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Introduction

A canonical orthonormal basis in the Hilbert space L 2 (-π, π) is formed by the exponentials exp int, n ∈ Z. Starting with the works of Paley-Wiener ( [START_REF] Paley | Fourier Transforms in the Complex Domain[END_REF]) and Levinson ([5]), a whole direction of research has investigated other families of exponentials, looking for properties as completeness, minimality, or being an unconditional basis. In this context, functional models have been used in [START_REF] Hruščev | Unconditional bases of exponentials and of reproducing kernels[END_REF], together with some other tools from operator theory on a Hilbert space. The model spaces are subspaces of the Hardy space H 2 , invariant under the adjoints of multiplications; their theory is connected to dilation theory for contractions on Hilbert spaces (see [START_REF] Sz-Nagy | Harmonic analysis of operators on Hilbert spaces[END_REF], [START_REF] Nikolski | Treatise on the shift operator[END_REF]). The approach has been proved fruitful; it has allowed the recapture of all the classical results and has lead to many generalizations.

We are interested in investigating, along the line of research from [START_REF] Hruščev | Unconditional bases of exponentials and of reproducing kernels[END_REF], the case when the basis is asymptotically close to an orthogonal one (see definition below). This is a particular case of unconditional basis, where more rigidity is required, but the conclusions obtained are usually more precise. A basic result appears in Volberg's paper [START_REF] Volberg | Two remarks concerning the theorem of S. Axler[END_REF], where it is shown that the usual Carleson condition for an interpolation set can be adapted to obtain a characterization of asymptotically orthonormal sequences of reproducing kernels; 1 further developments can be found in [START_REF] Fricain | Bases of reproducing kernels in model spaces[END_REF]. We intend to provide a comprehensive treatment of this subject, emphasizing the parallel with unconditional bases.

The plan of the paper is the following. The next two sections contain preliminary material. The case of reproducing kernels for the whole Hardy space is treated in Section 4;

we give an equivalent form of Volberg's condition and prove some related results. Section 5 investigates the relevance of Volberg's condition for model spaces; the main results are Theorem 5.2 and Proposition 5.5, which allow the characterization of asymptotically orthonormal sequences of reproducing kernels. Perturbation results are obtained in Section 6. In the last two sections we discuss the important case of exponentials, as well as some other examples.

Preliminaries

For most of the definitions and facts below, one can use [START_REF] Nikolski | Treatise on the shift operator[END_REF] as a main reference.

Let H be a complex Hilbert space. A sequence (x n ) n≥1 ⊂ H is called:

-complete if Span{x n : n ≥ 1} = H; -minimal if for all n ≥ 1, x n ∈ Span{x m : m = n}; -Riesz if there are positive constants c, C verifying, for all finite complex sequences

(a n ) n≥1 , c n≥1 |a n | 2 ≤ n≥1 a n x n 2 ≤ C n≥1 |a n | 2 . ( 2.1) 
A Riesz sequence is minimal, but the converse is in general not true.

The Gram matrix of the sequence (x n ) n≥1 is Γ = ( x n , x m ) n,m≥1 . Riesz sequences are characterized by the fact that Γ defines an invertible operator on ℓ 2 .

The basic Hilbert space in which our objects live is the Hardy space H 2 of the open unit disc D; this is the Hilbert space of analytic functions f (z) = n≥0 a n z n defined in the unit

disc D = {z ∈ C | |z| < 1}, such that n≥0 |a n | 2 < ∞.
Alternately, it can be identified with a closed subspace of the Lebesgue space L 2 (T) on the unit circle, by associating to each analytic function its radial limit. The algebra of bounded analytic functions on D is denoted by H ∞ . Any φ ∈ H ∞ acts as a multiplication operator on H 2 , that we will denote by T φ .

Evaluations at points λ ∈ D are bounded functionals on H 2 and the corresponding re-

producing kernel is k λ (z) = 1 1-λz ; thus, f (λ) = f, k λ . If φ ∈ H ∞ , then k λ is an eigenvector for T * φ , and T * φ k λ = φ(λ)k λ . By normalizing k λ we obtain h λ = k λ k λ = 1 -|λ| 2 k λ .
Suppose now Θ is an inner function. We define the corresponding model space by the formula K Θ = H 2 ⊖ ΘH 2 ; the orthogonal projection onto K Θ is denoted by P Θ . In K Θ the reproducing kernel for a point λ ∈ D is the function

k Θ λ (z) = 1 -Θ(λ)Θ(z) 1 -λz (2.2)
and the normalized reproducing kernel

h Θ λ (z) = 1 -|λ| 2 1 -|Θ(λ)| 2 k Θ λ (z). (2.3)
Note that, according to (2.2), we have the orthogonal decomposition 

k λ = k Θ λ + ΘΘ(λ)k λ . (2.4) Suppose Λ = (λ n ) n≥1 is a Blaschke sequence of distinct points in D (which means that n≥1 1 -|λ n | < ∞).
δ(Λ) = inf n≥1 |B n (λ n )| > 0;
we will write in this case Λ ∈ (C) and say that Λ is a Carleson sequence. Also, the sequence

Λ is called separated if inf n =m |b λn (λ m )| > 0.
In connection with Blaschke products, we will have the opportunity to use the following

two formulas. If λ, µ ∈ D, then λ -µ 1 -λµ 2 = 1 - (1 -|λ| 2 )(1 -|µ| 2 ) |1 -λµ| 2 ; (2.5)
the denominator in the right hand side is given by

|1 -λµ| 2 = (1 -|λµ|) 2 + 4|λµ| sin 2 θ 2 , (2.6) 
where θ ∈ (-π, π] is the argument of λµ.

The following two Lemmas are proved in [START_REF] Hruščev | Unconditional bases of exponentials and of reproducing kernels[END_REF], II.

Lemma 2.1 If (h Θ λn ) n≥1 is a minimal but not complete sequence in K Θ , then, for all µ ∈ D \ Λ, {h Θ µ , h Θ λn : n ≥ 1} is still a minimal sequence. Lemma 2.2 If Θ 1 , Θ 2 are two inner functions, then dist( Θ1 Θ 2 , H ∞ ) = P Θ 1 T Θ 2 |K Θ 1 ,
and this quantity is strictly smaller than 1 if and only if P Θ 2 |K Θ 1 is an isomorphism onto its image.

