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Improving Multimodal Joint Variational Autoencoders through Normalizing
Flows and Correlation Analysis

Agathe Senellart * 1 Clément Chadebec 1 Stéphanie Allassonnière 1

Abstract
We propose a new multimodal variational autoencoder that enables to generate from the joint distribution and
conditionally to any number of complex modalities. The unimodal posteriors are conditioned on the Deep
Canonical Correlation Analysis embeddings which preserve the shared information across modalities leading
to more coherent cross-modal generations. Furthermore, we use Normalizing Flows to enrich the unimodal
posteriors and achieve more diverse data generation. Finally, we propose to use a Product of Experts for inferring
one modality from several others which makes the model scalable to any number of modalities. We demonstrate
that our method improves likelihood estimates, diversity of the generations and in particular coherence metrics in
the conditional generations on several datasets.

1. Introduction
In many cases, information is conveyed through multiple heterogeneous modalities. For instance in the medical field, a
patient status is described through the results of several analyses: sonograms, MRI, blood analysis, etc... Two important
challenges in multimodal machine learning are the task of learning relevant joint representations and the task of generating
realistic data, either from one modality to another or in all modalities jointly. Generated data can for instance be used for
data augmentation (DA) to improve the training of deep learning models on small datasets (Tanner & Wong, 1987; Shorten &
Khoshgoftaar, 2019; Chadebec et al., 2022a). For instance, augmenting jointly multiple modalities can be useful to improve
the performance of deep segmentation networks (Li et al., 2020). In certain contexts, conditional generation has also proved
more relevant than unconditional generation to augment a specific modality since it allows benefiting from potentially useful
information contained in another modality (Wei et al., 2019). Data generation has also been used to anonymize a dataset
(Shin et al., 2018) by replacing true individuals with synthetic ones with the same characteristics. Mathematically speaking
we aim at modelling and sampling from the joint and conditional distributions for any number of modalities of complex
data. Good modelling implies preserving the shared information across modalities (referred to as coherence) while keeping
the diversity of each domain.

Deep Generative Models, especially Generative Adversarial Networks (GAN) (Goodfellow et al., 2014) and Variational
AutoEncoders (VAEs) (Kingma & Welling, 2013) are powerful tools for learning distributions of complex data such as
images. In recent years, many multimodal variants of those models were developed. On the one hand, Multimodal GANs
such as BicyleGAN (Zhu et al., 2017) or Pix2Pix (Isola et al., 2017) perform well in the image translation setting where
we aim at finding a mapping between different domains. However, there is no explicit statistical model of the underlying
distributions leading to poor interpretability and their adversarial structure makes them hard to train (Saxena & Cao, 2021).
Furthermore, those models cannot be used to generate all modalities jointly. On the other hand, VAE based models rely on
latent variables and are trained to optimize the model’s likelihood with Variational Inference. There exist several approaches
proposing to extend the VAE framework to multimodal datasets (Suzuki & Matsuo, 2022). First, some works proposed to use
coordinated unimodal VAEs and force the latent spaces for each modality to be similar (Wang et al., 2016; Yin et al., 2017).
With such models, we can infer the latent variables from each modality individually but not from all of them simultaneously.
However, it is desirable for the latent representation to be enriched by information coming from all modalities. To this end,
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joint models using a single latent space to explicitly extract a latent representation common to all modalities have been
proposed. Among those models, one popular approach is to aggregate the unimodal inference distributions relying on a
Mixture of Experts (Shi et al., 2019) or Product of Experts (Wu & Goodman, 2018a; Shi et al., 2019; Sutter et al., 2021).
However, such aggregation may restrict the diversity of the generations (Daunhawer et al., 2022). Furthermore, those models
can suffer from modality collapse during training which requires careful gradient rescaling (Javaloy et al., 2022). Finally,
another approach is to have a dedicated encoder for the joint inference distribution. For instance the JMVAE(Suzuki et al.,
2016) or the TELBO (Vedantam et al., 2018) models do not suffer from lack of diversity and are less prone to modality
collapse but have lower coherence than aggregated models (Shi et al., 2019) and are considered not easily scalable(Wu &
Goodman, 2018a).

In this article, we propose and justify a new VAE-based model that can be used to model the joint, marginal and conditional
distributions of any number of modalities. This model proves to be able to produce more diverse and relevant samples
than existing methods on several benchmark datasets, especially for the conditional generation task. In particular, our
contributions are as follows:

• We propose to use Normalizing Flows (Rezende & Mohamed, 2015) to model and improve the expressiveness of the
unimodal posterior distributions used for cross-modal data generation.

• We introduce a variant of this model relying on Deep Canonical Correlation Analysis (Andrew et al., 2013) to extract the
shared information between modalities and propose to use posterior distributions conditioned on the DCCA embeddings
instead of the data itself.

• We discuss and empirically show that these models are scalable to any number of modalities by using a Product of
Experts to model distributions conditioned on a subset of modalities.

• We extensively test our methods on several benchmark datasets and show that the proposed models outperform several
state-of-the-art methods in terms of cross-modal data generation coherence and diversity as well as likelihood estimates.

2. Background
In this section, we recall mathematical tools relevant to this paper, starting with the Joint Multimodal Variational Autoencoder
framework.

2.1. Joint Multimodal Variational Autoencoders

The Joint Multimodal Variational Autoencoder (JMVAE) (Suzuki et al., 2016) model is one of the first extension of the
VAE to the multimodal setting. Let X = {X(i)}Ni=1 be a set of N i.i.d observations where each observation comprises
m modalities X(i) = (x

(i)
1 , x

(i)
2 , ..., x

(i)
m ). We aim at modelling the joint distribution p(X), and for any i ∈ [1,m] and S,

a subset of [1,m]\{i} the conditional distribution p(xi|(xs)s∈S). For readability, in the following we only consider two
modalities i.e m = 2. In the VAE setting, we consider that each observation X = (x1, x2) is sampled from the following
latent generative model :

pθ(x1, x2, z) = pθ(x1, x2|z)p(z)
= pθ(x1|z)pθ(x2|z)p(z) ,

(1)

where we assume the modalities to be independent when conditioned on z, p(z) is a prior distribution over the latent
variables and pθ(xi|z) with i ∈ {1, 2} are the unimodal generative distributions often referred to as the decoders. p(z) is
usually chosen as a standard normal distribution N (0, I) and pθ(x1|z), pθ(x2|z) are chosen depending on the input data
(e.g. Bernoulli for binary data) and parameterized by deep neural networks. The first objective of the JMVAE model is to
find a set of parameters θ ∈ Θ that maximizes the likelihood of the observations pθ(x1, x2). Since that objective is often
intractable, one can rely on variational inference (Jordan et al., 1999) and introduce a parametric distribution qϕ(z|x1, x2)
referred to as the joint encoder aiming at approximating the true posterior pθ(z|x1, x2). That allows to derive a lower bound
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(ELBO):

ln pθ(x1, x2) ≥ lnEqϕ(z|x1,x2)

[
pθ(x1, x2|z)p(z)
qϕ(z|x1, x2)

]
≥ Eqϕ(z|x1,x2)

[
ln

pθ(x1, x2|z)
qϕ(z|x1, x2)

]
= L(x1, x2) .

