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We give necessary conditions and sufficient conditions for sequences of reproducing kernels (kΘ(•, λn)) n≥1 to be overcomplete in a given model space K p Θ where Θ is an inner function in H ∞ , p ∈ (1, ∞), and where (λn) n≥1 is an infinite sequence of pairwise distinct points of D. Under certain conditions on Θ we obtain an exact characterization of overcompleteness. As a consequence we are able to describe the overcomplete exponential systems in L 2 (0, a).

Introduction

Given a Banach space X and a sequence (x n ) n≥1 ⊂ X, the question of completeness of sequences (x n ) n≥1 in X is classical and appears in many problems. In this paper, we deal with a stronger property than completeness. Definition 1.1 Let X be a Banach space. An infinite sequence (x n ) n≥1 whose terms are pairwise distinct is overcomplete in X if every infinite subsequence (x n k ) k≥1 of (x n ) n≥1 is complete in X, i.e. span{x n k : k ≥ 1} = X, where span denotes the closed linear hull.

One might expect that overcomplete sequences were rare, but in fact V. Klee [START_REF] Klee | On the borelian and projective types of linear subspaces[END_REF] proved that every separable Banach space contains an overcomplete sequence. Such sequences (also known as hypercomplete or densely-closed sequences) have been much studied in the theory of the geometry of Banach spaces, originally because of their links with the existence of bases. See the book of Singer [START_REF] Singer | Bases in Banach spaces II[END_REF] for further details.

In this paper, we study the following problem due to N. Nikolski and considered previously in [START_REF] Fricain | Propriétés géométriques des suites de noyaux reproduisants dans les espaces modèles[END_REF]. Problem 1.1 Find necessary and sufficient conditions concerning the inner function Θ and the sequence (λ n ) n≥1 of D in order to obtain overcompleteness of (k Θ (•, λ n )) n≥1 in the model space K p Θ . In fact overcompleteness of (k Θ (•, λ n )) n≥1 in K p Θ is equivalent to the following assertion: if f ∈ K q Θ satisfies f (λ np ) = 0 for (λ np ) p≥1 an infinite subsequence of (λ n ) n≥1 , then f = 0. The characterization of overcompleteness is linked to the same problem for completeness, which is rather difficult, even in the special case of sequences of exponential type (see [START_REF] Beurling | On the closure of characters and the zeros of entire functions[END_REF][START_REF] Koosis | Leçons sur le théorème de Beurling et Malliavin[END_REF] for partial results in this direction).

The plan of the paper is the following. The next section contains preliminary material on Hardy spaces and inner functions. In Section 3, we study reflexive Banach spaces X of holomorphic functions on a domain Ω admitting evaluations E λ at points λ ∈ Ω. We give necessary conditions and sufficient conditions for the overcompleteness of (E λn ) n≥1 in X. The main result of this section is the following : if X ∩ H ∞ (Ω) is dense in X, then the overcompleteness of (E λn ) n≥1 implies the strong relative compactness of (E λn ) n≥1 .

In Section 4, we provide a characterization of the overcomplete sequences of exponentials, i.e.

(e iµnt ) n≥1 is overcomplete in L 2 (0, a) ⇐⇒ sup n≥1 |µ n | < ∞.
The main result of Section 5 is a geometric necessary and sufficient condition for the overcompleteness of k Θ (•, λ n ) n≥1 in reflexive spaces K p Θ , holding for a wide class of inner functions Θ. We also study the links between overcompleteness of sequences of reproducing kernels and properties of minimality or uniform minimality of all their infinite subsequences. We conclude with some illustrative examples analysed using the theory of Toeplitz operators.