We end the preliminaries with a lemma pertaining to Riesz sequences of normalized reproducing kernels.

Lemma 2.3 Let (λ n ) n≥1 be a Blaschke sequence of distinct points in D, B the corresponding Blaschke product, and Θ an inner function. Suppose that (h Θ λn ) n≥1 is a Riesz sequence in K Θ , and denote by c, C the corresponding constants appearing in (2.1). Then

P B T Θ |K B ≤ C c sup n≥1 |Θ(λ n )|
Proof. The subspace K B is spanned by the eigenvectors h λn , n ≥ 1 of T * Θ , and T * Θ h λn = Θ(λ n )h λn . Take a sum (with a finite number of nonzero terms) n≥1 a n h λn ; we have

n≥1 a n h λn 2 ≥ c n≥1 |a n | 2 and T * Θ n≥1 a n h λn 2 = n≥1 Θ(λ n )a n h λn 2 ≤ C n≥1 |Θ(λ n )| 2 |a n | 2 ≤ C(sup n≥1 |Θ(λ n )|) 2 n≥1 |a n | 2 , whence T * Θ n≥1 a n h λn 2 ≤ (sup n≥1 |Θ(λ n )|) 2 C c n≥1 a n h λn 2 .
Since (P B T Θ |K B ) * = T * Θ |K B , the lemma is proved.

Asymptotically orthonormal bases

We will say that (x n ) n≥1 is an asymptotically orthonormal sequence in H (abbreviated AOS) if there exists N 0 ∈ N, such that for all N ≥ N 0 , there are constants

c N , C N > 0 verifying c N n≥N |a n | 2 ≤ n≥N a n x n 2 ≤ C N n≥N |a n | 2 , (3.1) 
and lim N →∞ c N = 1 = lim N →∞ C N .

If N 0 = 1, then one says that (x n ) n≥1 is an asymptotically orthonormal basic sequence (abbreviated AOB). Obviously this is equivalent to (x n ) n≥1 being an AOS as well as a Riesz sequence.

The following simple lemma is a basic tool. (i) (x n ) n≥1 is an AOB;

Lemma 3.1 If (x n ) n≥1 ⊂ H, then (x n ) n≥1 is
(ii) there exist a separable Hilbert space K, an orthonormal basis (e n ) n≥1 ⊂ K and U, K :

K → H, U unitary, K compact, U + K left invertible, such that (U + K)(e n ) = x n ;
(iii) the Gram matrix Γ associated to (x n ) n≥1 defines a bounded invertible operator of the form I + K, with K compact.

One can obtain complete AOB's by slightly perturbing orthonormal bases; this fact is made precise in the following lemma.

Proposition 3.3 Let H be a Hilbert space, (x n ) n≥1 an orthonormal basis in H, and

(x ′ n ) n≥1 a sequence in H, such that n≥1 x n -x ′ n 2 < 1. Then (x ′ n ) n≥1 is a complete AOB in H.
Proof. Consider the operator Φ : H → H, defined by Φ(x n ) = x ′ n . The condition in the statement implies that I H -Φ is Hilbert-Schmidt, of norm strictly smaller than 1.

Thus Φ is of the form unitary plus compact and invertible; from Proposition 3.2 it follows that (x ′ n ) n≥1 is an AOB. On the other hand, since Φ is invertible, (x n ) n≥1 complete implies (x ′ n ) n≥1 complete.

It is worth to note the following relation between AOB's and Riesz sequences. 

Reproducing kernels and AOB's

Suppose Λ = (λ n ) n≥1 is a Blaschke sequence of distinct points in D. Since the reproducing kernels (k λn ) n≥1 are complete and minimal in K B , if (h λn ) n≥1 is an AOS, then it is also a complete AOB in K B . Such sequences are characterized by the following theorem of Volberg ([10]).

Theorem 4.1 The sequence (h λn ) n≥1 is a complete AOB in K B if and only if lim n→∞ |B n (λ n )| = 1. (4.1)
We will call henceforth (λ n ) n≥1 a Volberg sequence (and write (λ n ) ∈ (V )) if it satisfies the equivalent conditions of the preceding statement. Thus Volberg sequences correspond to AOS of normalized reproducing kernels.

A different characterization can be stated by using the Gram matrix. 

(i) (h λn ) n≥1 is a complete AOB in K B ; (ii) (Γ -I)e n → 0. Proof. (i)⇒(ii) By Proposition 3.2, (iii), it follows that Γ = I + K with K compact; since Ke n → 0, (Γ -I)e n → 0. (ii)⇒(i) By hypothesis (Γ -I)e n → 0. But (Γ -I)e n 2 = p =n,p≥1 |Γ n,p | 2 = p =n,p≥1 (1 -|λ n | 2 )(1 -|λ p | 2 ) |1 -λn λ p | 2 = p =n,p≥1 (1 -|b λp (λ n )| 2 )
(we have used (2.5)).

In particular, there is some N such that for n ≥ N we have (Γ -I)e n 2 < 1/2, and

therefore |b λp (λ n )| 2 > 1/2 if p or n are larger than N. Since the points λ n are distinct,
the whole sequence Λ is separated, and there exists ε > 0, such that

|b λp (λ n )| ≥ ε for all n = p. Therefore 1 -|b λp (λ n )| 2 ≥ -c log |b λp (λ n )| ≥ 0 for some c > 0. It follows that (Γ -I)e n 2 ≥ -c log |B n (λ n )| whence |B n (λ n )| → 1; by Volberg's Theorem it follows that (h λn ) n≥1 is a complete AOB in K B .
It has been proved in [START_REF] Fricain | Bases of reproducing kernels in model spaces[END_REF], Section 3 that Volberg sequences are stable with respect to "small" perturbations. More precisely, we have the following result.

Proposition 4.3 Let Λ = (λ n ) n≥1 , Λ ′ = (λ ′ n ) n≥1 be two sequences in D. If sup n≥1 |b λn (λ ′ n )| < 1, then Λ ∈ (V ) if and only if Λ ′ ∈ (V ).
We end this section with two propositions that help to clarify the geometry of Volberg sequences; they are suggested by corresponding results related to Carleson sequences (see [START_REF] Nikolski | Treatise on the shift operator[END_REF], VII.3). The first gives a geometric sufficient condition for Λ ∈ (V ).

