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Soit (λ n ) n 1 une suite de Blaschke du disque unité D et Θ une fonction intérieure. On suppose que la suite de noyaux reproduisants k Θ (z, λ n ) := 1-Θ(λn)Θ(z) 1-λnz n 1 est complète dans l'espace modèle K p Θ := H p ∩ ΘH p 0 , 1 < p < +∞. On étudie, dans un premier temps, la stabilité de cette propriété de complétude, à la fois sous l'effet de perturbations des fréquences (λ n ) n 1 mais également sous l'effet de perturbations de la fonction Θ. On retrouve ainsi un certain nombre de résultats classiques sur les systèmes d'exponentielles. Puis, si on suppose de plus que la suite (k Θ (., λ n )) n 1 est minimale, on montre que, pour une certaine classe de fonctions Θ, la famille biorthogonale associée est aussi complète.

Completeness of reproducing kernels

in the model spaces.

Par conséquent, K p Θ correspond à l'ensemble des formes linéaires de H p qui s'annulent sur le sous-espace ΘH p .

Pour p = p = 2, on notera K Θ = K 2 Θ . De plus, dans le cas où 1 < p < +∞, il résulte du théorème de Beurling (voir [START_REF] Garnett | Bounded analytic functions[END_REF], chapitre II) que tout sous-espace propre fermé et invariant par l'action de l'opérateur S * : f -→ f -f (0) z est du type K p Θ et inversement. En dehors de leur intérêt propre, ces sous-espaces K p Θ possèdent un lien étroit avec des sujets tels que l'approximation rationnelle (voir [Dya], [START_REF] Hayashi | Classification of nearly invariant subspaces of the backward shift[END_REF], [START_REF] Sarason | Kernels of toeplitz operators[END_REF]), les opérateurs de Toeplitz (voir [START_REF] Douglas | Cyclic vectors and invariant subspaces for the backward shift operator[END_REF], [START_REF] Dyakonov | Smooth functions in the range of a hankel operator[END_REF]) et la théorie spectrale des opérateurs linéaires généraux (voir [START_REF] Nikolskii | Treatise on the shift operator[END_REF]). Dans cet article, nous nous intéressons aux noyaux reproduisants des sous-espaces K p Θ , c'est à dire aux fonctions k Θ (., λ) ∈ K p Θ pour lesquelles

f (λ) = f, k Θ (., λ) , λ ∈ D , f ∈ K p Θ où •, • représente la dualité entre K p Θ et K p Θ .
Dans le cas où 1 < p < +∞, le sous-espace ΘH p est complémenté dans H p car les projections standards ΘP + Θ et P Θ := I -ΘP + Θ = ΘP -Θ sont bornées sur H p (par le théorème de Riesz, voir [START_REF] Duren | Theory of H p Spaces[END_REF]). Ici P + désigne la projection de Riesz (P + f )(z) = n 0 f (n)z n ). On a donc H p = P Θ H p + (I -P Θ )H p = P Θ H p + ΘH p , d'où K p Θ = P Θ H p . De plus, il est facile de voir que k Θ (., λ) = P Θ k λ , où k λ = 1 1 -λz est le noyau de Cauchy classique et un petit calcul montre alors que

k Θ (., λ) = 1 -Θ(λ)Θ 1 -λz
(voir [START_REF] Hruschev | Unconditional bases of exponentials and reproducing kernels[END_REF] ou [START_REF] Nikolskii | Treatise on the shift operator[END_REF]). Dans cet article, nous allons étudier deux problèmes relatifs à la complétude des suites de noyaux reproduisants dans l'espace K p Θ . Rappelons qu'une suite (x n ) n 1 d'un espace de Banach X est dite complète dans X si l'enveloppe linéaire fermée engendrée par les x n , notée span {x n : n 1}, est égale à X . Dans notre cas, en utilisant le théorème de Hahn-Banach, il est facile de voir qu'une suite de noyaux reproduisants (k Θ (., λ n )) n 1 sera complète dans K p Θ si et seulement si l'implication suivante (f ∈ K p Θ , f (λ n ) = 0, n 1) =⇒ f ≡ 0 est vraie pour toute fonction f ∈ K p Θ . Par conséquent, étudier la complétude d'une suite de noyaux reproduisants (k Θ (., λ n )) n 1 dans K p Θ se ramène à étudier si la suite (λ n ) n 1 peut être incluse ou non dans l'ensemble des zéros d'une fonction de K p Θ non identiquement nulle. La question naturelle qui se pose alors est de chercher un critère, en langage de Λ = (λ n ) n 1 et Θ, pour que la suite (k Θ (., λ n )) n 1 soit complète dans K p Θ . Etant donné Λ = (λ n ) n 1 ⊂ D, il est facile de montrer que la suite (k Θ (., λ n )) n 1 est complète dans K p Θ , pour toute fonction intérieure Θ, si et seulement si la suite Λ = (λ n ) n 1 n'est pas de Blaschke, c'est à dire si

n 1 (1 -|λ n |) = +∞ .
Par conséquent, la véritable question qui se pose est : étant donné Λ = (λ n ) n 1 ⊂ D, une suite de Blaschke sans multiplicité, et Θ une fonction intérieure fixée, peut-on trouver un critère suffisament explicite de complétude pour la suite (k Θ (., λ n )) n 1 dans K p Θ ? Cette question est encore ouverte même pour le cas particulier des exponentielles. Rappelons que si Λ = (λ n ) n 1 ⊂ D, a > 0, et Θ a := exp a z + 1 z -1 , l'espace K Θa s'identifie de façon unitaire à l'espace L 2 (0, a) et la complétude de la suite (k Θa (., λ n )) n 1 dans K Θa est équivalente à la complétude de la suite 