(2)

This bound can be optimized using the stochastic gradient descent algorithm. For cross-modal data generation, we also want
to model the conditional distributions pθ(xi|xj) where i, j ∈ {1, 2} and i ̸= j so that we can generate one modality from
the other. To do so, one can write :

pθ(xi, z|xj) = pθ(xi|z, xj)pθ(z|xj)

= pθ(xi|z)pθ(z|xj) .
(3)

Since the true unimodal posterior pθ(z|xj) is unknown, an auxiliary distribution qϕj (z|xj) (called the unimodal encoders)
can be used to approximate it. Once the unimodal encoders are trained, we will be able to generate xi from xj by sampling
first z ∼ qϕj (z|xj) and then xi ∼ pθ(xi|z). In the JMVAE model, auxiliary distributions are optimized using the following
objective :

LJM(x1, x2) =
∑

i∈{1,2}

KL(qϕ(z|x1, x2)||qϕi
(z|xi)) . (4)

Finally, a combination of LJM and the ELBO is optimized:

LJMVAE(x1, x2) = L(x1, x2)− αLJM(x1, x2) , (5)

where α is a hyperparameter that regularizes the importance of the LJM term. (Suzuki et al., 2016) mentioned that α controls
a trade-off between the quality of the reconstructions and the conditional generations. A high value of α imposes a strong
regularization on qϕ and undermines the reconstruction term of the ELBO while a low value of α causes the unimodal
encoders to be undertrained. In practice, the unimodal encoders are chosen as multivariate Gaussian distributions which
may be too restrictive to model the true posteriors of complex data. In this paper, we propose to increase the expressiveness
power of those distributions by using Normalizing Flows. Moreover, as shown in Eq. (3), in this model, estimating the
conditional distributions relies on learning the posterior distributions conditioned directly on the data xi. However, inferring
one modality from another may not require the entire data but only the relevant information shared by the modalities.
Hence, we propose to extract that information using Deep Canonical Correlation Analysis (DCCA) and to consider posterior
distributions conditioned on the DCCA embeddings.

2.2. Normalizing Flows

Normalizing Flows are a powerful modelling tool that allows to model complex, differentiable distributions. They have
been introduced by (Rezende & Mohamed, 2015) to improve variational inference in the classical VAE scheme. A flow is
an invertible smooth transformation f that can be applied to an initial distribution to create a new one, such that if Z is a
random vector with density q(z), then Z ′ = f(Z) has a density given by:

q′(z′) = q(z)

∣∣∣∣det ∂f−1

∂z′

∣∣∣∣ = q(z)

∣∣∣∣det ∂f∂z
∣∣∣∣−1

. (6)

Combining K transformations zK = fK ◦ fK−1 ◦ ... ◦ f1(z0) allows to gain in complexity of the final distribution.

2.3. Deep Canonical Correlation Analysis

Deep Canonical Correlation Analysis (Andrew et al., 2013) (DCCA) aims at finding correlated neural representations for two
complex modalities such as images. It is based upon the classical Canonical Correlation Analysis (CCA) which we briefly
recall here. Let (X1, X2) ∈ Rn1 × Rn2 two random vectors, Σ1,Σ2 their covariances matrices and Σ1,2 = Cov(X1, X2).
CCA’s objective is to find projections aTX1, bTX2 that are maximally correlated :

(a∗, b∗) = argmax
aTΣ1a=bTΣ2b=1

aTΣ1,2b .
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Once these optimal projections are found, we can set (a1, b1) = (a∗, b∗) and search for subsequent projections (ai, bi)2≤i≤k

with the additional constraint that they must be uncorrelated with the previous ones. We can rewrite the problem of finding
the first k optimal pairs of projection as finding matrices A ∈ R(n1,k), B ∈ R(n2,k) that solve:

(A∗, B∗) = argmax
ATΣ1A=BTΣ2B=I

Tr(ATΣ1,2B) (7)

If we further have k = n1 = n2 then the optimal value is F (X1, X2) = Tr(T⊤T )
1
2 with T := Σ

1
2
1 Σ1,2Σ

1
2
2 . This value is

the total CCA correlation of the random vectors X1, X2. It can also be seen as the sum of the singular values of T , each
singular value representing the correlation of the embeddings along a direction. Note that F only depends on the covariance
matrices (Σ1,Σ2,Σ1,2). With the DCCA we consider two neural networks g1, g2 so as to optimize the total CCA correlation
F (g1(X1), g2(X2)). The gradient of this objective with respect to the parameters of g1, g2 can be computed so that gradient
descent can be used.

When considering more than two modalities, a proposed extension to the CCA is to optimize the sum of the pairwise CCA
objectives (Kanatsoulis et al., 2018). We can adapt this idea to the DCCA framework and train DCCA encoders for m
modalities by maximizing

∑
i<j∈[|1,m|] F (gi(Xi), gj(Xj)).

3. Proposed Model
In this section, we introduce a new generative model for multimodal data inspired by the JMVAE framework but we propose
to enhance the unimodal conditional distributions using normalizing flows. We also propose a variant in which these
distributions are only conditioned using the learned DCCA embeddings of the modalities. Finally, in the case where we
want to perform generation conditioned on more than one modality, we propose to use a Product of Experts of the unimodal
posteriors.

3.1. Learning the Joint Distribution

Let X = {X(i)}Ni=1 be a set of observations composed of m modalities X(i) = (x
(i)
1 , . . . , x

(i)
m ). Keeping the same notations

as before, we denote the joint encoder as qϕ(z|X) and decoder of modality i as pθ(xi|z). The proposed model relies on a
two steps training. First we optimize the ELBO according to Eq. (2) to learn the joint posterior distribution and the decoder
distributions. In a second step, we learn the unimodal posterior distributions (qϕi

(z|xi))i∈[|1,m|] by optimizing Eq. (4)
while keeping the joint encoder and decoder models (i.e θ, ϕ) fixed. Contrary to the JMVAE method, we decided to rely on
a two-step training since it allows to mitigate the trade-off induced by the parameter α, the value of which can strongly
influence the model’s performances (Suzuki et al., 2016). Furthermore, we empirically observed that a two-steps training did
not hinder the performance of the JMVAE model and often improved it. This is discussed in Appendix E. We assume that
we have learned the joint encoder as well as the decoders and now detail how we propose to learn the unimodal posterior
distributions needed to perform cross-modality data generation.

3.2. Integrating Normalizing Flows

In order to properly estimate the true unimodal posterior distributions (pθ(z|xi))i∈[|1,m|], the unimodal posteriors
(qϕi(z|xi))i∈[|1,m|] need a lot of flexibility. However, those distributions are often chosen as multivariate Gaussian which
may be a too restrictive class of distributions and may cause incoherence in the conditional distributions. This phenomenon
is illustrated later on a toy dataset in Sec. 5.1. In our model, we propose to address this limitation by enriching these
distributions using Normalizing Flows. More explicitly the expression of the unimodal distribution writes:

ln qϕi
(zK |xi) = ln q

(0)
ϕi

(z0|xi)−
K∑

k=1

ln

∣∣∣∣∣det ∂f
(i)
k

∂zk−1

∣∣∣∣∣ , (8)

where q(0)ϕi
(z0|xi) is a simple parametrized distribution, the parameters of which are given by neural networks and (f

(i)
k ) are

Normalizing Flows. In practice, we use multivariate Normal distributions with diagonal covariance for (q(0)ϕi
)i∈[|1,m|]. We

use Eq. (4) to train the unimodal encoders. Since qϕ(z|X) is fixed at this point of the training this objective can be rewritten
as :

LJM(X) = −
m∑
i=1

Eqϕ(z|X) (ln qϕi
(z|xi)) . (9)
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For i ∈ [|1,m|], the expectation inside the sum can be estimated using samples from the joint encoder qϕ(z|X) and
evaluating the density ln qϕi(z|xi) for those samples. Since we only need to perform density evaluation for qϕi(z|xi) during
the training, we choose to use Masked Autoregressive Flows (MAF) (Papamakarios et al., 2017) that allow to compute it
efficiently. Eq. (9) shows that during the training, the unimodal encoders are informed by the joint encoder: for each sample
X = (x1, . . . , xm), a latent variable z is sampled from qϕ(z|X) and then for each i ∈ [|1,m|], the probability qϕi

(z|xi) is
maximized. Interestingly enough, by integrating Eq. (9) on the entire training set, we can show that qϕi

(z|xi) is encouraged
to be close to an average distribution qavg(z|xi) = Ep̂((xj)j ̸=i|xi)(qϕ(z|X)) where p̂ is the observed empirical distribution
of the data. This provides an intuition of the interest of LJM to fit the unimodal encoders. This interpretation is detailed in
Appendix. A.