Proposition 4.4 Suppose Λ = (λ n ) n≥1 is a sequence in D such that lim n→∞ |λ n | = 1 and |λ n | ≤ |λ n+1 | for all n ≥ 1. If γ := lim k→∞ 1 -|λ k+1 | 1 -|λ k | = 0, then Λ ∈ (V ). If, moreover, Λ ⊂ [0, 1), then Λ ∈ (V ) if and only if γ = 0. Proof. Fix ε ∈ (0, 1); since the sequence |λ n | is increasing, there exists N = N(ε) such that for all n > k ≥ N we have 1 -|λ n | 1 -|λ k | < ε. It follows that, if n > k ≥ N, we actually have 1 -|λ n | < ε n-k (1 -|λ k |), whence it follows that |b |λ k | (|λ n |)| = |λ n | -|λ k | 1 -|λ k λ n | ≥ 1 -ε n-k 1 + ε n-k . But it is easy to check that |b λ k (λ n )| ≥ |b |λ k | (|λ n |)|; therefore for all n, k ≥ N, n = k,
we have

|b λ k (λ n )| ≥ 1 -ε |n-k| 1 + ε |n-k| . By decomposing, for n > N, |B n (λ n )| = k≤N |b λ k (λ n )| n-1 k=N +1 |b λ k (λ n )| ∞ k=n+1 |b λ k (λ n )|, it follows that |B n (λ n )| ≥ k≤N |b λ k (λ n )| p≥1 1 -ε p 1 + ε p 2 . Therefore, log |B n (λ n )| ≥ 1≤k≤N log |b λ k (λ n )| + 2 p≥1 log 1 - 2ε p 1 + ε p ≥ 1≤k≤N log |b λ k (λ n )| + 2 p≥1 log(1 -2ε p ). But, if ε ∈ (0, 1 4 ), then log(1 -2ε p ) ≥ -4ε p and 2 p≥1 log(1 -2ε p ) ≥ -8ε 1-ε . Since lim n→∞ |λ n | = 1, it follows that, for any 1 ≤ k ≤ N, lim n→∞ |b λ k (λ n )| = 1. Thus, if N is sufficiently large, there exists C > 0 such that, for n ≥ N, log |B n (λ n )| ≥ -Cε; consequently, lim n→∞ |B n (λ n )| = 1. If Λ ∈ (0, 1), then 1 - 1 -λ k+1 1 -λ k = λ k+1 -λ k 1 -λ k ≥ λ k+1 -λ k 1 -λ k λ k+1 = b λ k (λ k+1 ) ≥ |B k (λ k )|. Therefore, if lim k→∞ |B k (λ k )| = 1, then lim k→∞ 1-λ k+1 1-λ k = 0.
Finally, we prove that changing the arguments can transform any Blaschke sequence in a Volberg one.

Proposition 4.5 Suppose (r n ) n≥1 is a sequence of distinct positive numbers, 0 < r n < 1,

such that n≥1 (1 -r n ) < ∞.
Then there exist t n ≥ 0 such that (r n e itn ) n≥1 ∈ (V ).

Proof. We will denote a n = 1r n ; thus n≥1 a n = A < ∞, and we may suppose that a n is a decreasing sequence.

Define

n k = min{n : n-1 p=1 a p ≥ A 1 -1 2 k }. Then n k ↑ ∞ when k → ∞. We put then b n+1 = ka n if n k ≤ n < n k+1 (and b 1 = 1). Then n≥n 1 b n+1 = k≥1 n k ≤n<n k+1 b n+1 = k≥1 k n k ≤n<n k+1 a n ≤ k≥1 k n k ≤n a n ≤ k≥1 k A 2 k ,
the last inequality being a consequence of the definition of n k . Therefore n≥1 b n < ∞, and a n /b n+1 → 0; since a n is decreasing, we also have a n+1 /b n+1 → 0 Since the property of being a Volberg sequence is not changed by adding a finite number of distinct points, we may suppose that n≥1 b n < π/2. We will then define t n = n k=1 b k , and λ n = r n e itn .

In order to show that (λ n ) n≥1 ∈ (V ), we have to show, by Theorem 4.2, that

S n = k =n (1 -|λ k | 2 )(1 -|λ n | 2 ) |1 -λk λ n | 2 → 0 for n → ∞. Since (1 -|λ k | 2 )(1 -|λ n | 2 ) ≤ 4a k a n , (1 -|λ k λ n |) 2 = (a n + a k -a n a k ) 2 ≥ a 2 n , 4|λ k λ n | sin 2 t k -t n 2 ≥ c(t k -t n ) 2
(c > 0 being a positive constant), formula (2.6) implies that, for some C > 0,

(1 -|λ k | 2 )(1 -|λ n | 2 ) |1 -λk λ n | 2 ≤ C a n a k a 2 n + (t n -t k ) 2 .
Therefore

S n ≤ C k =n a n a k a 2 n + (t n -t k ) 2 = C k<n a n a k a 2 n + (t n -t k ) 2 + k>n a n a k a 2 n + (t n -t k ) 2 = C k<n a n b k+1 a 2 n + (t n -t k ) 2 + k>n a n b k a 2 n + (t n -t k ) 2 .
If we define f (x) = an a 2 n +(x-tn) 2 , then we can write the last inequality as

S n ≤ C k<n (t k+1 -t k )f (t k ) + k>n (t k -t k-1 )f (t k ) .
A glimpse of the graph of f shows that this last quantity can be majorized by

t n-1 -∞ f (x) dx + ∞ t n+1 f (x) dx + b n f (t n-1 ) + b n+1 f (t n+1 ); Since b n f (t n-1 ) = bnan a 2 n +b 2 n , b n+1 f (t n+1 ) = b n+1 an a 2 n +b 2 n+1 , t n-1 -∞ f (x) dx = π/2 -arctan(b n /a n ), and ∞ t n+1 f (x) dx = π/2 -arctan(b n+1 /a n ),
all these quantities tend to 0 when n → ∞. Thus S n → 0; the proof is finished.