(exp(iµ n t)) n 1 dans L 2 (0, a), µ n := i 1 + λ n 1 -λ n (voir [HNP81] ou [Nik86]).
on se donne 1 < p < +∞, une suite Λ = (λ n ) n 1 ⊂ D et Θ 1 une fonction intérieure de H ∞ tels que le système (k Θ 1 (., λ n )) n 1 est complet dans K p Θ 1 . Si on perturbe la suite Λ ou (et) la fonction intérieure Θ 1 , est-ce-que le nouveau système (k Θ 2 (., λ n )) n 1 est complet dans K p Θ 2 ?
Le deuxième problème concerne la complétude de la biorthogonale associée aux noyaux reproduisants de K Θ := K 2 Θ : si (k Θ (., λ n )) n 1 est une suite minimale et complète dans K Θ , la question naturelle qui se pose est de savoir si la biorthogonale associée à cette suite est aussi complète dans K Θ .

Le premier problème peut être motivé par plusieurs raisons. D'une part, nous avons vu que le problème général de complétude dans lequel s'inscrit ce problème de stabilité est très difficile et loin d'être résolu. D'autre part, dans beaucoup de cas, la famille donnée est une petite perturbation d'une famille dont on sait déjà qu'elle est complète. Un critère de stabilité permettrait donc, dans beaucoup d'applications, et notamment en théorie du contrôle, de prouver la complétude des noyaux reproduisants. Il faut également signaler que ce problème de stabilité est lié au problème d'unicité fondamental suivant : étant donnée (e n ) n 1 une famille complète dans un espace de Banach E, on cherche à caractériser (

ε n ) n 1 ⊂ R * + tel que si f ∈ E * , alors | f, e n | ε n f , (∀n 1) =⇒ f ≡ 0 . (1) 
Il est facile de voir que ce problème d'unicité est équivalent à la stabilité de la complétude de la suite (e n ) n 1 sous l'effet de petites perturbations en norme controlées par ε n .

Remarquons que le problème de l'existence d'une suite (ε n ) n 1 ⊂ R * + vérifiant (1) a été résolu par V. Gurarii et M. Meletidi (voir [START_REF] Gurarii | Stability of completeness of sequences in banach spaces[END_REF]). Mais ce théorème est un résultat de pure existence et il reste le problème de trouver une estimation sur la décroissance des suites (ε n ) n 1 qui garantissent l'unicité ou la stabilité de la complétude. Le problème d'unicité précédent a été abondamment étudié dans le cas où E * = H ∞ (D) et e n = k λn , n 1, est une suite de noyaux reproduisants telle que (λ n ) n 1 n'est pas de Blaschke. De nombreux auteurs se sont intéressés à caractériser la décroissance des suites (ε n ) n 1 ⊂ R * + qui garantissent l'unicité (1). Citons notamment les travaux de S. Khavinson [START_REF] Ya | Extremal problems for bounded analytic functions with interior side conditions[END_REF], N. Danikas [START_REF] Danikas | On an identity theorem in the nevanlinna class n[END_REF], W. Hayman [START_REF] Hayman | Identity theorems for functions of bounded characteristic[END_REF], Y. Lyubarskii-K. Seip [START_REF] Lyubarskii | A uniqueness theorem for bounded analytic functions[END_REF] et ceux en cours de A. Nicolau, J. Pau-P. Thomas. Citons enfin les travaux de R. Redheffer qui a beaucoup étudié la stabilité de la complétude des sytèmes d'exponentielles (voir [START_REF] Redheffer | Elementary remarks on completeness[END_REF] et [START_REF] Redheffer | Completeness of sets of complex exponentials[END_REF]).

Remarquons enfin que le problème de complétude des noyaux reproduisants dans l'espace modèle K p Θ peut se reformuler dans le langage des opérateurs de Toeplitz (voir le lemme 2.2.1 pour cette reformulation). Or, de nombreux auteurs se sont intéressés à la structure des noyaux des opérateurs de Toeplitz. Citons notamment les travaux de E. Hayashi [START_REF] Hayashi | The solution sets of extremal problems in h 1[END_REF], [START_REF] Hayashi | The kernel of a toeplitz operator[END_REF], [START_REF] Hayashi | Classification of nearly invariant subspaces of the backward shift[END_REF]) et ceux de K. Dyakonov [Dya]. Signalons cependant que les opérateurs de Toeplitz, comme les autres outils, n'ont pas permis, jusqu'à présent, de progrès visibles sur ce problème de complétude des noyaux reproduisants dans K Θ . Dans cet article, nous utiliserons cette approche via les opérateurs de Toeplitz pour obtenir un résultat de stabilité quand on perturbe à la fois la suite (λ n ) n 1 et la fonction intérieure Θ.

Pour motiver le deuxième problème autour de la complétude de la biorthogonale, rappelons qu'une suite (x n ) n 1 d'un espace de Hilbert H est dite minimale si, pour tout n 1, x n / ∈ span {x k , k = n}. Par le théorème de Hahn-Banach, ceci est équivalent à l'existence d'une suite (x n ) n 1 de H, dite biorthogonale, telle que

x n , x k = δ nk .