Preliminaries

For 1 ≤ p ≤ +∞, H p will denote the standard Hardy space of the open unit disk D in C, which we identify with the subspace of functions f ∈ L p (T) for which f (n) = 0 for all n < 0 [START_REF] Duren | Theory of H p spaces[END_REF][START_REF] Garnett | Bounded analytic functions[END_REF]. Here T denotes the unit circle with normalized Lebesgue measure. Recall that a

function Θ ∈ H ∞ is called inner if |Θ(ζ)| = 1 for almost ζ ∈ T.
We associate with each inner function Θ the model space K p Θ defined by

K p Θ := H p ∩ ΘH p 0 = {f ∈ H p : f, Θg = 0, g ∈ H q },
where H p 0 = { f : f ∈ H p : f (0) = 0} and where p and q are conjugate exponents. For p ∈ (1, ∞), Beurling's theorem ( [START_REF] Garnett | Bounded analytic functions[END_REF], Chap. II) states that every nontrivial closed invariant subspace of H p for S * :

f -→ f -f (0) z is of the form K p Θ .
The study of the subspaces K p Θ is relevant in various subjects such as rational approximation [START_REF]Kernels of Toeplitz operators via Bourgain's factorization theorem[END_REF][START_REF] Hayashi | Classification of nearly invariant subspaces of the backward shift[END_REF][START_REF] Sarason | Sub-Hardy Hilbert spaces in the unit disk[END_REF], Toeplitz operators [START_REF] Douglas | Cyclic vectors and invariant subspaces for the backward shift operator[END_REF][START_REF] Dyakonov | Smooth functions in the range of a Hankel operator[END_REF] and spectral theory for general linear operators [START_REF] Nikolski | Treatise on the shift operator[END_REF]. The reproducing kernels in the subspaces K q Θ are the functions k Θ (., λ) ∈ K p Θ such that f (λ) = f, k Θ (., λ) for λ ∈ D and f ∈ K q Θ . By [START_REF] Hruščev | Unconditional bases of exponentials and of reproducing kernels, Complex Analysis and Spectral Theory[END_REF] they are given by

k Θ (z, λ) = 1 -Θ(λ)Θ(z) 1 -λz .
Recall that if Θ is an inner function in H ∞ , then Θ has a canonical decomposition of the form

Θ(z) = e iα z N n≥1 |a n | a n a n -z 1 -a n z exp - T ζ + z ζ -z dµ(ζ) (1) 
where α ∈ R, a n = 0, n≥1 (1 -|a n |) < ∞ and where µ is a non negative singular measure.

Definition 2.1 Let Θ be an inner function in H ∞ . The spectrum of Θ is denoted by σ(Θ) and is defined to be the complement in D of the set {ξ ∈ D : 1 Θ can be analytically continued in a (full) neighborhood of ξ}.

It follows from [START_REF] Nikolski | Treatise on the shift operator[END_REF], p. 63, that σ(Θ) ∩ T = {ξ ∈ T : lim inf z→ξ |Θ(z)| = 0} and if Θ has the canonical decomposition (1), then σ(Θ) = clos{a n : n ≥ 1} ∪ supp µ, where supp(µ) denotes the support of µ and clos denotes the closure.

A useful fact concerning the spectrum of an inner function is contained in the following proposition.

Proposition 2.1 ( [START_REF] Nikolski | Treatise on the shift operator[END_REF], p. 65) Let Θ be an inner function and p ∈ (1, ∞). The set T \ σ(Θ) coincides with the set of points ξ such that every function in the model space K p Θ admits an analytic continuation across ξ.

We shall also require another set associated with Θ, defined as follows.

Definition 2.2 Let Θ be an inner function with the canonical decomposition [START_REF] Ahern | Radial limits and invariant subspaces[END_REF]. Then define the Ahern-Clark set E Θ [START_REF] Ahern | Radial limits and invariant subspaces[END_REF] by:

E Θ :=    ζ ∈ T : n≥1 1 -|a n | 2 |ζ -a n | 2 + 2 T dµ(t) |t -ζ| 2 < +∞    .
Note that T \ σ(Θ) ⊂ E Θ , but as we shall see later these sets can be distinct. Also recall that the set E Θ is an open set relative to T. When Θ is an inner function on D and ζ 0 is a point in T, one says that Θ has an angular derivative in the sense of Carathéodory at ζ 0 if Θ has a non tangential limit at ζ 0 of modulus 1 and in addition the derivative Θ of Θ has a non tangential limit at ζ 0 . We have the following characterization of such points: (ii) lim inf

z∈D z→ζ 0 1 -|Θ(z)| 2 1 -|z| 2 < ∞ . (iii) ζ 0 ∈ E Θ .
The equivalence between (i) and (ii) follows from Carathéodory's Theorem [START_REF] Sarason | Sub-Hardy Hilbert spaces in the unit disk[END_REF] and for the equivalence between (ii) and (iii) see [START_REF]Factorization of smooth analytic functions via Hilbert-Schmidt operators[END_REF].