Projection onto a model space

Suppose now that Θ is an inner function, while Λ is a Blaschke sequence of distinct points in D. We are interested in the AOB property for the corresponding sequences of normalized reproducing kernels (h Θ λn ) n≥1 , as defined by (2.3). It turns out that Volberg's condition (4.1) is necessary also in this context, as is shown by the next result ([3], Section 3). Below we will give a simpler proof.

Proposition 5.1 If (h Θ λn ) n≥1 is an AOS, then (λ n ) n≥1 ∈ (V ).
Proof. By applying formula (2.5), we have

|Γ Θ n,p | 2 = |Γ n,p | 2 |1 -Θ(λ n )Θ(λ p )| 2 (1 -|Θ(λ n )| 2 )(1 -|Θ(λ p )| 2 ) = |Γ n,p | 2 1 -|b Θ(λn) (Θ(λ p ))| 2 ≥ |Γ n,p | 2 . Since Proposition 3.2, (iii), implies (Γ Θ -I)e n 2 = p =n |Γ Θ n,p | 2 → 0, it follows that (Γ -I)e n 2 = p =n |Γ n,p | 2 → 0. Theorem 4.2 implies then that (h λn ) n≥1 is an AOB in K B .
We are interested in partial converses to Proposition 5.1. In order to obtain more satisfactory results, it is natural, in view of the theory of Riesz bases developed in [START_REF] Hruščev | Unconditional bases of exponentials and of reproducing kernels[END_REF], to work under the supplementary condition sup n≥1 |Θ(λ n )| < 1.

Theorem 5.2 Suppose sup n≥1 |Θ(λ n )| < 1. If (λ n ) n≥1 ∈ (V ) then either (i) (h Θ λn ) n≥1 is an AOB, or (ii) there exists p ≥ 2 such that (h Θ λn ) n≥p is a complete AOB in K Θ .
Proof. The condition on (h λn ) n≥1 implies the existence of positive constants (c

N ) N ≥N 0 , (C N ) N ≥N 0 , tending to 1, such that c N n≥N |a n | 2 ≤ n≥N a n h λn 2 ≤ C N n≥N |a n | 2 . ( 5.1) 
According to (2.4), we have, applying (5.1),

n≥N a n h Θ λn 2 = n≥N a n 1 -|Θ(λ n )| 2 h λn 2 - n≥N a n Θ(λ n ) 1 -|Θ(λ n )| 2 h λn 2 ≤ C N n≥N |a n | 2 1 -|Θ(λ n )| 2 -c N n≥N |a n | 2 |Θ(λ n )| 2 1 -|Θ(λ n )| 2 = C N n≥N |a n | 2 + (C N -c N ) n≥N |a n | 2 |Θ(λ n )| 2 1 -|Θ(λ n )| 2 ≤ C N n≥N |a n | 2 + (C N -c N ) sup n |Θ(λ n )| 2 1 -|Θ(λ n )| 2 n≥N |a n | 2 . Since C N → 1, C N -c n → 0, while sup n |Θ(λn)| 2 1-|Θ(λn)| 2 < ∞, we can find constants C ′ N → 1, such that n≥N a n h Θ λn 2 ≤ C ′ N n≥N |a n | 2 .
A similar argument shows the existence of c

′ N → 1, such that n≥N a n h Θ λn 2 ≥ c ′ N n≥N |a n | 2 .
It follows that (h Θ λn ) n≥1 is an AOS; hence there exists m ≥ 1 such that (h Θ λn ) n≥m is an AOB.

Let p be the smallest positive integer with the property that (h Θ λn ) n≥p is an AOB. If p = 1 we are in case (i) of the statement. Otherwise, Lemmas 3.1 and 2.1 imply that (h Θ λn ) n≥p is complete in K Θ . The theorem is thus proved.

Corollary 5.3 Suppose that sup n≥1 |Θ(λ n )| < 1 and Λ ∈ (V ). Then (h Θ λn ) n≥1 is an AOB if and only if it is minimal.
Case (ii) in Theorem 5.2 corresponds to (h Θ λn ) n≥1 not minimal; an example can be obtained by taking Θ to be a proper inner divisor of B. Minimality of sequences of reproducing kernels has been investigated in [START_REF] Boricheva | Geometric Properties of Projections of Reproducing Kernels on z * -Invariant Subspaces of h 2[END_REF]; using Theorem 4.7 therein, we obtain the following characterization.

Corollary 5.4 Suppose that sup n≥1 |Θ(λ n )| < 1. Then (h Θ λn ) n≥1 is an AOB if and only if (λ n ) n≥1 ∈ (V ) and there exists f ∈ H ∞ , f = 0, such that Θ + Bf ∞ ≤ 1.
It is instructive to compare Corollary 5.4 with a result in [START_REF] Nikolski | Treatise on the shift operator[END_REF], VIII.6, where it is proved that under the hypothesis sup n≥1 |Θ(λ n )| < 1, (h Θ λn ) n≥1 is a Riesz sequence if and only if Λ ∈ (C) and dist(Θ B, H ∞ ) < 1. This last condition is obviously stronger than the last requirement of Corollary 5.4. On the other hand, Volberg's condition is much more restrictive than Carleson's.

We can say more in case Θ is not a Blaschke product. Proposition 5.5 Let Θ be an inner function with a nontrivial singular part, and suppose 

sup n≥1 |Θ(λ n )| < 1. If the sequence (h Θ λn ) n≥1 is an AOB in K Θ ,
P B (N) T Θ |K B (N) ≤ (C N /c N ) 1/2 η. Since C N /c N → 1, we may find N ∈ N, such that P B (N) T Θ |K B (N) < 1,
which, according to Lemma 2.2, implies that P Θ |K B (N) is an isomorphism on its image. Now, if we define Θ ′ = βS 1/2 , Θ ′ is also an inner function, and

|Θ ′ (λ n )| ≤ |β(λ n )| 1/2 |S(λ n )| 1/2 = |Θ(λ n )| 1/2 ≤ η 1/2 .
If we apply the same argument to Θ ′ , it follows that we can find N ∈ N, such that both P Θ |K B (N) and P Θ ′ |K B (N) are isomorphisms on their images.

But we have

P Θ ′ |K B (N) = (P Θ ′ |K Θ )(P Θ |K B (N) ).
The operator on the left is one-to-one, while the image of (P Θ |K B (N) ) is closed. Therefore this image cannot intersect Ker(P Θ ′ |K Θ ), which is infinite dimensional. But the image of (P Θ |K B (N) ) is the space spanned by h Θ λn for n ≥ N; it follows that the space spanned by all the h Θ λn (n ≥ 1) also has infinite codimension.