Si (x n ) n 1 est une suite minimale et complète dans H, on peut associer à tout élément x de H sa "série de Fourier généralisée" : 

ϕ : x → n 1 x, x n x n , où (x n ) n
(., λ n )) n 1 de l'espace modèle K Θ .
Les résultats de cet article s'organisent de la façon suivante. Dans la section 2, nous montrons que la complétude des noyaux reproduisants (k Θ (., λ n )) n 1 reste stable sous l'effet de petites perturbations de la suite (λ n ) n 1 par rapport à la distance pseudo-hyperbolique (voir théorème 2.1.1). Puis, en imposant une condition de Fredholm sur l'opérateur de Toeplitz T ΘB Λ , nous prouvons qu'il existe ε > 0 telle que la complétude de (k Θ (., 

λ n )) n 1 est préservée si Θ -Θ 1 ε et B Λ -B Λ ε (
(λ n ) n 1 ⊂ D telle que (k Θ (., λ n )) n 1 est complète dans K p Θ (voir corollaire 2.2.11
). Dans la section 3, nous étudions le problème de la complétude de la biorthogonale pour les noyaux reproduisants. On montre que si (k Θ (.,

λ n )) n 1 est une suite complète et minimale dans K Θ et si sup z∈D |Θ (z)(1 -z) 2 | < +∞, alors la suite (f n ) n 1 , biorthogonale à (k Θ (., λ n )) n 1 , est aussi complète dans K Θ .
2 Stabilité de la complétude pour les noyaux reproduisants.

Perturbations des fréquences.

Le théorème suivant établit une condition de stabilité dans le cas des noyaux reproduisants, qui nous permettra de retrouver à la fois un résultat de R. Redheffer, un autre de K. Chan-S. Seubert et une généralisation d'un théorème de N. Levinson .

Théorème 2.1.1 Soient 1 < p < ∞, Λ = (λ n ) n 1 ⊂ D et Θ une fonc- tion intérieure dans H ∞ telle que (k Θ (., λ n )) n 1 est complète dans K p Θ . Soit (λ n ) n 1 ⊂ D telle que n 1 |b λn (λ n )| < +∞ .
(2)

Alors (k Θ (., λ n )) n 1 est aussi complète dans K p Θ .

Rappelons que conformément aux notations usuelles |b

λn (λ n )| = λ n -λ n 1 -λ n λ n désigne la distance pseudo-hyperbolique entre les points λ n et λ n .
Preuve Raisonnons par l'absurde. Supposons que la suite (k Θ (., λ n )) n 1 ne soit pas complète dans K p Θ . Par le théorème de Hahn-Banach, il existe f ∈ K q Θ , f ≡ 0, telle que f (λ n ) = 0, pour tout n 1, avec q l'exposant conjugué associé à p. Définissons par récurrence une suite de fonctions (φ n ) n 1 dans H q :

φ 0 := f , et φ n := b λ n -b λ n (λ n ) b λ n φ n-1 , n 1 .
Il est facile de vérifier que

φ n ∈ K q Θ , pour tout n 1. De plus, φ n (λ k ) = 0, ∀k n, et φ n (λ k ) = 0, ∀k > n. D'autre part, φ n -φ n-1 q = |b λ n (λ n )| φ n-1 q (3) Donc (1 -|b λ n (λ n )|) φ n-1 q φ n q (1 + |b λ n (λ n )|) φ n-1 q , et par récurrence, on obtient n k=1 1 -|b λ k (λ k )| f q φ n q n k=1 1 + |b λ k (λ k )| f q . ( 4 
)
De l'hypothèse (2), on déduit que les deux produits infinis

+∞ k=1 1 -|b λ k (λ k )| et +∞ k=1 1 + |b λ k (λ k )| sont convergents. Posons c i := ∞ k=1 1 + ε i |b λ k (λ k )| , i = 1, 2, avec ε 1 = 1 et ε 2 = -1. Alors (4) implique que φ n q c 1 f q , ∀n 1 . (5) 
En utilisant l'inégalité triangulaire, les inégalités (3) et (5), nous obtenons alors que

φ n+p -φ n q c 1 f q p k=1 |b λ n+k (λ n+k )| .
En utilisant (2), on en déduit finalement que (φ n ) n 1 est une suite de Cauchy dans

K q Θ . Par conséquent, il existe φ ∈ K q Θ telle que lim n→+∞ φ n = φ, dans K q Θ . Nous obtenons, d'après (4), que c 2 f q φ q , ce qui prouve que φ ≡ 0. Comme φ(λ n ) = lim p→+∞ φ p (λ n ) = 0, on en déduit que (k Θ (., λ n )) n 1 n'est pas complète dans K p
Θ , ce qui contredit l'hypothèse. En utilisant l'isomorphisme naturel entre H p et H p (C + ) , l'espace de Hardy du demi-plan supérieur C + = {z ∈ C : m(z) > 0} (voir par exemple [START_REF] Duren | Theory of H p Spaces[END_REF] ou [START_REF] Hruschev | Unconditional bases of exponentials and reproducing kernels[END_REF]), il est immédiat de voir que le théorème 2.1.1 admet l'analogue suivant dans le demi-plan supérieur.