Finally, we need the notion of minimal sequences.

Definition 2.3 Let (x n ) n≥1 be a sequence of a Banach space X. Then (x n ) n≥1 is called minimal if for every n ≥ 1, we have x n ∈ span{x k : k = n}. Moreover, (x n ) n≥1 is called uniformly minimal if inf n≥1 dist(x n / x n , span{x k : k = n}) > 0.
A standard application of the Hahn-Banach theorem gives the following characterization of minimality and uniform minimality ( [START_REF] Nikolski | Treatise on the shift operator[END_REF], p. 131).

Proposition 2.3 Let (x n ) n≥1 be a sequence of a Banach space X. 1. (x n ) n≥1 is minimal if and only if there exists a sequence (x * n ) n≥1 in X * satisfying < x n , x * k >= δ n,k where δ n,k is the Kronecker symbol. Such a sequence is called a biorthogonal sequence of (x n ) n≥1 . 2. (x n ) n≥1 is uniformly minimal if and only if there exists a biorthogonal sequence (x * n ) n≥1 of (x n ) n≥1 such that sup n≥1 x n x * n < ∞.

Overcomplete sequences in reflexive Banach spaces

First of all, we recall a useful lemma.

Lemma 3.1 ([2]

) Let (y n ) n≥1 be a sequence in a Banach space X satisfying inf n≥1 y n > 0 and such that (y n ) n≥1 tends weakly to 0. Then (y n ) n≥1 has a subsequence (y np ) p≥1 which is a basic sequence, i.e., a Schauder basis in its span. Now, we can give a general necessary condition for overcompleteness.

Theorem 3.1 Let X be a reflexive Banach space and (x n ) n≥1 ⊂ X a bounded infinite sequence of pairwise distinct vectors. If (x n ) n≥1 does not contain a uniformly minimal subsequence (so, in particular if (x n ) n≥1 is overcomplete in X), then (x n ) n≥1 is strongly relatively compact.

Proof:

Suppose that (x n ) n≥1 is not strongly relatively compact. As (x n ) n≥1 is bounded, we can find y ∈ X and a subsequence (x n k ) k≥1 tending weakly to y such that inf k≥1

x n ky > 0.

First case: y = 0. Using Lemma 3.1, we obtain a subsequence of (x n k ) k≥1 which forms a basis in its span. In particular this subsequence is uniformly minimal, which proves that (x n ) n≥1 is not overcomplete in X.

Second case: y = 0. Using once more Lemma 3.1, we can find a subsequence (x n kpy) p≥1

which is a basic sequence. It follows that i≥1 span {x n kpy : p ≥ i} = {0}. Indeed, since (x n kpy) p≥1 is a basic sequence, for any z ∈ span{x n kpy : p ≥ 1}, there exists a unique scalar sequence (a np ) p≥1 such that z = p≥1 a np (x n kpy). The minimality of (x n kpy) p≥1 implies that a np = 0 for p ≥ 1 if, in addition, z ∈ i≥1 span {x n kpy : p ≥ i} = {0}. Since y = 0, there exists i 0 ∈ N such that y ∈ span {x n kpy : p ≥ i 0 }. Hence we get that X = (y, x n kpy) p≥i0 is a basic sequence, and thus a uniformly minimal sequence. Let (y * , (x n kp -y) * ) p≥i0 be the biorthogonal sequence of X such that sup p≥i0 x n kp -y (x n kp -y) * < ∞. One can check that ((x n kpy) * ) p≥i0 is also a biorthogonal sequence for (x n kp ) p≥i0 . Since (x n kp ) p≥i0 is bounded and inf p≥i0 x n kp -y > 0, it follows that sup p≥i0 x n kp (x n kp -y) * < ∞. Therefore, (x n kp ) p≥i0 is uniformly minimal. In particular, (x n ) n≥1 is not overcomplete, which ends the proof.