In this case one can improve Corollary 5.4.

Corollary 5.6 Suppose that Θ has a nontrivial singular part and sup n≥1 |Θ(λ n )| < 1. The following assertions are equivalent:

(i) Λ ∈ (V ); (ii) (h Θ λn ) n≥1 is an AOB.
Moreover, in this case, Span{h Θ λn : n ≥ 1} has infinite codimension in K Θ .

Proof. If Λ ∈ (V ), Proposition 5.5 shows that we are in Case (i) of Theorem 5.2; consequently (h Θ λn ) n≥1 is an AOB. The converse is contained in Proposition 5.1.

Stability of AOB's

We will next study the stability of AOB's with respect to small perturbations.

Theorem 6.1 Suppose that sup n≥1 |Θ(λ n )| < 1 and (h Θ λn ) n≥1 is an AOB. If Λ ′ = (λ ′ n ) n≥1 is a sequence of distinct points in D that satisfies lim sup n→∞ |b λn (λ ′ n )| < 1 -dist(Θ B, H ∞ ) 1 + dist(Θ B, H ∞ ) , (6.1 
)

then (h Θ λ ′ n ) n≥1 is an AOB.
Proof. Fix N ≥ 1, and define

γ n =    λ n if n < N, λ ′ n if n ≥ N;
and Φ the Blaschke product associated to (γ n ) n≥1 . Proposition 5.1 implies that Λ ∈ (V ), whence, by Proposition 4.3, Λ ′ and (γ n N ) . Suppose C N and c N are the constants associated to Λ ′ as in 3.1, while

) n≥1 are both Volberg sequences. If g, h ∈ H ∞ , then the equality Θ Φ -gh = Θ B(B Φ -g) + (Θ B -h)g implies Θ Φ -gh ∞ ≤ B Φ -g ∞ + (Θ B -h)g ∞ , which shows that dist(Θ Φ, H ∞ ) ≤ dist(Θ B, H ∞ ) + (1 + dist(Θ B, H ∞ )) dist(B Φ, H ∞ ). Now, if B (N ) = n≥N b λn , Φ (N ) = n≥N b λ ′ n , then B Φ = B (N ) Φ (
ε N = sup n>N |b λn (λ ′ n )|; one has then obviously sup n≥N |B (N ) (λ ′ n )| ≤ ε N . Applying Lemmas 2.2 and 2.3, it follows that dist(B Φ, H ∞ ) = dist(B (N ) Φ (N ) , H ∞ ) = P Φ (N) T B (N) |K Φ (N) ≤ ε N (C N /c N ) 1/2 . Consequently, dist(Θ Φ, H ∞ ) ≤ dist(Θ B, H ∞ ) + (1 + dist(Θ B, H ∞ ))ε N (C N /c N ) 1/2 .
The hypothesis implies that, for N sufficiently large, 

ε N (C N /c N ) 1/2 < 1-dist(Θ B,H ∞ ) 1+dist(Θ B,H ∞ ) and therefore dist(Θ Φ, H ∞ ) < 1. There exists thus f ∈ H ∞ , f = 0, such that Θ -Φf ∞ < 1, and therefore sup n≥1 |Θ(γ n )| ≤ dist(Θ Φ, H ∞ ) < 1.
(h Θ λn ) n≥1 is an AOB. If Λ ′ = (λ ′ n ) n≥1 is a sequence of distinct points in D that satisfies lim sup n→∞ |b λn (λ ′ n )| < 1 -lim sup n→∞ |Θ(λ n )| 1 + lim sup n→∞ |Θ(λ n )| , then (h Θ λ ′ n ) n≥1 is an AOB.
Proof. By Proposition 4.3, Λ ′ ∈ (V ). On the other hand,

Θ(λ ′ n ) -Θ(λ n ) b λn (λ ′ n ) ≤ Θ -Θ(λ n ) b λn ∞ ≤ 1 + |Θ(λ n )|, whence |Θ(λ ′ n )| ≤ |Θ(λ n )| + (1 + |Θ(λ n )|)|b λn (λ ′ n )| < 1. Corollary 5.6 implies that (h Θ λ ′ n ) n≥1 is an AOB.
It is also possible to complement these results by studying the completeness of the perturbed sequence. As concerns the effect of small perturbations on Riesz basis, the following theorem was proved in [START_REF] Fricain | Bases of reproducing kernels in model spaces[END_REF], Theorem 3.1.

Theorem 6.3 Suppose that sup n≥1 |Θ(λ n )| < 1. If (h Θ λn ) n≥1 is a Riesz basis in K Θ , then there exists ε = ε(Θ, Λ) < 1 such that for all sequences Λ ′ = (λ ′ n ) n≥1 in D satisfying |b λn (λ ′ n )| ≤ ε, we have (h Θ λ ′ n ) n≥1 is a Riesz basis in K Θ .
As a consequence of Theorems 6.1 and 6.3, we obtain a similar result concerning complete AOB's.

Proposition 6.4 Suppose that sup n≥1 |Θ(λ n )| = η < 1. If (h Θ λn ) n≥1 is a complete AOB in K Θ , then there exists ε = ε(Θ, Λ) < 1 such that for all sequences Λ ′ = (λ ′ n ) n≥1 in D satisfying |b λn (λ ′ n )| ≤ ε, we have (h Θ λ ′ n ) n≥1 is a complete AOB in K Θ .
A few words are in order concerning the different stability constants appearing in this section. The analogue for Riesz sequences of Theorem 6.1 appears in [START_REF] Fricain | Bases of reproducing kernels in model spaces[END_REF], Theorem 3.3.

The right hand side of (6.1) is replaced therein by δ(Λ) 6 8

1 -dist(Θ B, H ∞ ) 1 + dist(Θ B, H ∞ ) .
For AOB's, one should have expected a similar result, with δ(Λ) replaced by 1; Theorem 6.1 is therefore a sensible improvement.