Corollaire 2.1.2 Soient 1 < p < ∞, M = (µ n ) n 1 ⊂ C + et Θ une fonction intérieure de H ∞ (C + ) telle que (k Θ (., µ n )) n 1 est complète dans K + Θ p := H p + ∩ zH p + . Soit (µ n ) n 1 ⊂ C + telle que n 1 |b + µn (µ n )| < +∞ . (6) Alors (k Θ (., µ n )) n 1 est aussi complète dans K + Θ p . Ici |b + µn (µ n )| = µ n -µ n µ n -µ n désigne la distance pseudo-hyperbolique dans C + .
Remarque 2.1.3 En reprenant le raisonnement utilisé, il est facile de voir que le théorème 2.1.1 et son corollaire restent valables dans le cas (K p Θ ) * , p = 1, +∞, avec la topologie faible * . Dans le cas, où Θ = 0, K p Θ = H p , on a un résultat de stabilité uniforme qui montre que le théorème 2.1.1 n'est pas optimal. Théorème 2.1.4 Soient 1 < p < +∞, (k λn ) n 1 une suite de noyaux reproduisants complète dans

H p et (λ n ) n 1 ⊂ D. Si sup n 1 |b λn (λ n )| < 1 , (7) 
alors (k λ n ) n 1 est aussi complète dans H p .
Preuve Un résultat de Vinogradov-Havin (voir [START_REF] Havin | Free interpolation in H ∞ and in some other function classes[END_REF]) implique que, sous l'hypothèse (7), on a (1

-|λ n |) (1 -|λ n |). Il est alors clair que les deux suites (k λn ) n 1 et (k λ n ) n 1 sont complètes ou non simultanément.
Remarque 2.1.5 (1) Ce résultat est optimal, à savoir qu'il existe des suites

(λ n ) n 1 et (λ n ) n 1 ⊂ D telles que sup n 1 |b λn (λ n )| = 1 avec (k λn ) n 1 complète dans H p alors que (k λ n ) n 1 ne l'est pas. Par exemple, on peut prendre λ n := 1 - 1 n et λ n := 1 - 1 n 2 , n 1.
(2) L'exemple du système trigonométrique montre aussi qu'il existe un décalage entre le théorème 2.1.1 et certains résultats déjà connus pour les exponentielles. Passons au demi-plan supérieur, et considérons

µ n := n + i , µ n := n + δ n + i , n ∈ Z, δ n ∈ R .
Un résultat de N. Levinson [Lev40] 

Θ : il existe (µ n ) n∈Z , (µ n ) n∈Z ⊂ C + telles que sup n∈Z |b + µn (µ n )| < 1 et (exp(iµ n t)) n∈Z est complète dans L 2 (-π, π) alors que (exp(iµ n t)) n∈Z ne l'est pas. Considérons, par exemple, µ n := n + i et µ n := n + 1 4 + ε + i, pour n 1, µ 0 := i, µ n := n -1 4 -ε + i, pour n -1.
Clairement, (exp(iµ n t)) n∈Z est complète dans L 2 (-π, π) (c'est même une base de Riesz !). De plus, N. Levinson a montré que (exp(i(µ n -i)t)) n∈Z n'est pas complète dans L 2 (-π, π).

(3) Par contre, le théorème 2.1.1 est optimal dans le sens où on ne peut pas améliorer l'exposant dans la convergence de la série. Cela signifie qu'il existe deux suites

(λ n ) n 1 , (λ n ) n 1 ⊂ D et une fonction intérieure Θ telle que n 1 |b λn (λ n )| α < +∞ , ∀α > 1 , et la suite (k Θ (., λ n )) n 1 est complète dans K Θ alors que la suite (k Θ (., λ n )) n 1
ne l'est pas. Il suffit pour cela de considérer

λ n := 1 - 1 n 2 et λ n := λ n+1 , n 1 et de poser Θ := B Λ , le produit de Blaschke associé à Λ = (λ n ) n 1 . Un calcul simple montre alors que |b λn (λ n )| ∼ 1 n et (k Θ (., λ n )) n 1 est complète dans K Θ alors que (k Θ (., λ n )) n 1 ne l'est
pas, car la première suite est minimale. Donnons maintenant les trois applications annoncées du théorème 2.1.1. Le premier résultat qu'on peut retrouver est un résultat de R. Redheffer [START_REF] Redheffer | Completeness of sets of complex exponentials[END_REF].

Corollaire 2.1.6 Soient a > 0 et (µ n ) n 1 , (µ n ) n 1 deux suites complexes telles que n 1 |µ n -µ n | 1 + | mµ n | + | mµ n | < ∞ .
Alors les familles (exp(iµ n t)) n 1 et (exp(iµ n t)) n 1 sont complètes ou non simultanément dans L 2 (-a, a).

Preuve Tout d'abord, on utilise un principe de réflexion classique qui permet de ramener toutes les fréquences des exponentielles dans le demi-plan supérieur.