In the rest of the section, we consider a reflexive complex Banach space X and Ω a domain in C. Moreover suppose that the mapping f -→ f is well-defined and continuous from X into Hol(Ω) (the space of holomorphic function on Ω equipped with the topology of the uniform convergence on compact subsets). It is a well-known fact that the evaluations E λ : f → f (λ) for λ ∈ Ω, are continuous. In this context, we can relax the hypothesis under which we can give a necessary condition for overcompleteness. Theorem 3.2 Suppose that X ∩ H ∞ (Ω) is dense in X and let (λ n ) n≥1 be an infinite sequence of pairwise distinct points in Ω. If (E λn ) n≥1 does not contain a uniformly minimal subsequence (so, in particular if (E λn ) n≥1 is overcomplete in X * ), then (E λn ) n≥1 is strongly relatively compact.

Proof: By Theorem 3.1, it suffices to show that sup n≥1 E λn < +∞. Assume that sup n≥1 E λn = +∞ and let (y n ) n≥1 be defined by

y n = E λn / E λn . For all f ∈ H ∞ (Ω) ∩ X, we have | f, y n | = |f (λ n )|/ E λn ≤ f ∞ / E λn → 0 as n → ∞ . Since H ∞ (Ω) ∩ X is dense in X,
we get that (y n ) n≥1 tends weakly to 0 and using Lemma 3.1, we find a subsequence (y np ) p≥1 which is a basic sequence and in particular is uniformly minimal. Hence (E λn p ) p≥1 cannot be overcomplete in X * . An obvious sufficient condition for overcompleteness is given by the following proposition, which follows immediately from the principle of isolated zeros.

Proposition 3.1 Let (λ n ) n≥1 be an infinite sequence of pairwise distinct points in Ω. If the closure of (λ n ) n≥1 is a subset of Ω, then (E λn ) n≥1 is overcomplete in X * . 4 Overcomplete sequences in K p Θ , 1 < p < ∞
Before investigating overcompleteness in the reflexive model spaces K p Θ , it is natural to consider the problem in H p where the reproducing kernels are k λ (z) = 1 1-λz , for λ ∈ D. 

Proof:

In order to apply the results of Section 3, set Ω = D, X = H q where p and q are conjugate. In this context, for λ ∈ D, E λ can be identified with k λ . By Proposition 3.1, the condition sup n≥1 |λ n | < 1 implies that (k λn ) n≥1 is overcomplete in H p . Conversely, by Theorem 3.2 the overcompleteness of (k λn ) n≥1 implies in particular that sup n≥1 k λn p < ∞. Now, it is known ( [START_REF] Nikolski | Treatise on the shift operator[END_REF], p. 188) that k λn p

1 (1-|λn| 2 ) 1/q . Therefore, sup n≥1 k λn p < ∞ if and only if sup n≥1 |λ n | < 1.
The study of sequences of reproducing kernels in the model spaces K p Θ is often considered under the geometrical condition sup |Θ(λ n )| < 1 [START_REF] Hruščev | Unconditional bases of exponentials and of reproducing kernels, Complex Analysis and Spectral Theory[END_REF]. In this case we have the following result.

Theorem 4.2 Let p ∈ (1, ∞) and (λ n ) n≥1 an infinite sequence of pairwise distinct points in D. Suppose sup n≥1 |Θ(λ n )| < 1; then (k Θ (•, λ n )) n≥1 is overcomplete in K p Θ if and only if sup n≥1 |λ n | < 1.
Proof: Set Ω = D, X = K q Θ where p and q are conjugate. For λ ∈ D, the evaluation E λ on X can be identified with k Θ (•, λ). By Proposition 3.1, the second condition is sufficient for the overcompleteness. By Theorem 3.2, overcompleteness implies in particular that sup The study of bases of exponentials in L 2 (0, a) provided the original motivation for the development of the functional model approach in [START_REF] Hruščev | Unconditional bases of exponentials and of reproducing kernels, Complex Analysis and Spectral Theory[END_REF]. In the remainder of this section we discuss in more detail overcompleteness of exponentials. Some preliminaries are needed to translate the problem into the language of model spaces.

n≥1 k Θ (•, λ n ) p < ∞. But we have k Θ (•, λ n ) p p 1 2π 2π 0 1 -Θ(λ n )Θ(e it ) 1 -λ n e it p dt ≥ (1 -|Θ(λ n )|) p 1 2π 2π 0 1 |1 -λ n e it | p dt. Since sup n≥1 |Θ(λ n )| < 1,
If C + = {z ∈ C : Im z > 0}, then we define the conformal mapping φ : andU (k Θ λ ) is the reproducing kernel for the point φ(λ).