As concerns completeness, there exists also an explicit upper bound for the constant ε(Θ, Λ) which appears in Theorem 6.3; namely, we must have:

ε < min{ δ 2 , 1 -sup n≥1 |Θ(λ n )| 2 } as well as 2ε δ/2 -ε Γ 1/2 128 1 + ε 1 -ε (1 -6 log δ) 1 + ε + δ/2 1 -ε -δ/2 1/2 < 1,
where δ = inf n≥1 |B n (λ n )| and Γ is the Gram matrix associated to (h Θ λn ) n≥1 . One can see that this is much more complicated than the bound given by formula (6.1).

We end this section by noting a different stability result, namely with respect to fractional transforms. If Θ is inner and µ ∈ D, then we define

Θ µ = b µ (Θ) = Θ -µ 1 -µΘ .
Then Θ µ is also an inner function; note that, according to Frostman's Theorem, for almost all µ ∈ D it is actually a Blaschke product with simple zeros. Proposition 6.5 Suppose Λ is a Blaschke sequence of distinct points in D, µ ∈ D, and

Θ is an inner function. If (h Θ λn ) n≥1 is complete (respectively minimal, Riesz basis, AOS, AOB) in K Θ , then (h Θµ λn ) n≥1 has the same property in K Θµ .
Proof. It is not difficult to check that the formula

U(f ) = 1 -|µ| 2 f
1 -μΘ defines a unitary operator U : K Θ → K Θµ (an operator valued version appears in [START_REF] Timotin | Redheffer Products and Characteristic Functions[END_REF]). All the assertions of the proposition are then consequences of the equality

h Θµ λ = |1 -µΘ(λ)| 1 -µΘ(λ) U(h Θ λ ),
that can be checked by careful computing.

Bases of exponentials

The study of bases of exponentials in L 2 (0, a) has provided the original motivation for the development of the functional model approach in [START_REF] Hruščev | Unconditional bases of exponentials and of reproducing kernels[END_REF]. It is therefore natural to discuss in more detail AOB's of exponentials. Some preliminaries are needed to translate the problem into the language of model spaces. Note also that, as is customary, the index set will now be Z rather than N * .

If C + = {z ∈ C : Im z > 0}, then we define φ :

C + → D by φ(z) = z-i z+i (φ is a conformal map from C + to D). The operator (Uf )(z) = 1 π(z + i) f (φ(z)) (7.1) 
maps H 2 unitarily onto H 2 (C + ), the Hardy space of the upper half-plane. The corresponding transformation for functions in

H ∞ is f → f • φ; (7.2) 
it maps inner functions in D into inner functions in C + . We have then

UK Θ = H 2 (C + ) ⊖ (Θ • φ)H 2 (C + ), and U(k Θ λ )
is the reproducing kernel for the point φ(λ). The Blaschke factor corresponding to µ

∈ C + is b + µ (z) = z -µ z - μ
and the Blaschke product with zeros (µ n ) n∈Z is

B + (z) = n∈Z c µn b + µn (z),
the coefficients c µn being chosen as to make all terms positive in i. The Volberg condition, which we will denote by (V + ), becomes

lim |n|→∞ m =n |b + µm (µ n )| = 1. Let F : L 2 (R) → L 2 (R) be the Fourier transform. Then F U maps H 2 unitarily onto L 2 (0, ∞). If Θ a (z) = e a z+1 z-1 , then F U maps K Θa unitarily onto L 2 (0, a); the normalized reproducing kernel h Θa λ (λ ∈ D) is mapped into χ a µ (t) = κ a (µ)e iµt
, where µ = -φ -1 (λ), and κ a (µ) = 2 Im µ 1-e -2a Im µ 1/2 . We also have Θ a (λ) = e iaμ .

The results from the previous sections concerning reproducing kernels can then be adapted to the case of exponentials e iµt , with µ ∈ C + ; note that the relevant inner function Θ a is singular. The next theorem deals, however, with a more general class of exponentials.

Theorem 7.1 Let (µ n ) n∈Z , (µ ′ n ) n∈Z be two sequences of distinct complex numbers. If (e iµnt ) n∈Z is a complete AOB in L 2 (0, 1), and lim |n|→∞ |µ nµ ′ n | = 0, then (e iµ ′ n t ) n∈Z is a complete AOB in L 2 (0, 1).

Proof. Fix N ≥ 1, and define

γ n =    µ n if |n| ≤ N, µ ′ n if |n| > N;
and V by V (e iµnt ) = e iγnt for n ∈ Z. For (a n ) n∈Z ∈ ℓ 2 , we have:

(V -I)( n∈Z a n e iµnt ) = (V -I)( |n|>N a n e iµnt ) = |n|>N a n (e iµ ′ n t -e iµnt ) = |n|>N a n e iµnt k≥1 (i(µ ′ n -µ n )) k t k k! ≤ k≥1 1 k! t k |n|>N (i(µ ′ n -µ n )) k a n e iµnt ≤ C N k≥1 a k k!   |n|>N |µ ′ n -µ n | 2k |a n | 2   1/2 ≤ C N (e a sup |n|>N |µ ′ n -µn| -1)( |n|>N |a n | 2 ) 1/2 ,
C N being the constant in (3.1) corresponding to the AOB (e iµnt ) n∈Z . Since sup |n|>N |µ ′ nµ n | → 0 and C N → 1 for N → ∞, it follows that if N is large enough, then V -I < 1 and thus V is invertible. If P m is the orthogonal projection onto Span{e iµnt : |n| ≥ m}, similar computations for m ≥ N show then that (V -I)P m → 0, and therefore V -I is compact. Proposition 3.2 shows that (e iγnt ) n∈Z is a complete AOB in L 2 (0, 1). Now the two sequences of complex numbers (µ ′ n ) n∈Z and (γ n ) n∈Z differ by a finite number of terms, and therefore (e iµ ′ n t ) n∈Z is an AOS. On the other hand, e iµnt → 1 implies Im µ n → 0; thus (µ ′ n ) n∈Z and (γ n ) n∈Z are both contained in a strip, say | Im z| < A. Multiplication by e -At is an invertible operator on L 2 (0, 1); thus (e i(γn+iA)t ) n∈Z is a Riesz basis in L 2 (0, 1). An application of Lemma 2.1 implies that (e i(µ ′ n +iA)t ) n∈Z is also a Riesz basis, and therefore the same is true about (e iµ ′ n t ) n∈Z ; the proof is complete.