Pour cela, on définit 

µ * n := µ n si mµ n 0 µ n si mµ n < 0 et µ n * := µ n si mµ n 0 µ n si
|b + µ * n +iδ (µ n * + iδ)| = |µ * n -µ n * | |µ * n -µ n * + 2iδ| C |µ * n -µ n * | 1 + | mµ * n | + | mµ n * | C |µ n -µ n | 1 + | mµ n | + | mµ n | Dans [CS97], K.
T Θ 0 Θ 1 = {0} alors T ∩ σ(Θ 1 ) ⊂ T ∩ σ(Θ 0 ) ,
où σ(Θ) désigne le spectre de Θ. Si Θ 0 et Θ 1 sont deux produits de Blaschke infinis, cette condition signifie que les zéros de Θ 1 ne peuvent s'accumuler qu'aux points de T où ceux de Θ 0 s'accumulent. Les zéros de Θ 1 doivent donc être, en un certain sens, proches de ceux de Θ 0 . Dans le résultat qui suit, K. Chan et S. Seubert donnent une condition suffisante portant sur cette proximité des zéros pour que ker 2 T Θ 0 Θ 1 = {0}, propriété qui admet une formulation équivalente en terme de complétude d'une certaine suite de noyaux reproduisants (voir lemme 2.2.1). Nous obtenons, en fait, ce résultat comme corollaire du théorème 2.1.1.

Corollaire 2.1.7 Soient 1 < p < +∞, B 1 un produit de Blaschke associé à une suite de Blaschke (β n ) n 1 et Θ 0 une fonction intérieure qui s'annule en

(α n ) n 1 . Si ∞ n=1 |α n -β n | 1 -|α n | < ∞ ,
et si Θ 0 possède au moins un autre zéro en dehors des α n , alors ker q

T Θ 0 B 1 = {0}, c'est-à-dire que (k Θ 0 (., β n )) n 1 n'est pas complète dans K p Θ 0 .
Preuve Supposons que le système (k Θ 0 (., β n )) n 1 soit complet dans K p Θ 0 . D'après notre hypothèse, il est facile de voir que

n 1 |b αn (β n )| < ∞ .
Nous pouvons donc appliquer le théorème 2.1.1 et conclure que la suite (k Θ 0 (., α n )) n 1 est complète dans K p Θ 0 . Mais, ceci est absurde car, si B désigne le produit de Blaschke associé à la suite (α n ) n 1 , alors on a

K p Θ 0 = span K p Θ 0 {k Θ 0 (., α n ) : n 1} = span H p {k αn : n 1} = K p B ,
ce qui est impossible puisque Θ 0 possède au moins un autre zéro en dehors des α n .

En 1940, N. Levinson [Lev40] a montré que la complétude d'une suite d'exponentielles (exp(iµ n t)) n 1 n'est pas altérée si l'une des fréquences µ n est remplacée par une autre µ, avec µ = µ n , ∀n. Le théorème 2.1.1 nous permet de retrouver ce résultat dans le cadre général des noyaux reproduisants, ce qui avait déjà été remarqué dans [START_REF] Hruschev | Unconditional bases of exponentials and reproducing kernels[END_REF].

Corollaire 2.1.8 Soient 1 < p < +∞, (λ n ) n 1 ⊂ D et Θ une fonction intérieure telle que (k Θ (., λ n )) n 1 soit complète dans K p Θ . Alors (k Θ (., λ n )) n N (k Θ (., λ n )) 1 n<N est complète dans K p Θ , pour toute suite finie (λ n ) 1 n<N , λ n = λ i , λ n = λ m .
Preuve Il suffit de noter que si

λ n := λ n : 1 n < N λ n : n N , alors n 1 |b λn ( λ n )| = 1 n<N |b λn (λ n )| < +∞ , et le théorème 2.1.1 implique que (k Θ (., λ n )) n 1 est complète dans K p Θ .
2.2 Perturbation de la fonction intérieure Θ.

Jusqu'à présent, nous avons uniquement étudié les effets de perturbations sur les "fréquences" (λ n ) n 1 mais on peut aussi perturber la fonction intérieure Θ. Plus précisément, si (k Θ 1 (., λ n )) n 1 est une famille complète dans K p Θ 1 et si Θ 2 est une autre fonction intérieure, quelle doit être la proximité entre Θ 1 et Θ 2 pour que (k Θ 2 (., λ n )) n 1 soit une famille complète dans K p Θ 2 ? La première conjecture naturelle est de penser qu'il suffit que Θ 1 (λ n ) soit proche de Θ 2 (λ n ). Mais cela ne suffit pas comme le montre l'exemple suivant : soit (λ n ) n 1 une suite de Blaschke dans

D et ζ un point de D tel que ζ = λ n , ∀n 1. Notons Θ 1 := n 1 b λn , et Θ 2 := b ζ Θ 1 . Alors Θ 1 (λ n ) = Θ 2 (λ n ) = 0, ∀n 1 et (k Θ 1 (., λ n )) n 1 est une famille complète dans K Θ 1 alors que (k Θ 2 (., λ n )) n 1 n'est pas complète dans K p Θ 2 . En effet, span {k Θ 2 (., λ n ) : n 1} =span {k λn : n 1} =K p Θ 1 K p Θ 2 .
En fait, en utilisant les opérateurs de Toeplitz et leurs liens avec le problème de la complétude, nous allons montrer que, sous certaines hypothèses, on peut donner des conditions qui garantissent la stabilité de la complétude. Tout d'abord, précisons la reformulation de notre problème de complétude à l'aide des opérateurs de Toeplitz. Si ϕ ∈ L ∞ (T) et 1 < p < +∞, on notera ker p T ϕ := {f ∈ H p : T ϕ f = 0} .