C + → D by φ(z) = z-i z+i . The operator (U f )(z) = 1 π(z+i) f (φ(z)) maps H 2 unitarily onto the Hardy space H 2 (C + ). The corresponding transformation for functions in H ∞ is f → f • φ; it maps inner functions in D into inner functions in C + . We have then U K Θ = H 2 (C + ) (Θ • φ)H 2 (C + ),
The Blaschke factor corresponding to µ ∈ C + is b + µ (z) = z-µ z-μ and the Blaschke product with zeros (µ n ) n≥1 is B + (z) = n≥1 c µn b + µn (z), the coefficients c µn being chosen as to make all terms positive at z = i.

Let F : L 2 (R) → L 2 (R) be the Fourier transform. Then F U maps H 2 unitarily onto L 2 (0, ∞). If Θ a (z) = e a z+1 z-1 , then F U maps K Θa unitarily onto L 2 (0, a); the reproducing kernel k Θa (•, λ) (λ ∈ D) is mapped (up to a nonzero constant) into e iµt , where µ = -φ -1 (λ). Note that |Θ a (λ n )| = e -a Im µn and thus sup n≥1 |Θ a (λ n )| < 1 if and only if inf n≥1 Im µ n > 0.
Therefore, the previous results can then be adapted to the case of exponentials e iµnt , with inf n≥1 Im µ n > 0. Nevertheless we will see that the hypothesis inf n≥1 Im µ n > 0 can be removed. Proof: Consider the sequence (µ * n ) n≥1 defined as follows:

µ * n = µ n if Im µ n ≥ 0, µ n if Im µ n < 0.
We will prove that

(e iµnt ) n≥1 is overcomplete in L 2 (0, a) ⇐⇒ (e iµ * n t ) n≥1 is overcomplete in L 2 (0, a). (2) 
First we remark that for every infinite subset Λ of N * , considering the anti-linear bijection T defined by T f (t) = f (-t + a) on L 2 (0, a), we have:

(e iµnt ) n∈Λ is overcomplete in L 2 (0, a) ⇐⇒ (e iµnt ) n∈Λ is overcomplete in L 2 (0, a). (3) 
If {n ≥ 1 : Im µ n < 0} is finite or {n ≥ 1 : Im µ n ≥ 0} is finite, (2) follows from (3) and that fact that adding or deleting a finite set does not change the overcompleteness property. Otherwise, (2) follows from (3) and the fact that the union of two overcomplete sequences is overcomplete. Let δ > 0. Now, considering the unitary operator U on L 2 (0, a) defined by U f (t) = e iδt f (t), we have:

(e iµ * n t ) n∈Λ is overcomplete in L 2 (0, a) ⇐⇒ (e i(µ * n +δ)t ) n∈Λ is overcomplete in L 2 (0, a). (4) 
Since inf n≥1 Im(µ * n + δ) > 0, by Theorem 4.2 and the translation of our problem into the language of model spaces, we get:

(e i(µ * n +δ)t ) n∈Λ is overcomplete in L 2 (0, a) ⇐⇒ sup n≥1 |µ * n + δ| < ∞ ⇐⇒ sup n≥1 |µ n | < ∞.
Using ( 2) and ( 4), the proof of the theorem follows.

5 Overcompleteness in K p Θ in terms of σ(Θ) and E Θ

The following result shows that we may assume, in the sequel, that Θ is an inner function which is not a finite Blaschke product and thus σ(Θ) ∩ T = ∅.