In the case µ n = 2πn, one can compare Theorem 7.1 to Kadec's Theorem (see [START_REF] Hruščev | Unconditional bases of exponentials and of reproducing kernels[END_REF], I.5), which states, for real sequences (µ ′ n ), that Riesz bases are preserved under the requirement |µ ′ n -2πn| < 1/4. Such a uniform bound is not adequate for AOB's; indeed, since in L 2 (0, 1) e 2iπµnt , e 2iπµ n+1 t = e 2iπ(µn-µ n+1 ) -1 2iπ(µ nµ n+1 ) , it follows that e 2iπµnt , e 2iπµ n+1 t → 0 implies µ nµ n+1 -[µ nµ n+1 ] → 0.

Suppose now that there is η > 0 such that Im µ n > η for all n ∈ Z. In this case AOB of (normalized) exponentials in L 2 (0, a) (a > 0) are exactly characterized by the corresponding Volberg condition (V + ).

Proposition 7.2 If Im µ n > η > 0 for all n ∈ Z, then the following are equivalent:

(i) (µ n ) n∈Z is a Volberg sequence;
(ii) (χ a µn ) n∈Z is an AOB in L 2 (0, a) for all a > 0;

(iii) (χ a µn ) n∈Z is an AOB in L 2 (0, a) for some a > 0.

Proof. If we translate the problem in the disc, then the inner function Θ a is singular, One should remark that in this case the Volberg condition is independent of a > 0.

and if λ n = φ(-μ n ), then |Θ a (λ n )| = e -a Im µn . Therefore sup n∈Z |Θ a (λ n )| < 1,
This should be compared with the situation for Riesz sequences of exponentials (see, for instance,

[?], D.5): in case inf n∈Z Im µ n > -∞, if (e iµnt ) n∈Z is a Riesz sequence in L 2 (0, a),
then (e iµnt ) n∈Z is a Riesz sequence in L 2 (0, a ′ ) for all a ′ ≥ a, but usually not for a ′ < a.

Finally, a stability result can be obtained by translating Proposition 6.2.

Proposition 7.3 Suppose Im µ n > η > 0 for all n ∈ Z, and (χ a µn ) n∈Z is an AOB in L 2 (0, a) for some a > 0.

If (µ ′ n ) n∈Z is a sequence of distinct points in C + that satisfies lim sup |n|→∞ µ n -µ ′ n μn -µ ′ n < 1 -lim sup |n|→∞ e -a Im µn 1 + lim sup |n|→∞ e -a Im µn , then (χ a µ ′ n ) n∈Z is an AOB in L 2 (0, a).

Examples

As noticed in the previous section, bases of exponentials are related to a singular inner function Θ, with corresponding one-point supported measure. In this section we will give some examples related to other inner functions.

Since complete AOB's are asymptotically close to orthonormal bases, it is natural to try to obtain examples by perturbing orthonormal bases. If we take λ, λ ′ ∈ D, then

k Θ λ , k Θ λ ′ = 1-Θ(λ)Θ(λ ′ )
1-λλ ′ = 0, and thus the reproducing kernels themselves cannot be orthogonal. However, we may obtain orthogonal bases of reproducing kernels in case the evaluations on the boundary T of D are continuous. Suppose a n ∈ D are the zeros of the Blaschke factor of Θ, while σ is the positive singular measure on T corresponding to the singular factor of Θ. We define E Θ ⊂ T by the formula

E Θ = ζ ∈ T | ∞ k=1 1 -|a k | |ζ -a k | 2 + 2π 0 dσ(t) |ζ -e it | 2 < ∞ . (8.1)
The following proposition appears in [START_REF] Clark | One dimensional perturbations of restricted shifts[END_REF].

Proposition 8.1 (i) We have ζ ∈ E Θ if and only if the function k Θ ζ ∈ H 2 (in which case it belongs to K Θ ). In this case k Θ λ → k Θ ζ if λ → ζ nontangentially. (ii) If T \ E Θ is at most countable, then there exists a sequence ζ n ∈ E Θ such that k Θ ζn k Θ ζn is an orthonormal basis of K Θ .
We may therefore obtain a large class of examples of complete AOB's in K Θ formed by reproducing kernels. 

Θ λ k Θ λ → k Θ ζ k Θ ζ . Choose then λ n ∈ D, λ n / λ n = ζ n , such that n≥1 k Θ λn k Θ λn - k Θ ζn k Θ ζn 2 < 1.
The required conclusion follows then by applying Proposition 3.3.

One should note that the choice of λ n can obviously be made such that |Θ(λ n ) -

Θ(ζ n )| → 0; it follows then that |Θ(λ n )| → 1.
In case Θ = Θ a , E Θa = T \ {1}, and thus obviously satisfies the hypotheses of Proposition 8.1 and Corollary 8.2. Actually, Clark's paper [START_REF] Clark | One dimensional perturbations of restricted shifts[END_REF] indeed has the bases of exponentials as a starting point.

The previous example showed a complete AOB obtained by perturbing an orthonormal basis. Obviously reproducing kernels corresponding to points in D cannot be orthonormal, may estimate the last denominator (see (2.6)) as being larger than (1 -|λµ|) 2 , which is of order 1 2 2qn . Thus

S ′ 1 ≤ C 1 2 q N n<N 1 2 qn • 2 2qn ≤ C
2 q N-1 2 q N = C2 q N-1 -q N → 0 (8.4)

when N → ∞.

The second sum contains the rest of the terms in S 1 . For a fixed n, the arguments of the numbers λµ are comparable to integer multiples of 1/p n , and so are their sines. We will therefore use the second term in the left hand side of (2.6) to estimate |1 -λµ| 2 , obtaining 2 2qn is also convergent, the last term is smaller than 1 2 q N -q N-1 , and thus tends to 0 for N → ∞.

S ′′ 1 ≤ C 1 2 q N
Next, we have

S 2 = 1 2 2q N |µ|=rn µ =λ 1 |1 -λµ| 2 .
As in the argument for S ′ 1 , we have, by using (2.6),

S 2 ≤ C 1 2 2q N p N j=1 1 j 2 p 2 N ≤ C p 2 N 2 2q N → 0 (8.6)
when N → ∞.