3.3. Conditioning on the DCCA Embeddings

A second observation is that to generate a modality from another one we only need the information shared by both and not
the entire data. For instance, let us assume that we have two modalities of data representing a digit in different ways (e.g.
MNIST (Lecun et al., 1998)-SVHN (Netzer et al., 2011)), we would only need the label of the digit to be able to generate
from one domain to the other. In most cases, the information shared by the modalities is unknown but there are methods that
aim to extract it (Hardoon et al., 2004; Tian et al., 2020). Assume that for i ̸= j ∈ [|1,m|] we have a function gj such that
pθ(xi, z|xj) = pθ(xi, z|(gj(xj))). Morally speaking, gj extracts the shared information between modalities while tuning
out the modality specific information. Then, Eq. (3) rewrites:

pθ(xi, z|xj) = pθ(z|gj(xj))pθ(xi|z, gj(xj))

= pθ(z|gj(xj))pθ(xi|z)
(10)

Therefore, by making use of such functions (gj)j∈[|1,m|], we can estimate the posteriors pθ(z|gj(xj)) that are eventually
easier to model provided that we choose relevant functions. Building on that intuition, in this paper we choose to use DCCA
representations as such functions as it is a versatile method that can be applied to various datasets. In the following, we
refer to the model using only flows as JNF and to the model using both flows and DCCA embeddings as JNF-DCCA.
Noteworthy is the fact that using the DCCA does not increase significantly the number of parameters since it reduces the
dimension of the data reducing the number of parameters of the unimodal encoders qϕj

(z|gj(xj)). Graphical models are
provided in Figure 1 for both methods. In JNF-DCCA, two representations of the data are actually extracted: the joint
encoder provides latent variables z containing all the information for both modalities while the DCCA only accounts for the
correlated variables across modalities.

Figure 1. Left: Graphical model for the JMVAE and JNF. Right: Graphical model for the JNF-DCCA. The dashed lines represent encoders
while the plain ones represent decoders. The grey bold arrows represent the pre-trained deterministic DCCA encoders.

Algorithm 1 Training of JNF, JNF-DCCA
1: Input: Multimodal dataset with m modalities (x1, x2, .., xm)
2: Train the joint encoder qϕ(z|X) and decoders by maximizing the joint ELBO (Eq. (2)).
3: If using DCCA : train the DCCA encoders (gi)i∈[|1,m|]
4: Freeze ϕ, θ and train the unimodal encoders by minimizing LJM(X) Eq. (9).
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3.4. Extending the Methodology to More Modalities

It has been argued (Wu & Goodman, 2018a; Shi et al., 2019) that the JMVAE is not a scalable model when more than two
modalities are considered since for each subset S of the m modalities, approximating the posterior pθ(z|(xi)i∈S) would
require introducing another encoder model. In this paper, we argue that we can actually use a Product of Experts (PoE) of
well fitted unimodal posteriors to approximate it. Indeed, (Wu & Goodman, 2018a) show that:

pθ(z|(xi)i∈S) ∝
∏

i∈S pθ(z|xi)

p(z)|S|−1
. (11)

Assuming that the unimodal posteriors are such that qϕi(z|xi) ≈ pθ(z|xi) we can use an approximation of pθ(z|(xi)i∈S) as
follows:

q(z|(xi)i∈S) ∝
∏

i∈S qϕi(z|xi)

p(z)|S|−1
. (12)

Using the DCCA, we can apply the same reasoning to model

q(z|(gi(xi))i∈S) ∝
∏

i∈S qϕi
(z|gi(xi))

p(z)|S|−1
. (13)

In our method, we choose to model the unimodal posteriors qϕ(z|xi) or qϕ(z|gi(xi)) with Normalizing Flows. Therefore,
the PoE in Eq. (12) does not have a closed form but we can easily sample from it using Hamiltonian Monte-Carlo Sampling
(Neal, 2005). A reminder of the HMC method and details on how it is used within our method is given in the Appendix. C.
Note that this sampling is only needed at inference time and not during training. Therefore it does not impact the training
time or complexity of the model.

4. Related Works
Several models were built on the same architecture as the JMVAE. The TELBO (Vedantam et al., 2018) model also uses a
joint encoder and unimodal encoders for each modality but those are fit using the Triple ELBO Loss. First the joint ELBO
term is optimized then the decoders are fixed while the two unimodal ELBOs are optimized. The M2V AE (Korthals et al.,
2019) takes from both the JMVAE and the TELBO and combines their losses. These models encounter the same limitations
as the JMVAE. First the unimodal posteriors are modelled as normal distributions which restrict the expressiveness of the
cross-modal inference. The second limitation is their scalability, as no other solution were considered but to introduce a new
network to model each subset posterior pθ(z|(xi)i∈S) for S ∈ P([|1,m|]). In our method, we show that it is not necessary.

To solve this scalability issue, aggregated models (Suzuki & Matsuo, 2022) were suggested and model the joint posterior as a
function of the unimodal posteriors. The first model to use that approach is the MVAE (Wu & Goodman, 2018a) model that
builds upon Eq.(11) to suggest modelling the joint encoding distribution as a Product of Experts of the unimodal encoders
and optimizing the ELBO (Eq. (2)). In a similar fashion, the MMVAE model (Shi et al., 2019) uses a Mixture of Experts of
the unimodal encoders and optimizes the Importance Weighted bound (Burda et al., 2015) instead of an ELBO. Finally the
MoE-PoE (Sutter et al., 2021) combines the two approaches with a Mixture of Product of Experts. Aggregated models use
fewer parameters but the resulting conditional distributions have been shown to be less diverse than the real ones due to the
constraints imposed on the unimodal encoders (Daunhawer et al., 2022). These models are also more sensitive to modality
collapse as they integrate more impartiality blocks causing conflictual gradients (Javaloy et al., 2022).

To palliate to these observations, recent models have used multiple latent spaces (Hsu & Glass, 2018; Sutter et al., 2020;
Daunhawer et al., 2021) to separate the shared and modality-specific information. However, those models are sensible to the
shortcut issue meaning that shared information leaks into the modality specific latent space leading to a poorer coherence
(Palumbo et al., 2022).

On the contrary, our approach only uses one latent space and few hyperparameters. As the lack of diversity comes from the
aggregation, we use a dedicated encoder for the joint posterior. We train the unimodal encoders using flows and DCCA
embeddings to improve coherence and diversity. For the conditional subsets posteriors, however, we follow the MVAE
insight and use the PoE of the unimodal posteriors. This aggregation is only performed during inference and not during
training to avoid modality collapse and lack of diversity in the unimodal posteriors.
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5. Experiments
In this section, we present the main results obtained on three datasets. Ablations studies are available in Appendices B and F.

5.1. A Toy Dataset
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Figure 2. a) Samples from the toy dataset. b),c),d): For JMVAE, JNF and JNF-DCCA, we plot the joint embeddings of 100 training
samples and the density of a single unimodal posterior. Each point correspond to a pair of images. The color (blue/red) of the point
indicates if the images were empty or full, its intensity correspond to the size of the square in the pair. Altogether, we can see the
distribution of the squares in the latent space given their classes (empty/full) and sizes. In particular, the deep blue points indicates the
domain of the latent space that pertains to the square x1 shown in the top-left corner. For each model, we plot an example of qϕ1(z|x1).
The JMVAE posterior encompasses the domain of the latent space that decodes into x1 but also covers a large space that does not decode
into x1. That is because the Gaussian form is too restrictive. On the contrary, the JNF posterior covers only the right domain. On the right,
we visualize the JNF-DCCA posterior qϕ1(z|g1(x1)). The DCCA of x1 extracts the shared information between modalities i.e the class.
The resulting posterior covers the domain in the latent space that corresponds to the class of x1 i.e the blue points (full). On the right side
of each plot, we show circles generated by sampling z ∼ qϕ1(z|x1) (or z ∼ qϕ1(z|g1(x1))) and decoding with pθ(x2|z).