Proposition 5.1 Let p ∈ (1, ∞), (λ n ) n≥1 be an infinite sequence of pairwise distinct points in D and let Θ be a finite Blaschke product. Then (k Θ (., λ n )) n≥1 is overcomplete in K p Θ . Proof: Set Ω = {z ∈ C : |z| < R} where 1 R = max{z ∈ D : Θ(z) = 0} < 1 and X = K q Θ where p and q are conjugate. For λ ∈ D, the evaluation E λ on X can be identified with k Θ (•, λ). Since clos({λ n :

n ≥ 1}) ⊂ {z ∈ C : |z| ≤ 1} ⊂ Ω, by Proposition 3.1, (k Θ (., λ n )) n≥1 is overcomplete in K p Θ .
Proposition 5.2 Let p ∈ [2, ∞), (λ n ) n≥1 be an infinite sequence of pairwise distinct points in D.

We have the following sequence of implications:

(SC) inf n≥1 dist(λ n , σ(Θ) ∩ T) > 0 ⇓ (OV C) (k Θ (., λ n )) n≥1 is overcomplete in K p Θ ⇓ (N C 1 ) (k Θ (., λ n )) n≥1 is strongly relatively compact in K p Θ ⇓ (N C 2 ) sup n≥1 1 -|Θ(λ n )| 2 1 -|λ n | 2 < ∞ ⇓ (N C 3 ) inf n≥1 dist(λ n , T \ E Θ ) > 0
Moreover, for p ∈ (1, 2), (SC) ⇒ (OV C) ⇒ (N C 1 ) remains true.

Proof: Let p ∈ (1, ∞). Set Ω = C \ (σ(Θ) ∪ { 1 z : Θ(z) = 0}
) and X = K q Θ where p and q are conjugate. Using Proposition 2.1, X embeds continuously into Hol(Ω). Then (SC) =⇒ (OV C) and (OV C) =⇒ (N C 1 ) applying respectively Proposition 3.1 and Theorem 3.2. Now take

p ∈ [2, ∞). If (N C 1 ) is satisfied, then, obviously, sup n≥1 k Θ (•, λ n ) p < ∞. Since p ≥ 2 we have: sup n≥1 1 -|Θ(λ n )| 2 1 -|λ n | 2 sup n≥1 k Θ (., λ n ) 2 2 ≤ sup n≥1 k Θ (., λ n ) 2 p < ∞,
which implies that (N C 2 ) is satisfied. To prove that (N C 2 ) =⇒ (N C 3 ), take ζ 0 be a limit point of (λ n ) n≥1 in T. Then since lim inf

z∈D z→ζ 0 1 -|Θ(z)| 2 1 -|z| 2 ≤ sup n≥1 1 -|Θ(λ n )| 2 1 -|λ n | 2 < ∞, it follows from Proposition 2.2 that ζ 0 ∈ E Θ . Since T \ E Θ is closed, there exists δ > 0 such that for every n, dist(λ n , T \ E Θ ) ≥ δ.
In the case where E Θ = T \ σ(Θ), Proposition 5.2 provides a characterization of overcomplete sequence of reproducing kernels in K p Θ for p ≥ 2. The next theorem provides an explicit class of inner functions Θ for which E Θ = T \ σ(Θ). First, recall that a sequence (α n ) n≥1 ⊂ D is a Stolz sequence if there exists a finite subset e of T and a positive constant c > such that for all n ≥ 1, dist(α n , e) ≤ c dist(α n , T). If (α n ) n≥1 is a Stolz sequence and ζ is a limit point of (α n ) n≥1 then there exists a subsequence (α np ) p≥1 and a Stolz angle Note that k Θ (•, λ n ) strongly converges in K 2 Θ if λ n → ζ ∈ E Θ nontangentially [START_REF] Ahern | Radial limits and invariant subspaces[END_REF][START_REF] Sarason | Sub-Hardy Hilbert spaces in the unit disk[END_REF]. Now, assuming that the sequence (λ n ) n≥1 is a Stolz sequence, the conditions (N C 1 ), (N C 2 ) and (N C 3 ) are obviously equivalent with p = 2.