On a alors le résultat suivant :

Lemme 2.2.1 Soient 1 < p < +∞, B un produit de Blaschke, à zéros simples, associé à une suite

(λ n ) n 1 ⊂ D et Θ une fonction intérieure. Alors dim ker q T ΘB = dim K q Θ ∩ BH q = codim K p Θ (span {k Θ (., λ n ) : n 1}) .
En particulier, les assertions suivantes sont équivalentes :

(i) T ΘB : H q -→ H q est injectif.

(ii) (k Θ (., λ n )) n 1 est complète dans K p Θ . (iii) K q Θ ∩ BH q = {0}. Le cas p = q = 2 trouve son origine dans [START_REF] Lee | The spectra of some toeplitz operators[END_REF] et est démontré dans [START_REF] Nikolskii | Treatise on the shift operator[END_REF], (Lemme 97, Appendice 4, page 336). Le cas général se démontre exactement de la même manière et la preuve est laissée au lecteur.

Rappelons maintenant un lemme de L. Coburn dont nous allons avoir besoin par la suite.

Lemme 2.2.2 (L. Coburn) Si 1 < p < +∞ et ϕ ∈ L ∞ , ϕ ≡ 0, alors soit ker q T ϕ = {0} soit ker p T * ϕ = {0}.
Pour le cas p = q = 2, nous renvoyons le lecteur à [Cob66] ou [START_REF] Nikolskii | Treatise on the shift operator[END_REF], (Appendice 4, page 318). Le cas général suit, en fait, exactement le même schéma et sa démonstration est laissée au lecteur.

En imposant une condition de Fredholm, nous obtenons un résultat de stabilité. Si ϕ est une fonction de L ∞ (T) telle que T ϕ est de Fredholm dans H q alors ind q T ϕ désignera l'indice de T ϕ vu comme opérateur de H q dans H q , c'est-àdire, par définition, ind q T ϕ = dim ker q T ϕ -dim ker p T * ϕ .

Théorème 2.2.3 Soient 1 < p < +∞, Λ = (λ n ) n 1 ⊂ D et Θ 1 une fonction intérieure dans H ∞ . Supposons que l'opérateur de Toeplitz T Θ 1 B Λ soit Fredholm dans H q . Alors il existe ε > 0 tel que pour toute suite

Λ = (λ n ) n 1 ⊂ D et toute fonction intérieure Θ 2 satisfaisant B Λ -B Λ ∞ < ε et Θ 1 -Θ 2 ∞ < ε , ( 8 
)
on a codim K p Θ 1 (span {k Θ 1 (., λ n ) : n 1}) = codim K p Θ 2 span {k Θ 2 (., λ n ) : n 1} .
Nous allons décomposer la preuve de ce théorème en 2 lemmes.

Lemme 2.2.4 Soient 1 < q < +∞, Θ 1 et B 1 deux fonctions intérieures de H ∞ . Supposons que l'opérateur de Toeplitz T Θ 1 B 1 soit de Fredholm dans H q . Alors, il existe ε > 0 tel que pour toutes fonctions intérieures

Θ 2 , B 2 satisfaisant Θ 1 -Θ 2 ∞ < ε et B 1 -B 2 ∞ < ε, l'opérateur T Θ 2 B 2 est de Fredholm dans H q et ind q T Θ 1 B 1 = ind q T Θ 2 B 2 .
Preuve Comme T Θ 1 B 1 est de Fredholm dans H q , il existe η > 0 tel que T Θ 1 B 1 +A est de Fredholm dans H q , pour tout opérateur A satisfaisant A < η (voir [START_REF] Kato | Perturbation theory for linear operators[END_REF]). De plus, nous avons

ind q T Θ 1 B 1 + A = ind q T Θ 1 B 1 . D'autre part, T Θ 1 B 1 -T Θ 2 B 2 = T Θ 1 B 1 -Θ 2 B 2 = sup f ∈H q f q 1 P + (Θ 1 B 1 -Θ 2 B 2 )f q Θ 1 B 1 -Θ 2 B 2 ∞ B 1 -B 2 ∞ + Θ 1 -Θ 2 ∞ . Donc, si B 1 -B 2 ∞ < η 2 et Θ 1 -Θ 2 ∞ < η 2 , alors T Θ 2 B 2 = T Θ 1 B 1 + T Θ 2 B 2 -T Θ 1 B 1 est Fredholm dans H q et ind q T Θ 1 B 1 = ind q T Θ 2 B 2 .
Lemme 2.2.5 Soient 1 < q < +∞, ϕ , ψ ∈ L ∞ (T) telle que ind q T ϕ = ind q T ψ . Alors dim ker q T ϕ = dim ker q T ψ .

Preuve Premier cas : ker q T ϕ = {0}. Alors ind q T ψ = ind q T ϕ = -dim ker p T * ϕ 0. Supposons que ker q T ψ = {0}. Alors, d'après le lemme 2.2.2, nécessairement ker p T * ψ = {0} et donc ind q T ψ = dim ker q T ψ > 0, ce qui est absurde. Donc ker q T ψ = {0}.

Deuxième cas : ker q T ϕ = {0}. D'après le lemme 2.2.2, ker p T * ϕ = {0} et donc ind q T ψ = ind q T ϕ = dim ker q T ϕ > 0. Un raisonnement analogue montre que ker p T * ψ = {0} et donc ind q T ψ = dim ker q T ψ . Par conséquent, on obtient dim ker q T ϕ = dim ker q T ψ .