First, we illustrate our contributions on a toy bimodal dataset of 32x32 images. The first modality is composed of images
of squares while the second modality contains circles. The two modalities share the information of the shape being full
or empty, but the sizes of each shape are independent. Figure 2.a) presents a few samples from this dataset. We train
the JMVAE on this dataset as well as our two proposed models, the JNF and JNF-DCCA. The simplicity of the dataset
allows to use a 2-dimensional latent space. We use the same networks and two-steps training for all models. The first step
is shared across the models, so to ease comparison, we train the joint encoder and the decoders once and use the same
networks and joint latent space in all three models. The differences between the models lies in the modelling of the unimodal
encoders. Figure 2 presents a visualization of the latent space and an example of a learned unimodal posterior for each
model. With this simple 2D example, we can see the latent domain that corresponds to a given image x1 which aims to
be appropriately covered by the unimodal encoders qϕ1(z|x1). In Figure 2, this domain (given by the dark blue points)
cannot be approximated with a Gaussian, therefore the JMVAE fails to approximate well the true posterior. As a result,
the conditional generation produces incoherent results i.e empty circles generated from full squares. The JNF posterior,
enriched by normalizing flows, is more flexible and provides a better approximation. We also illustrate the effect of using the
DCCA. On the right of Figure 2, we see that qϕ1

(z|g1(x1)) conditioned on the DCCA embeddings, covers all the domain
that decodes into full pairs. When inferring an image x2 from x1, all we need to know is whether x1 is full or empty since
the sizes of the shapes are independent. Therefore qϕ1(z|g1(x1)) can be used to infer x2 from x1. In this simple example,
both posteriors qϕ1(z|x1) and qϕ1(z|g1(x1)) are easy to approximate with Normalizing Flows. However, in certain cases
qϕ1(z|g1(x1)) may have a simpler shape than qϕ1(z|x1) and so be easier to approximate. For instance, in the MNIST-SVHN
dataset presented below, JNF-DCCA outperforms significantly other models.

5.2. Benchmark Datasets

We then test our methods on several benchmark datasets used in previous studies (Suzuki et al., 2016; Wu & Goodman,
2018a; Shi et al., 2019). First, we use the MNIST-SVHN dataset: each image is paired with 5 different images with the
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same label in the other modality. We also use CelebA-64 (Liu et al., 2015) in which we consider the images to be the first
modality and the binary vector of 40 attributes as a second modality. Finally, we create a trimodal dataset by pairing MNIST,
SVHN and FashionMNIST (Xiao et al., 2017) to test the scalability of our method. We do 5 different random matching
between images sharing the same label.

5.3. Experiments Settings

We compare our results to the JMVAE, MVAE and MMVAE. For fair comparison, the same architectures are used for the
unimodal encoders (qϕi(z|xi))1≤i≤m in all models but the JNF-DCCA in which the same encoders are used for the DCCA
(gi)1≤i≤m and the qϕi(z|gi(xi)) are simple MLPs. All the models architectures and training specifics are summarized in
Appendix D for reproducibility. Note that in the original MMVAE formulation, the IWAE (Burda et al., 2015) bound is
optimized which is known to produce better likelihoods than the ELBO. To be fair in our comparison, we show the results of
the MMVAE using the IWAE bound (k > 1) and the ELBO bound (k = 1).

5.4. Evaluation Metrics

We use several different metrics : first the mean joint log-likelihoods ln pθ(X) of each model are computed using 1000
importance samples from the approximate joint posterior. We also want to evaluate the conditional likelihoods. We generate
from modality i to j by sampling z ∼ qϕi

(z|xi) (or qϕi
(z|gi(xi))) and decoding this z with pθ(xj |z). This defines a

conditional generative model with resulting likelihood pθ,ϕj
(xi|xj) :=

∫
z
pθ(xi|z)qϕj

(z|xj)dz. We compute Monte-Carlo
estimates using 1000 samples. This expression of the conditional likelihood is different than the one that was used in
previous articles (Suzuki et al., 2016; Wu & Goodman, 2018a; Shi et al., 2019) that approximated pθ(xi|xj). The latter
seems less relevant as it does not reflect the quality of the cross-modal generation that is performed by sampling from
pθ,ϕj

(xi|xj).

We also evaluate the coherence of cross-modal generations using pre-trained classifiers. For each image of each modality in
the test dataset, we sample from the conditional distributions in the other modalities and check that the predicted label of the
generation matches the original label of the image. Finally, we evaluate the diversity by computing the Frechet Inception
Distance (FID) (Heusel et al., 2017) on the conditional generations.

5.5. Results on MNIST-SVHN

The coherence and diversity results are presented in Table 1. Our models have excellent coherence values while having
the lowest FID. The MMVAE-(k=30) has a better precision when sampling SVHN images from MNIST images but this
comes at the cost of an important loss in the diversity of the generation that is reflected in the FIDs value. Generating
MNIST from SVHN is a harder task than the opposite since SVHN images are noisier and have a wider diversity (colors and
backgrounds). For most methods but the JNF-DCCA and MMVAE, we observe that the latent code inferred by qϕ2

(z|x2) is
more influenced by the background than the digit information (see Figure. 3). With our JNF-DCCA method, the background
information is tuned out by the DCCA, therefore the latent code inferred by qϕ2(z|g2(x2)) is based on the digit information
only. As such, the conditional generation from SVHN to MNIST is much more coherent than all previous methods as
reflected in Table 1. Hence our models reach the lowest FID and the highest P1 value while having a good P2 coherence.
Table 2 shows that our models also reach state-of-the-art likelihoods for the conditional distributions and second best joint
likelihood.

5.6. Results on CelebA

Table 1 shows that our models (JNF, JNF-DCCA) have good coherence values while having the lowest FID values. The
MMVAE obtain slightly better coherences but at the cost of an important lack of diversity in the generated images (see
Figure.4 and FIDs values). On this dataset, we do not observe a difference when using the DCCA since the shared
information between the modalities is exactly the second modality (the attributes). Nevertheless, we see that using it does
not diminish the performance of the method: the accuracy is slightly reduced when predicting the attributes from the images
but slightly heightened the other way around. Table 2 shows that our methods outperform other models except the MMVAE
on one conditional distribution. Qualitative samples are also presented in Figure.4.
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Table 1. Coherence and FID values on the test set averaged on 5 independent runs. For i = 1, 2, Pi (resp Fi) is the coherence (resp the
FID) when generating modality i from the other. The standard deviations are all ≤ 0.003 for the precision values and ≤ 0.5 for the FID
values. The FID are computed on the test dataset : ≈ 50000 in MNIST-SVHN and ≈ 20000 for CelebA.

MODEL P1 P2 F1 F2

M
N

IS
T-

S
V

H
N MMVAE - k = 30 0.606 0.871 42.7 104.9

MMVAE - k = 1 0.398 0.140 399.6 106.1
MVAE 0.158 0.692 28.3 115.6
JMVAE 0.468 0.795 13.0 72.0

JNF (OURS) 0.579 0.834 10.6 65.5
JNF-DCCA (OURS) 0.792 0.811 10.3 67.4

C
E

L
E

B
A

MMVAE - k = 15 0.845 0.874 121.5 /
MMVAE - k = 1 0.851 0.893 153.3 /

MVAE 0.823 0.799 78.9 /
JMVAE 0.825 0.867 64.6 /

JNF (OURS) 0.841 0.864 62.7 /
JNF-DCCA (OURS) 0.844 0.857 62.5 /

Table 2. Conditional and joint log-likelihoods averaged over the test dataset containing 50000 samples for MNIST-SVHN and 20000 for
CelebA. For fair comparison, we do not compare our models to the MMVAE using IWAE, known to give higher likelihoods than the
ELBO, and only provide the results as an indication.