∆ ζ := {z ∈ D : | arg(1 -ζz)| < α, |z -ζ| < ρ} (0 < α < π 2 , ρ < 2 cos α) , such that (α np ) p≥1 ⊂ ∆ ζ
We now give a characterization of overcomplete sequences of reproducing kernels (k Θ (•, λ n )) n≥1 for some particular Blaschke products Θ whose sets of zeros are not necessarily Stolz sequences. If Θ is inner and α ∈ D, then we define Θ α = Θ-α 1-αΘ . Then Θ α is also an inner function and according to theorem of Frostman, for almost all α ∈ D, it is actually a Blaschke product.

Proposition 2 . 2

 22 Let Θ be an inner function and ζ 0 ∈ T. Then the following assertions are equivalent: (i) Θ has an angular derivative in the sense of Carathéodory at ζ 0 .

Theorem 4 . 1

 41 Let p ∈ (1, ∞) and (λ n ) n≥1 an infinite sequence of pairwise distinct points in D. The sequence (k λn ) n≥1 is overcomplete in H p if and only if sup n≥1 |λ n | < 1.

  there exists a positive constant c such that k Θ (•, λ n ) p p ≥ c k λn p p . It follows that sup n≥1 k λn p < ∞, and hence sup n≥1 |λ n | < 1, as shown in the proof of Theorem 4.1.

Theorem 4 . 3

 43 Let a > 0 and (µ n ) n≥1 be an infinite sequence of pairwise distinct points in C.Then (e iµnt ) n≥1 is overcomplete in L 2 (0, a) if and only if sup n≥1 |µ n | < ∞.

Theorem 5 . 1

 51 and lim p→+∞ α np = ζ. In other words, this means that (α np ) p≥1 converges nontangentially to ζ. Let p ∈ [2, ∞) and (λ n ) n≥1 be an infinite sequence of pairwise distinct points of D. Let Θ be an inner function with the canonical decomposition[START_REF] Ahern | Radial limits and invariant subspaces[END_REF]. If (a n ) n≥1 is a Stolz sequence and if µ has a finite support, then(k Θ (•, λ n )) n≥1 is overcomplete in K p Θ ⇔ (SC) ⇔ (N C 1 ) ⇔ (N C 2 ) ⇔ (N C 3 ). Proof: By Proposition 5.2, it is sufficient to prove that T \ E Θ = T ∩ σ(Θ), or, equivalently, that T \ σ(Θ) = E Θ . The inclusion T \ σ(Θ) ⊂ E Θ istrue for any inner function Θ and follows from the definitions of σ(Θ) and E Θ . Note also thatE Θ = E B ∩ E Sµ and σ(Θ) = σ(B) ∪ σ(S µ ).Therefore it suffices to prove that E B ⊂ T \ σ(B) andE Sµ ⊂ T \ σ(S µ ). Write µ = λ∈supp(µ) c λ δ λwhere supp(µ) is the support of µ, c λ > 0 and δ λ is the Dirac measure at λ.If ζ 0 ∈ E Sµ , then T dµ(t) |tζ 0 | 2 < ∞, that is, λ∈supp(µ) c λ |λζ 0 | 2 < ∞. Since the support of µ is finite, we conclude that inf λ∈supp(µ) |λζ 0 | inf λ∈σ(Sµ) |λζ 0 | > 0, and thus ζ 0 ∈ T \ σ(S µ ). It remains to check that E B ⊂ T \ σ(B). Take ζ 0 ∈ E B ∩ σ(B). Since, ζ 0 ∈ E B ,using Proposition 2.2, we know that B has a nontangential limit at ζ 0 with |B(ζ 0 )| = 1. Moreover, since ζ 0 ∈ σ(B) ∩ T, there exists a sequence (α n ) n≥1 which tends to ζ 0 and satisfying B(α n ) = 0 for n ≥ 1. Since (α n ) n≥1 is a Stolz sequence, it follows that B(ζ 0 ) = 0, which is absurd.
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Proposition 5.3 Let p ∈ [2, ∞) and (λ n ) n≥1 is an infinite sequence of pairwise distinct points of D. Let Θ be a Blaschke product and suppose that there exists α ∈ D and a singular inner function S with finite support such that Θ = S α . Then

Proof: It is not difficult to check that the formula U (f ) = 1 -|α| 2 f 1-αΘ defines a unitary operator U :

Moreover it follows from the very definition of the spectrum and Proposition 2.2 that E S = E Θ and σ(S)∩T = σ(Θ) ∩ T. Applying Theorem 5.1, we conclude the proof of the proposition.