Preuve (du théorème 2.2.3) D'après le lemme 2.2.4, il existe ε > 0 tel que,

pour toute suite Λ = (λ n ) n 1 ⊂ D et toute fonction intérieure Θ 2 satisfaisant (8), l'opérateur T Θ 2 B Λ est de Fredholm dans H q et ind q T Θ 1 B Λ = ind q T Θ 2 B Λ .
Le lemme 2.2.5 entraîne alors que

dim ker q T Θ 1 B Λ = dim ker q T Θ 2 B Λ , ce qui est équivalent, d'après le lemme 2.2.1, à codim K p Θ 1 (span {k Θ 1 (., λ n ) : n 1}) = codim K p Θ 2 span {k Θ 2 (., λ n ) : n 1} . Remarque 2.2.6 Si Λ = (λ n ) n 1 est une suite dans D et Θ est une fonc- tion intérieure dans H ∞ telles que T ΘB est de Fredholm et (k Θ (., λ n )) n 1 est complète dans K p Θ , alors le théorème 2.2.3 montre qu'il existe ε > 0 tel que pour toute suite Λ = (λ n ) n 1 ⊂ D satisfaisant B Λ -B Λ ∞ < ε , (9) 
la suite (k Θ (., λ n )) n 1 est aussi complète dans K p Θ . La question naturelle qui se pose est de comparer les deux conditions de stabilité (2) et (9). Tout d'abord, notons que la condition (9) n'implique pas la condition (2). En effet, considérons B Λ = n 1 b λn un produit de Blaschke. Le théorème de Frostman implique l'existence de ζ ∈ D, suffisamment petit, pour que

B Λ := B Λ -ζ 1 -ζB Λ soit un produit de Blaschke tel que B Λ -B Λ ∞ < 1. Il est alors facile de voir que, pour tout n 1, on a |b λ n (λ n )| |B Λ (λ n )| = |ζ| > 0 et donc n 1 |b λ n (λ n )| = +∞ .
Par contre, la réciproque est vraie dans le sens suivant :

Théorème 2.2.7 Soit Λ = (λ n ) n 1 une suite de Blaschke telle que λ n = 0, n 1. Il existe C = C(Λ) > 0 tel que, pour toute suite Λ = (λ n ) n 1 vérifiant n 1 |b λn (λ n )| < C , alors la suite (λ n ) n 1 est de Blaschke et B Λ -B Λ ∞ < 1 .
Preuve Le résultat de Vinogradov-Havin, déjà mentionné ci-dessus, montre que si C < 1, alors la suite (λ n ) n 1 est nécessairement de Blaschke. Commençons, tout d'abord, par évaluer b

λ -b µ ∞ , où λ, µ ∈ D. On a b λ -b µ ∞ = b λ • b -1 µ -z ∞ . Un calcul élémentaire montre alors que b λ • b -1 µ (z) = c λµ z -b µ (λ) 1 -b µ (λ)z , où c λµ := |λ| λ µ |µ| 1-λµ 1-λµ . On en déduit donc que b λ -b µ ∞ |c λµ -1| + 2|b µ (λ)| 1 -|b µ (λ)| .
Or, un calcul facile montre que

|c λµ -1| 4 |λ| |b λ (µ)|. Par conséquent, on obtient b λ -b µ ∞ 4 |λ| + 2 |b λ (µ)| 1 -|b λ (µ)| 2 4 |λ| + 2 |b λ (µ)| . (10) 
Comme (λ n ) n 1 est une suite de Blaschke et

λ n = 0, n 1, on a c := inf n 1 |λ n | > 0. Montrons alors que, pour toute suite (λ n ) n 1 ⊂ D satisfaisant n 1 |b λn (λ n )| < 1 2( 4 c + 2) , on a B Λ -B Λ ∞ < 1 .
En utilisant (10), on montre facilement, par récurrence, que

n k=1 b λ k - n k=1 b λ k ∞ 2 4 c + 2 n k=1 |b λ k (λ k )| ,
et en faisant tendre n vers +∞, on obtient

B Λ -B Λ ∞ 2 4 c + 2 k 1 |b λ k (λ k )| < 1 . Si Θ 0 et Θ 1 sont deux fonctions intérieures, considérons l'application ϕ définie par ϕ : [0, 1] → H ∞ t → ϕ(t) := tΘ 1 + (1 -t)Θ 0 .
Si on impose une condition de Fredholm sur les opérateurs T Θϕ(t) , on a le résultat suivant :

Théorème 2.2.8 Soient 1 < p < +∞, Θ, Θ 0 et Θ 1 trois fonctions intérieures dans H ∞ . Supposons que, pour tout t ∈ [0, 1], T Θϕ(t) est de Fredholm dans H q . Alors ind q T ΘΘ 0 = ind q T ΘΘ 1 .

En particulier, si Θ 0 = B Λ et Θ 1 = B Λ sont deux produits de Blaschke à zéros simples, nous avons

codim K p Θ (span {k Θ (., λ n ) : n 1}) = codim K p Θ span {k Θ (., λ n ) : n 1} . Preuve Posons φ : [0, 1] → N t → ind q T Θϕ(t) .
Rappelons que l'application ind est continue (voir [START_REF] Kato | Perturbation theory for linear operators[END_REF]) et donc l'application φ est nécessairement constante. Par conséquent, ind q T ΘΘ 0 = ind q T ΘΘ 1 .