MODEL ln p(x2|x1) ln p(x1|x2) ln p(x1, x2)

M
N

IS
T-

S
V

H
N MMVAE - k = 30 −2848 −738 −3594

MMVAE - k = 1 −2898 −742 −3599
MVAE −2847 −741 −3586
JMVAE −2847 −741 −3590

JNF (OURS) −2846 −741 −3590
JNF-DCCA (OURS) −2846 -739 −3590

C
E

L
E

B
A

MMVAE - k = 15 −11477 −9.0 −11476
MMVAE - k = 1 −11607 −9.4 −11489

MVAE −11503 −21.8 −11418
JMVAE −11490 −10.1 −11414

JNF (OURS) −11482 −10.1 −11414
JNF-DCCA (OURS) −11481 −10.1 −11414

5.7. Results on a Trimodal Dataset

Finally, we demonstrate the scalability of our method on a trimodal dataset. With this trimodal dataset, we want to evaluate
the joint distribution and the generations of modality i conditioned on a subset S of [|1, 3|], pθ(xi|xj∈S). For |S| > 1, the
MVAE and MMVAE models include ways to sample from those by modelling them as the aggregation of the unimodal
inference distributions (with either a Product of Experts or a Mixture of Experts). The JMVAE does not include a way to
handle that case but we propose to use a PoE of the unimodal encoders as in Eq. (11). For the JMVAE, JNF and JNF-DCCA
models we propose sampling from the PoE using Hamiltonian Monte Carlo Sampling. Table.3 shows that our methods
reach the best coherences, and likelihoods for almost all the distributions. They obtain especially good coherences when
conditioning on a subset even though we do not specifically train for this scenario. Using the DCCA results in a significant
gain in accuracy. The MMVAE model also reach good coherences but Appendix. J shows that the images generated by our
model are much more diverse.

6. Conclusion and Perspectives
In this paper, we have introduced two new multimodal variational autoencoders that integrate Normalizing Flows and
conditioning on DCCA embeddings. We demonstrate on a toy dataset how the Normalizing Flows allow to better fit the
unimodal posteriors and therefore improve the coherence of the conditional generations. The relevance of using flows and
DCCA embeddings is demonstrated on three benchmark datasets. In particular, we observe a significant gain in coherence
in the conditional distributions for the MNIST-SVHN and the MNIST-SVHN-FashionMNIST datasets. The latter shows that
using a Product of Experts of the unimodal posteriors at inference time is extremely relevant for sampling from the subset
posteriors. The general DCCA embedding used in this paper might be replaced by another method more specific to the type
of data that is used to improve the results. This could be investigated in future work.
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Figure 3. Samples from the conditional distributions. The first row in each image gives the samples we condition on, and the following
rows are generated samples. We select in red some examples where the background is well reconstructed but not the digit. That is avoided
with the DCCA.

Figure 4. Some generated samples conditioned on a vector of attributes containing ”Black Hair, Eyeglasses,Goatee, Male, Mouth-Slightly-
Open, Mustache, Young”. The complete set of attributes for this generated samples are in Appendix.I.
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Table 3. Coherences and likelihoods for the MNIST-SVHN-FashionMNIST dataset. The coherences are averaged on 5 independent runs
with a standard deviation ≤ 0.003 for all results. The likelihoods are averaged on the test set containing ≈ 50000 samples.

MODEL
S F S,F M F M,F M S M,S
M M M S S S F F F

C
O

H
E

R
E

N
C

E
S MMVAE - k = 30 0.722 0.832 0.777 0.754 0.677 0.715 0.810 0.635 0.723

MMMVAE - k = 1 0.563 0.718 0.640 0.793 0.705 0.749 0.814 0.618 0.716
MVAE 0.170 0.170 0.168 0.532 0.349 0.427 0.171 0.148 0.157
JMVAE 0.530 0.703 0.804 0.757 0.654 0.845 0.724 0.492 0.785

JNF 0.560 0.732 0.840 0.797 0.688 0.879 0.758 0.494 0.819
JNF-DCCA 0.765 0.801 0.876 0.820 0.749 0.880 0.811 0.698 0.842

MODEL P (M |S) P (M,F ) P (S|M) P (S|F ) P (F |M) P (F |S) P (M,S, F )

L
IK

E
L

IH
O

O
D

S MMVAE - k = 30 −738.7 −738.0 −2853.7 −2852.3 −733.8 −734.7 −4338
MMVAE - k = 1 −742.5 −742.1 −2898.3 −2897.0 −740.7 −742.4 −4349

MVAE −742.5 −741.6 −2847.6 −2847.7 −736.5 −737.0 −4325
JMVAE −738.3 −738.0 −2847.1 −2847.4 −734.2 −734.7 −4318

JNF −737.8 −737.2 −2846.9 −2847.1 −733.5 −734.2 −4318
JNF-DCCA −737.8 -737.1 −2846.9 −2847.0 −733.5 −735.0 −4318
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A. Interpretations of the LJM Objective
In this appendix, we provide several interpretations of the LJM (Eq. (4) and Eq. (9)) that explains why minimizing it is a
sensible objective to fit the unimodal posteriors. Firstly, we recall an analysis from (Suzuki et al., 2016) that links LJM to
the notion of Variation of Information. Secondly, we reinterpret LJM to show that it brings the unimodal encoder qϕi(z|xi)
(for i ∈ [1,m]) close to an average distribution qavg(z|xi) = Ep̂((xj)j ̸=i|xi)(qϕ(z|X)) that is close to pθ(z|xi) provided that
the joint encoder is well fit.

A.1. Interpretation in Relation to the Variation of Information

First, in the bimodal case, we recall an interpretation provided by (Suzuki et al., 2016) that links LJM to the Variation of
Information (VI) of x1 and x2 where x1 (resp. x2) represent the variable of the first modality (resp second). Recall the
definition of the VI :

V I(x1, x2) = −EP(x1,x2)

(
lnP(x1|x2) + lnP(x2|x1)

)
. (14)

If we analyse Eq. (14), we see that the more the modalities are predictive of one another, the smaller is the Variation
of Information. However, we do not know the true joint and conditional distributions but we can use the following
approximation summing on N training samples:

Ṽ I = −
N∑

n=1

ln pθ,ϕ1
(x

(n)
1 |x

(n)
2 ) + ln pθ,ϕ2

(x
(n)
2 |x

(n)
1 ) ,

where for i, j ∈ {1, 2} with i ̸= j, pθ,ϕi
(xj |xi) :=

∫
pθ(xj |z)qϕi

(z|xj)dz is our conditional generative models to sample
xj from xi. We can show that with L being the ELBO defined in Eq. (2) and LJM defined in Eq. (4):

−L(x1, x2) + LJM(x1, x2) ≥ Ṽ I . (15)

We recall that in our method, we minimize LJM(x1, x2) during the second step of our training with L(x1, x2) fixed, therefore
we minimize an upper bound on Ṽ I that is the empirical Variation of Information between modality 1 and 2. Minimizing
Ṽ I is a sensible goal as it encapsulates the predictive power of a modality given the other.

Let us now prove Eq. (15) :

ln pθ,ϕ1
(x2|x1) + ln pθ,ϕ2

(x1|x2) ≥ Eqϕ(z|x1,x2)

(
ln

pθ(x1|z)qϕ2
(z|x2)

qϕ(z|x1, x2)

)
+ Eqϕ(z|x1,x2)

(
ln

pθ(x2|z)qϕ1
(z|x1)

qϕ(z|x1, x2)

)
= Eqϕ(z|x1,x2)

(
ln pθ(x1|z)) + Eqϕ(z|x1,x2)

(
ln pθ(x2|z)

)
−KL(qϕ(z|x1, x2)||qϕ2(z|x2))−KL(qϕ(|x1, x2)||qϕ1(z|x1))

= L(x1, x2) +KL(qϕ(z|x1, x2)||p(z))− LJM(x1, x2) .

A.2. Interpretation in Relation to an Average Distribution

In a second time, we provide an interpretation inspired by (Vedantam et al., 2018) but extended to our case with continuous
variables. We consider the second step of our training process with the joint encoder qϕ(z|X) fixed. Then, we integrate the
expression of LJM(X) given by Eq. (9) over the empirical data distribution p̂(X):

Ep̂(X)(LJM(X)) =

m∑
i=1

Ep̂(X)

(
Eqϕ(z|X) (− ln qϕi

(z|xi))
)

=

m∑
i=1

Ep̂(xi)

(
Ep̂((xj)j ̸=i|xi)(Eqϕ(z|X) (− ln qϕi

(z|xi))
)
.