Let S(z) = e z-1 z+1 , a singular inner function whose support is {-1}. For almost every α ∈ D, S α is a Blaschke product. An easy calculation shows that the set of zeros of S α , say (a n ) n≥1 , satisfies the equation

which means that the sequence (a n ) n≥1 is on a circle tangent to T and thus (a n ) n≥1 is not a Stolz sequence. Theorem 5.1 does not apply; however, Proposition 5.3 gives a criterion for overcompleteness in K Sα .

In the introduction we have already mentioned the links between overcompleteness and minimality and uniform minimality. The next theorem gives the precise statements.

Θ if and only if it has no infinite subsequence which is minimal.

The sequence

Θ if and only if it is bounded and has no infinite subsequence which is uniformly minimal.

Proof:

1. By definition, an overcomplete sequence in a Banach space does not contain any infinite minimal subsequence. Conversely, if (k Θ (•, λ n )) n≥1 is not overcomplete, there exists an infinite subsequence (k Θ (•, λ np )) p≥1 which is not complete in K p Θ . By the Hahn-Banach theorem, there exists g ∈ K q

Θ \ {0} such that g(λ np ) = 0, p ≥ 1. Now, if m p is the multiplicity of the zero at λ np of g, the function Ψ np defined by Ψ np = g (b λn p ) mp , with b λn p (z) = z-λn p 1-λn p z , belongs to K q Θ ([15], p. 211). By construction ( Ψn p Ψn p (λn p ) ) p≥1 is a biorthogonal sequence of (k Θ (•, λ np )) p≥1 . Therefore, the infinite subsequence (k Θ (•, λ np )) p≥1 is minimal. 2. By Theorem 3.1, if (x n ) n≥1 is a bounded sequence in a reflexive Banach space which does not contain any uniformly minimal sequence is necessarily strongly relatively compact. Conversely, first note that

Therefore, there exists c > 0 such that inf

is bounded and cannot have a uniformly minimal infinite subsequence.

By means of examples we obtain further information on the links between some of the conditions considered.

Proposition 5. [START_REF] Douglas | Cyclic vectors and invariant subspaces for the backward shift operator[END_REF] The condition (N C 3 ) is strictly weaker than (N C 2 ); furthermore, the condition (N C 1 ) is strictly weaker than (SC).

Proof: We first construct an example where (SC) is not valid but (N C 1 ) is satisfied. Let

2 n , (a n ) n≥1 is a Blaschke sequence. Let (λ n ) n≥1 be a Blaschke sequence which converges to -1 and which satisfies the Stolz condition. Denote by B the Blaschke product associated with (λ n ) n≥1 . Since σ(B) ∩ T = {-1} and lim n→∞ a n = -1, applying Theorem 5.1, it follows that (k B (•, a n )) n≥1 is not overcomplete in K 2 B . Therefore there exists a subsequence (a np ) p≥1 of (a n ) n≥1 such that (k B (•, a np )) p≥1 is not complete in K 2 B . By Lemma 97 of [START_REF] Nikolski | Treatise on the shift operator[END_REF], this is equivalent to the condition that ker T BΘ1 = {0} where Θ 1 is the Blaschke product associated with (a np ) p≥1 . By Coburn's lemma [START_REF] Nikolski | Treatise on the shift operator[END_REF]Lemma 43,p. 318], it follows that {0} = ker T * BΘ1 = ker T Θ1B . Applying once more Lemma 97 of [START_REF] Nikolski | Treatise on the shift operator[END_REF], we deduce that the sequence (k

But this convergence follows from the estimate 1 -|a np | 2 Moreover, if one takes Θ 1 defined as previously and λ n = a n , then Θ 1 (λ n ) = 0, which implies that (N C 2 ) does not hold, whereas (N C 3 ) is valid since E Θ1 = T.