
	Reconstruction metrics
	Quantitative evaluation of the diversity of generations

	Visualization of generated samples and reconstructions
	Retrieving models on the HuggingFace Hub

	How to use MultiVae ? Basic examples.