(16)

If we suppose that for all i ∈ [|1,m|], qϕi(z|xi) is bounded by C, then we can continue with:

Ep̂(x)(LJM(X)) =

m∑
i=1

Ep̂(xi)

(
Ep̂((xj)j ̸=i|xi)

(
Eqϕ(z|X)

(
− ln

qϕi
(z|xi)

C

)))
− ln(C) . (17)
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Since − ln
qϕi

(z|xi)

C is always positive we use Fubini’s Theorem to exchange the expectations on z and the (xj)j ̸=i:

Ep̂(x)(LJM(X)) =

m∑
i=1

Ep̂(xi)

∫
z

∫
(xj)j ̸=i

− ln
qϕi

(z|xi)

C
qϕ(z|X)p̂((xj)j ̸=i|xi)dz(dxi)i ̸=j + cte

=

m∑
i=1

Ep̂(xi)

∫
z

− ln
qϕi

(z|xi)

C

∫
(xj)j ̸=i|xi)

qϕ(z|X)p̂((xj)j ̸=i|xi)dz(dxi)i ̸=j + cte

=

m∑
i=1

Ep̂(xi)

(
Eqavg(z|xi)(−

qϕi
(z|xi)

C

)
+ cte

=

m∑
i=1

Ep̂(xi) (KL(qavg(z|xi)||qϕi
(z|xi)) +H(qavg(z|xi))) + cte .

(18)

where qavg(z|xi) = Ep̂((xj)j ̸=i|xi)(qϕ(z|X)) and H is the Shannon entropy. Since the entropy term does not depend on the
unimodal encoders qϕi

, this term does not impact the training. Therefore we see that the incentive for qϕi
(z|xi) is to minimize

the Kullback-Leibler divergence with qavg(z|xi). Getting closer to qavg(z|xi) is a sensible objective since, if qϕ(z|X)
approximates well the true posterior pθ(z|X) then qavg(z|xi) = Ep̂((xj)j ̸=i|xi)(qϕ(z|X)) ≈ Ep̂((xj)j ̸=i|xi)(pθ(z|X)) ≈
pθ(z|xi).
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B. On the DCCA Embeddings
In this section, we give additional results regarding the DCCA embeddings trained on MNIST-SVHN. Figure 5 presents a 2D
visualization of the embeddings learned for each modality. We see that the embeddings separate well the images according
to their labels which is a desired property. We also present on the right the singular values of the matrix T := Σ

1
2
1 Σ1,2Σ

1
2
2

the sum of which is optimized during the DCCA training. Those values represent the correlation that is contained in each
direction of the embeddings. In this work, we use this plot to select the most correlated dimensions that we use in our
embeddings. For instance, for the MNIST-SVHN dataset we choose to keep the 9 most correlated dimensions based on
Figure 5. However, we also investigate how this choice impacts the performance of the JNF-DCCA model.

Figure 5. DCCA embeddings for the MNIST images g1(x1) (on the left) and for SVHN images g2(x2) (on the right). We use an output
dimension of size 16 and project the embeddings in 2D with the TSNE (Van der Maaten & Hinton, 2008) algorithm. Each point represents

an image and each color a label. On the right, we plot the singular values of T := Σ
1
2
1 Σ1,2Σ

1
2
2 from the highest to the lowest. Those

values represent the correlation that is contained in each direction after the DCCA is applied.

Figure. 6 presents the coherences and FID results of the JNF-DCCA models depending on how many dimensions we keep
in the DCCA embeddings. In each case, the most correlated dimensions are kept. We see that the optimal dimension is the
one chosen based on Figure 5 (dim = 9). Taking a smaller dimension means loosing part of the shared information which
results in a loss in coherence. Taking more dimensions correspond to adding noise and slightly diminishes the coherences.

2 4 6 8 10 12 14 16
Dimension of DCCA embeddings

0.55

0.60

0.65

0.70

0.75

0.80

Co
he

re
nc

es

Coherence of the JNF-DCCA model
PS

PM

2 4 6 8 10 12 14 16
Dimension of DCCA embeddings

10.2

10.3

10.4

10.5

10.6

FI
D

M

66.5

67.0

67.5

68.0

68.5

69.0

69.5

70.0

70.5

FI
D

S

FID values of the JNF-DCCA model

Figure 6. Impact of the dimension of the DCCA embeddings on the performance of the JNF-DCCA model on the MNIST-SVHN dataset.
Left: Coherences as a function of the DCCA dimension. Right: FID values as a function of DCCA dimension.
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C. Hamiltonian Monte Carlo Sampling
In this appendix, we recall the principles of Hamiltonian Monte Carlo Sampling and detail how we apply it in our model.
The Hamiltonian Monte Carlo (HMC) sampling belongs to the larger class of Markov Chain Monte Carlo methods (MCMC)
that allow to sample from any distribution f(z) known up to a constant. The general principle is to build a Markov Chain
that will have f(z) as stationary distribution. More specifically, the HMC is an instance of the Metropolis-Hasting Algorithm
(see 2) that uses a physics-oriented proposal distribution.

Algorithm 2 Metropolis-Hasting Algorithm
1: Initialization : z ← z0
2: for i := 0→ N do
3: Sample z′ from the proposal g(z′|z)
4: With probability α(z′, z) accept the proposal z ← z′

5: end for

Sampling from the proposal distribution g(z′|z0) is done by integrating the Hamiltonian equations :

∂z

∂t
=

∂H

∂v
,

∂v

∂t
= −∂H

∂z
,

z(0) = z0

v(0) = v0 ∼ N (0, I) ,

(19)

where the Hamiltonian is defined by H(z, v) = − ln f(z) + 1
2v

tv. In physics, Eq. (19) describes the evolution in time of
a physical particle with initial position z and a random initial momentum v. The leap-frog numerical scheme is used to
integrate Eq. (19) and is repeated l times with a small integrator step size ϵ :

v(t+
ϵ

2
) = v(t) +

ϵ

2
· ∇z(ln f(z)(t)) ,

z(t+ ϵ) = z(t) + ϵ · v(t+ ϵ

2
) ,

v(t+ ϵ) = v(t+
ϵ

2
) +

ϵ

2
∇z ln f(z(t+ ϵ)) .

(20)

After l integration steps, we obtain the proposal position z′ = z(t+ l · ϵ) that corresponds to step 3 in Algorithm 2. The
acceptance ratio is then defined as α(z′, z0) = min

(
1, exp(−H(z0,v0))

exp(−H(z′,v(t+l·ϵ)))

)
. This procedure is repeated to produce an

ergodic Markov chain (zn) converging to the target distribution f (Duane et al., 1987; Liu, 2008; Neal & others, 2011;
Girolami & Calderhead, 2011). In this work, we use HMC sampling to sample from the PoE of unimodal posteriors in
Eq. (12). To do so we need to compute and derivate the (log) of the target distribution given by the PoE of the unimodal
distributions:

ln q(z|(xi)i∈S) = − ln p(z) +
∑
i∈S

ln qϕi
(z|xi) . (21)

We can use autograd to automatically compute the gradient∇z ln q(z|(xi)i∈S) that is needed in the leapfrog steps.
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D. Experiments Details and Architectures
In this appendix, we provide additional details on our experimental set-up. We summarize the architectures components
of each model in Figure 7. The networks architectures are described in the subsections dedicated to each dataset. For the
MMVAE model, we use the original implementation available on github (https://github.com/iffsid/mmvae).
We use our own implementations of the JMVAE, MVAE model. Our code is partly based on the Pytorch DCCA implementa-
tion available at https://github.com/Michaelvll/DeepCCA and also uses part of the code from this repository
(https://github.com/mseitzer/pytorch-fid) to compute FID scores. Our models JNF and JNF-DCCA are
implemented based on the Pytorch Library (Paszke et al., 2017) and the Pythae Library (Chadebec et al., 2022b).

The models are trained with either an 32GB V100 GPU or a 15GB RTX6000 GPU. We use WandB (Biewald, 2020) to
monitor the trainings of the models.