As for S 3 , we will also decompose it as S 3 = S ′ 3 + S ′′ 3 , keeping in S ′ 3 , for each n < N, the (at most) two terms that have arguments closest to the argument of λ. A similar argument as that for S ′ 1 yields now

S ′ 3 ≤ C 1 2 q N n>N 1 2 qn • 2 2q N ≤ C2 q N -q N+1 → 0. ( 8.7) 
The last term, and most delicate to estimate, is S ′′ 3 . We have, using (2.6), The first sum contains approximately pn 2 q N terms, all equal to 2 q N -qn ; it can be therefore estimated by pn 2 qn . As for the second, we will note that j>J 1 j 2 is of order 1 J , and therefore

S ′′ 3 = n>N pn j=1 1 2 q N +qn • 1 1 2 2q N + j
j> pn 2 q N p 2 n j 2 ≤ C p 2 n 2 q N p n = p n 2 q N ,
and therefore the second sum can be also estimated by pn 2 qn . Finally, we obtain, using (8.8),

S ′′ 3 ≤ C n>N p n 2 qn → 0 (8.9)
when N → ∞. Now, adding together the estimates (8.4), (8.5), (8.6), (8.7)) and (8.9), we obtain that (Γ -I)e n → 0 as desired; therefore Λ is a Volberg sequence.

It remains now to show that E B = ∅. As in [START_REF] Hruščev | Unconditional bases of exponentials and of reproducing kernels[END_REF], more can be proved, namely that 

  As usual, we denote by B = B Λ = n≥1 b λn the associated Blaschke product, and B n = B/b λn ; here b λn (z) = |λn| λn λn-z 1-λnz . As B is an inner function, we may consider the model space K B ; it is well known that (h λn ) n≥1 is a complete minimal system in K B . It is a Riesz basis if and only if it satisfies the Carleson condition

Theorem 4 . 2

 42 If Λ = (λ n ) n≥1 is a Blaschke sequence of distinct points in D, then the following are equivalent:

  then its span has infinite codimension. Proof. Suppose that sup n≥1 |Θ(λ n )| = η < 1. We shall write Θ = βS, with β a Blaschke product and S singular, nonconstant. Let us also denote B (N ) = n≥N b λn . By Proposition 5.1, (h λn ) n≥1 is an AOB (and in particular a Riesz sequence). If c N , C N are the constants in (3.1), then applying Lemma 2.3 to Θ and B (N ) it follows that

  and the results in the statement are a consequence of Corollary 5.6.

2

 2 

λ∈Λ 1 -≤ 2

 12 |λ| |ζ-λ| = ∞ for all ζ ∈ T. Fix then ζ ∈ T; we have λ∈Λ For each fixed n, if |λ| = r n , then, with the possible exception of two points, |ζ -λ| is comparable to |r n ζ -λ|. The other points λ on this circle are at distances to ζ comparable to j • 2π pn , with j = 1, 2, . . . , p n -Cp n log p n . qn p n log p n = ∞ as required.

  kn ) by requiring that m<n | x kn , x km | 2 ≤ 1 2 n+2 . Then m =n | x kn , x km | 2 ≤ 1/2,whence, if Γ ′ is the Gram matrix associated to (x kn ), then Γ ′ -I has Hilbert-Schmidt norm smaller than 1/2. Applying Proposition 3.2 to Γ ′ implies that (x kn ) n≥1 is an AOB.

	Proposition 3.4 Let (x n ) n≥1 be a Riesz sequence in H. There exists a subsequence
	(x kn ) n≥1 which is an AOB.
	Proof. Since a Riesz sequence is the image through a left invertible operator of an
	orthonormal sequence, it follows that (x n ) tends weakly to 0. Choose then recursively the
	sequence (x

  It follows by Corollary 5.4 that (h Θ γn ) n≥1 is an AOB. Applying repeatedly Lemma 2.1, we obtain that (h Θ λ ′ n ) n≥1 is an AOB. In the particular case where Θ has a nontrivial singular part, we can improve the stability constant in Theorem 6.1. Suppose that Θ has a nontrivial singular part, sup n≥1 |Θ(λ n )| < 1 and

	Proposition 6.2

  Corollary 8.2 If T\ E Θ is at most countable, then there exist sequences (λ n ) n≥1 in D such

	that (	k Θ λn k Θ
		k Θ ζn ζn k Θ	is an
	orthonormal basis of K

λn

) n≥1 is a complete AOB in K Θ .

Proof. By Proposition 8.1, (ii), take a sequence ζ n ∈ E Θ such that Θ . By (i) of the same proposition, it obviously follows that if ζ ∈ E Θ , and λ → ζ nontangentially, then k

but Clark's result shows that orthonormal bases can be obtained by using reproducing kernels corresponding to points on T, whenever the corresponding functional is continous on K Θ ; that is, to points in E Θ (as defined by (8.1)). The following example is adapted from [START_REF] Hruščev | Unconditional bases of exponentials and of reproducing kernels[END_REF]. It shows that complete AOB's can appear in a case when E Θ = ∅.

Take first a sequence of positive integers q n , n ≥ 1, such that q n+1q n → ∞. Choose then another sequence of positive integers p n , n ≥ 1, subject to the conditions

On the circle centered in the origin and having radius 1 -1 2 qn we will choose p n equidistant points; the union of all these points (for n ≥ 1 will be denoted by Λ. We will also denote

2 qn , and remark that in the estimates below the letter C will denote a constant that might not be the same in the different formulas.

We have λ∈Λ (1 -|λ|) = n≥1 p n 1 2 qn < ∞; thus Λ satisfies the Blaschke condition and we may form the corresponding product B. We intend to show that the family (k λ ) λ∈Λ is an AOB in K B , but that E B = ∅.

In order to show that (k λ ) λ∈Λ is an AOB in K B , we will apply Theorem 4.2. We have to prove that (Γ -I)e n → 0, which is equivalent to

This sum can be written

If we suppose that |λ| = r N , we can decompose the above sum into three terms S 1 , S 2 and S 3 , corresponding to n < N, n = N and n > N respectively. We shall estimate the three terms separately. First,

We may decompose S 1 = S ′ 1 + S ′′ 1 in turn into two terms. S ′ 1 contains, for each n < N, the (at most) two terms that have arguments closest to the argument of λ. For these we