Figure 7. Summary of the components in each method. Each rectangle represent a network : E for encoders, F for the flows and D for
decoders. In the JMVAE, the F block is omitted. Blocks with the same name have the same architecture. The precise architectures of the
blocks depend on the dataset and are specified in each subsection of the appendices.

D.1. MNIST-SVHN

For the MNIST-SVHN dataset, we pair each image with 5 different images with the same label in the other modality so that
the total training set contains 270340 samples, the testing set 50000 images and the validation set 10000 images.

For i = 1, 2 the decoder distribution pθ(xi|z) is modelled as a Normal distributionN (µi(z), I) where µi(z) is the output of
the decoder network Di which architecture is detailed in Table 4. In the JMVAE, MMVAE, MVAE models, the encoder
distributions are modelled as Normal distributionsN (νi(xi), σi(xi)) with σi(xi) being a diagonal matrix. νi(xi) and σi(xi)
are the outputs of the encoders Ei which architectures are given in Table 4.

For JMVAE, JNF, and JNF-DCCA, we use a two-steps training with 100 epochs for the first step. All models are trained
for a total of 200 epochs with an initial learning rate of 1 × 10−3 and batchsize 128. The DCCA encoders have their
dedicated training lasting 100 epochs, with batchsize 800, learning rate 1 × 10−3 and embedding size 9. The influence
of the embedding size on the performance is further studied in Appendix B. For all models, the reconstruction terms for
each modality are rescaled to give more weights to the MNIST-images: the reconstruction term ln pθ(x1|z) is multiplied by
3×32×32
1×28×28 . This rescaling follows the implementation of (Wu & Goodman, 2018a; Shi et al., 2019) for the MMVAE and
MVAE and has shown beneficial to the training of our models as well. The architectures of each model is summarized in the
Figure 7. The specification of each block for the MNIST-SVHN experiments is detailed in Table 4.

https://github.com/iffsid/mmvae
https://github.com/Michaelvll/DeepCCA
https://github.com/mseitzer/pytorch-fid


Improving Multimodal VAEs with Normalizing Flows and Correlation Analysis

E1 E2 D1 D2

LINEAR(784,512) + RELU CONV(32@4X4,2,1)+RELU LINEAR(20,512)+RELU DCONV(128,1,0)+RELU
LINEAR(512,dim1) CONV(64@4X4,2,1)+RELU LINEAR(512,784) +SIGMOID DCONV(64,2,1)+RELU

CONV(128@4X4,2,1)+RELU DCONV(32,2,1)+RELU
CONV(dim2 @ 4X4) DCONV(3,2,1)+SIGMOÏD

MLPj MLP1 MLP2 F

LINEAR(40,512)+RELU LINEAR(dDCCA ,512)+RELU LINEAR(dDCCA ,512)+RELU MAF FLOWS :
LINEAR(512,20) LINEAR(512,512)+RELU LINEAR(512,512)+RELU 2 MADE BLOCKS(3,128)

LINEAR(512,512)+RELU LINEAR(512,512)+RELU
LINEAR(512,20) LINEAR(512,20)

Table 4. Neural architectures of all the blocks used in the MNIST-SVHN experiment. This table is to be read with Figure 7. dim1, dim2 =
dDCCA when E1 (resp E2) is used in the DCCA encoder otherwise dim1, dim2 = 20. In the results presented in the paper dDCCA = 9.
In Appendix B, we vary this dimension. When the encoder E1, E2 are used to parameterize Normal distributions, the last layer is doubled
to output the mean and the log-covariance.

Table 5. Neural architectures of all the blocks used in the CelebA experiment. This table is to be read with Figure. 7. dim1 = 40 when E1

is used in the DCCA encoder, dim1 = 128 when E1 is used in the joint encoder, otherwise dim1 = 64. dim2 = 40 when E2 is used in
the DCCA encoder or in the joint encoder, otherwise dim2 = 64. When the encoder E1, E2 are used to parametrize normal distribution,
the last layer is doubled to output the mean and the log-covariance.

E1 E2 D1 D2

CONV(64,4,2) LINEAR(40,512)+RELU LINEAR(64,2048) LINEAR(64,512)+RELU
CONV(128,4,2) LINEAR(512,dim2) CONVT(128,3,2) LINEAR(512,40)+SIGMOID
CONV(128,3,2) RESBLOCK**
CONV(128,3,2) RESBLOCK**
RESBLOCK** CONVT(128,5,2)+SIGMOID
RESBLOCK** CONVT(64,5,2)+SIGMOID
LINEAR(2048,dim1) CONVT(3,4,2) + SIGMOID

MLPj MLP1 MLP2 F

LINEAR(168,512)+RELU LINEAR(dDCCA , 512)+RELU LINEAR(dDCCA ,512)+RELU MAF FLOWS :
LINEAR(64) LINEAR(512,512)+RELU LINEAR(512,512)+RELU 2 MADE BLOCKS(3,128)

LINEAR(512,512)+RELU LINEAR(512,512)+RELU
LINEAR(512,64) LINEAR(512,64)

D.2. CelebA

For JMVAE, JNF, and JNF-DCCA, we use a two-steps training with 30 epochs for the first step. All models are trained for a
total of 60 epochs with an initial learning rate of 1× 10−3 and batchsize 256. The latent space is chosen of dimension 64 as
in (Suzuki et al., 2016). The DCCA encoders have their dedicated training lasting 100 epochs, with batchsize 800, learning
rate 1× 10−3 and embedding size of 40. For the MMVAE and MVAE models, the reconstruction terms for each modality
are rescaled to balance the weight of each modality since they are of different sizes i.e: the reconstruction term ln pθ(x2|z)
is multiplied by 50 for the MVAE and by 3×64×64

40 for MMVAE. This rescaling is necessary to avoid modality collapse for
those models. This phenomenon is explained by conflictual gradients in (Javaloy et al., 2022).

For the CelebA images, the decoder distribution pθ(x1|z) is modelled as a Normal distribution N (µ1(z), I) where µ1(z)
is the output of the decoder network D1 which architecture is detailed in Table 5. For the binary vectors of attributes, the
decoder distribution pθ(x2|z) is modelled as a Bernoulli distribution with parameters p2(z) that is the output of the decoder
network D2 (see Table 5). In the JMVAE, MMVAE, MVAE models, the encoder distributions are modelled as Normal
distributions N (νi(xi), σi(xi)) with σi(xi) being a diagonal matrix. νi(xi) and σi(xi) are the outputs of the encoders Ei

which architectures are given in Table 5.

The architectures of each model is summarized in the Figure. 7. The specification of each block for the CelebA experiments
are detailed in Table. 5.
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D.3. MNIST-SVHN-FashionMNIST

For the MNIST-SVHN-FashionMNIST dataset we do 5 differents random matchings between modalities so that the training
dataset contains 275975 samples (from which we set 10000 images aside for validation) and the test dataset contains 48930
images.

For i = 1, 2, 3 the decoder distribution pθ(xi|z) is modelled as a Normal distribution N (µi(z), I) where µi(z) is the output
of the decoder network Di which architecture is detailed in Table 4. In the JMVAE, MMVAE, MVAE models, the encoder
distributions are modelled as Normal distributionsN (νi(xi), σi(xi)) with σi(xi) being a diagonal matrix. νi(xi) and σi(xi)
are the outputs of the encoders Ei which architectures are given in Table 4 where we consider that the same encoder and
decoder blocks are used for MNIST and for FashionMNIST. For the MVAE training we use the subsampling paradigm used
in the original article. (Wu & Goodman, 2018b).

For JMVAE, JNF, and JNF-DCCA, we use a two-steps training with 100 epochs for the first step. All models are trained for
a total of 200 epochs with an initial learning rate of 1× 10−3 and batchsize 128. The DCCA encoders have their dedicated
training lasting 100 epochs, with batchsize 800 and learning rate 1 × 10−3. For the MMVAE and MVAE models, the
reconstruction terms for each modality are rescaled to balance the weight of each modality since they are of different size
i.e: the reconstruction terms for ln pθ(x1|z) and ln pθ(x3|z) is multiplied by 3×32×32

1×28×28 . The architectures of each model are
summarized in the Figure 7. The specification of each block for the MNIST-SVHN-FASHION experiments is detailed in
Table 4 where we consider that the same encoder and decoder blocks are used for MNIST and for FashionMNIST.
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E. Training Paradigm for the JMVAE Model
In this appendix, we provide results on the influence of the training paradigm on the JMVAE model. The JMVAE model
uses warmup during training which forces the optimization of only the reconstruction term first to avoid local minima. The
weight of the regularization is increased linearly to reach the value of 1 after Nt epochs. Another particularity of the training
is that all components are trained at the same time. On the other hand, we choose a two-steps training to train the joint
encoder and decoders first and then fix those parameters after Nt epochs when we start training the unimodal encoders.
Here we compare the results obtained in each case:

• Using the original one-step training with linear warmup,

• Using our two-steps training which dissociates the training of the joint encoder and decoders from the training of the
unimodal encoders.

The first training paradigm requires choosing an hyperparameter α that controls a trade-off between reconstruction and
cross-modal coherence. We choose the intermediate value α = 0.1 and also make the experiment with α = 1 to see the
influence of the regularization.

For the MNIST-SVHN dataset, we train the model for 200 epochs with Nt = 100. Table 6 shows that the one-step training
does not improve significantly the coherences compared to the two-steps training (as it improves PM but decreases PS) but
causes the FIDs to significantly increase. This is because the LJM term regularizes two much the joint encoder qϕ(z|x1, x2)
which impacts the quality of the reconstructions. This does not happen with the two steps training as qϕ(z|x1, x2) is already
fixed when the LJM term is optimized.

Table 6. Coherence and FID values averaged on 5 runs. PM (resp PS is the coherence on MNIST (resp. SVHN) images generated from
SVHN (resp. MNIST) images. The standard deviations are all ≤ 0.003 for the precision values and ≤ 0.5 for the FID values. The FID
are computed taking all the samples from the test dataset ≈ 50000

MODEL PM PS FIDM FIDS P (S|M) P (M |S) P (S,M)

JMVAE α = 0.1 0.57 0.71 18.8 89.5 −741.2± 0.3 −2848.0± 0.7 −3594.5± 0.6
JMVAE α = 1 0.53 0.76 21.1 83.8 −740.8± 0.3 −2847.3± 0.6 -3590.1 ± 0.7
JMVAE-2STEPS 0.46 0.79 13.0 72.3 -740.5 ± 0.6 −2847.1± 1.3 -3590.5 ± 1.3

The same phenomena happens on CelebA as shown in Table 7. On this dataset all metrics are better for the two steps
training. On this dataset we train for 60 epochs and choose Nt = 30.

Table 7. Coherence and FID values averaged on 5 runs. The standard deviations are all ≤ 0.003 for the precision values and ≤ 0.5 for
the FID values. The FID are computed taking all the samples from the test dataset ≈ 20000 samples.

MODEL PC PA FIDC P (A|C) P (C|A) P (A,C)

JMVAE-α = 0.1 0.810 0.861 100.7 −10.9± 0.2 −11509± 4 −11431± 2
JMVAE-α = 1 0.808 0.855 102.0 −11.3± 0.2 −11500± 3 −11427± 2
JMVAE- 2 STEPS 0.825 0.867 64.6 -10.1 ± 0.2 -11490 ± 5 -11414 ± 2
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F. Ablation study : Influence of the number of flows
In this appendix, we present the influence of the number of MADE blocks in the MAF flows on the performance of JNF,
JNF-DCCA on the MNIST-SVHN dataset. Figure F shows the results for the JNF model while Figure F displays the results
for the JNF-DCCA model.
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Figure 8. Influence of the number of MADE transformations in the MAF flows on the performance of the JNF model. Left: Coherences
of the model as a function of the number of MADE transformations. Right: FID values as a function of the number of MADE
transformations.

For both the JNF and JNF-DCCA models, it seems that augmenting the number of transformations in the flows improves the
coherence.
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Figure 9. Influence of the number of MADE transformations in the MAF flows on the performance of the JNF-DCCA model. Left:
Coherences of the model as a function of the number of MADE transformations. Right: FID values as a function of the number of MADE
transformations.
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G. Classifiers Used for Coherence Computations
In this appendix, we give details on the architectures and accuracies of the classifiers used in the evaluation of the models.
For MNIST, SVHN and FashionMNIST we train from scratch the networks specified in Table 8. For CelebA, we finetune
the pre-trained network Resnet50 (He et al., 2016).

Table. 9 presents the accuracies of our classifiers on each dataset.

Table 8. Neural architectures of all the classifiers

MNIST/FASHIONMNIST SVHN

CONV(32,4,1)+BATCHNORM+RELU CONV(32,4,1)+BATCHNORM+RELU
CONV(64,4,1)+BATCHNORM+RELU CONV(64,4,1)+BATCHNORM+RELU
LINEAR(30976,512)+DROPOUT(0.5) CONV(128,4,1)+BATCHNORM+RELU
LINEAR(512,10) LINEAR(67712,1024)+BATCHNORM+DROPOUT(0.5)

LINEAR(1024,512)+BATCHNORM+DROPOUT(0.5)
LINEAR(512,10)

Table 9. Accuracies of the classifiers on the test datasets.

MNIST FASHIONMNIST SVHN CELEBA

0.98 0.95 0.90 0.90
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H. Computing Estimates for the Likelihoods
The joint likelihood is estimated with the following Importance Sampling approximation with 1000 samples :

pθ(X) =

∫ ∏
i

pθ(xi|z)p(z)dz ,

≈ 1

n

∑
(zk)nk=1∼qϕ(z|X)

∏
i

pθ(xi|zk)
p(zk)

qϕ(zk|X)
.
.

The conditional likelihoods are estimated with the following Monte-Carlo approximation using 1000 samples :

pθ,ϕj (xi|xj) ≈
1

n

∑
(zk)

n
k=1

∼qϕj
(z|xj)

pθ(xi|zk) . (22)
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I. Additional Results on CelebA.
In this section, we provide more experimental results for the CelebA experiment. First, we provide in Figure 10 the entire
set of attributes that is used to generate the samples in Figure 4. We also provide another example of generating images from
attributes in Figure. 11. Then we provide an example of generating attributes from images in Figure. 12.

Figure 10. The attributes used to sample in Figure. 4. The green attributes are present while the red attributes are absent.

Figure 11. Another example of generating images from attributes.

I.1. Generating Attributes from Images
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Figure 12. From the images, we generate a subset of attributes for each model.
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J. Additional Results on MNIST-SVHN-FashionMNIST
In this section, we provide more qualitative and quantitative results on the trimodal dataset. Figure. 13 shows images
generated from the conditional generations. We notice that with three modalities and even with rescaling, the MMVAE
model is sensitive to modality collapse: the SVHN generations resemble averaged images and are not diversified. On the
contrary, our models’ generations are much more diversified. The JMVAE and MVAE models have a wider diversity than
the MMVAE but the generations are less coherent, especially when it comes to generating MNIST images from another
modality. The FID metrics presented in Table. 10 confirms this qualitative analysis.

Table 10. The FID values computed using the entire test set composed of ≈ 50000 samples.

S F M F M S
MODEL M M S S F F

MMVAE-30 62.0± 0.1 58.8± 0.1 212.2± 0.4 202.3± 0.5 105.8± 0.2 110.1± 0.1
MVAE 16.7± 0.1 16.9± 0.1 93.1± 0.2 94.7± 0.2 66.1± 0.1 67.2± 0.1
JMVAE 22.0± 0.1 21.5± 0.1 59.0± 0.2 59.4± 0.1 65.3± 0.2 69.1± 0.1
JNF 22.2± 0.1 20.6± 0.1 63.5± 0.1 64.8± 0.2 66.7± 0.2 69.1± 0.2
JNF-DCCA 21.7± 0.1 21.3± 0.1 63.1± 0.2 63.1± 0.1 67.8± 0.1 65.9± 0.2
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Figure 13. Conditional generations from one modality to another. For each model, the first line are the images we condition on and the
following lines are generated samples conditioned on those images.