Dans le cas particulier où Θ 0 = B Λ et Θ 1 = B M , il suffit d'appliquer les lemmes 2.2.5 puis 2.2.1.

Dans le cas où Θ 0 et Θ 1 sont des perturbations de Frostman d'une même fonction intérieure, il n'est pas nécessaire de supposer que T Θϕ(t) est Fredholm. Le cadre est le suivant. Soit Θ une fonction intérieure. Pour λ ∈ D, notons par Θ λ la "transformée de Frostman" de Θ, c'est-à-dire la fonction intérieure définie par

Θ λ := Θ -λ 1 -λΘ .
Pour préciser un peu plus les choses, nous allons avoir besoin d'une version améliorée du théorème de O. Frostman qui est un fait bien connu des spécialistes.

Remarque 2.2.9 Soit Θ une fonction intérieure. Alors il existe un ensemble Ω ⊂ D, de mesure nulle, tel que, pour tout λ ∈ D \ Ω, la fonction Θ λ est un produit de Blaschke à zéros simples.

Preuve D'après le théorème de Frostman classique (voir [START_REF] Garnett | Bounded analytic functions[END_REF] ou [START_REF] Nikolskii | Treatise on the shift operator[END_REF]), il existe Ω 0 ⊂ D, de mesure nulle, telle que pour tout λ ∈ D \ Ω 0 , Θ λ est un produit de Blaschke. D'autre part, il est facile de vérifier que

Θ λ = (1 -|λ| 2 )Θ (1 -λΘ) 2 . Considérons Ω := Ω 0 ∪ Θ(Θ -1 (0)) .
Comme Θ est analytique, Θ -1 (0) est dénombrable et donc Θ(Θ -1 (0)) est de mesure nulle. Par conséquent, Ω est aussi de mesure nulle. De plus, si λ ∈ D\Ω, alors par définition, Θ λ est un produit de Blaschke. Notons par

(λ n ) n 1 la suite des zéros de Θ λ . Comme λ ∈ c Θ(Θ -1 (0)), on a Θ (λ n ) = 0 ∀n 1 . En effet, supposons qu'il existe n 0 1 tel que Θ (λ n 0 ) = 0. Alors, λ = Θ(λ n 0 ) ∈ Θ(Θ -1 (0)), ce qui est absurde. Par conséquent, Θ λ (λ n ) = 0 ∀n 1 ,
et Θ λ est bien un produit de Blaschke à zéros simples.

On a alors le résultat suivant Théorème 2.2.10 Soient 1 < p < +∞, Θ 1 et Θ deux fonctions intérieures. Alors

dim ker q T Θ 1 Θ λ ≡ cte, et dim ker q T Θ 1 Θ λ ≡ cte, ∀λ ∈ D . D'autre part, si λ, λ ∈ D \ Ω, avec Θ λ := n 1 b λn et Θ λ := n 1 b λ n , on a codim K p Θ 1 (span {k Θ 1 (., λ n ) : n 1}) = codim K p Θ 1 span {k Θ 1 (., λ n ) : n 1} . Preuve Soit ζ ∈ D. Nous avons ΘΘ ζ = h h , avec h := 1 -ζΘ. Comme 0 < 1 -|ζ| |h(z)| 2 , ∀z ∈ D , la fonction h est extérieure et h, h -1 ∈ H ∞ . Par conséquent, T Θ 1 Θ =T Θ 1 Θ ζ Θ ζ Θ =T Θ 1 Θ ζ h h =(T h -1 ) * T Θ 1 Θ ζ T h . Comme h, h -1 ∈ H ∞ , les opérateurs T h et T h -1 sont inversibles, et donc dim ker q T Θ 1 Θ ζ = dim ker q T Θ 1 Θ .
On en déduit aussi que 

T Θ 1 Θ = T * Θ 1 Θ = T * h T Θ 1 Θ ζ T h -1 , et donc dim ker q T Θ 1 Θ ζ = dim ker q T Θ 1 Θ . Si λ, λ ∈ D\Ω, avec Θ λ := n 1 b λn et Θ λ := n 1 b λ n deux
(B, ΘH ∞ ) < 1 , et dist (Θ N , BH ∞ ) < 1 .
Une amélioration de ce résultat avec N = 1 permettrait de répondre par l'affirmative au problème posé par N. Nikolski. Cependant, jusqu'à présent ce problème reste ouvert. Le corollaire 2.2.11 montre que l'analogue de cette question pour la complétude admet une réponse positive.

3 Complétude de la biorthogonale pour les noyaux reproduisants.

Résultat principal

Cette section est consacrée à l'étude de la complétude de la biorthogonale pour les noyaux reproduisants. On se donne Λ = (λ n ) n 1 ⊂ D et Θ une fonction intérieure de H ∞ telle que la suite (k Θ (., λ n )) n 1 est complète et minimale dans K Θ . Nous nous demandons alors si la biorthogonale à (k Θ (., λ n )) n 1 est, elle aussi, complète dans K Θ .

Rappelons la définition suivante :

Définition 3.1.1 Une suite à la fois minimale et complète est dite exacte.

Remarquons que si (k Θ (., λ n )) n 1 est exacte dans K Θ alors Λ = (λ n ) n 1 est une suite de Blaschke. En effet, si Λ = (λ n ) n 1 n'est pas de Blaschke alors span {k Θ (., λ n ) : n 2} = K Θ , ce qui contredit la minimalité de la suite.

Par conséquent, sans perte de généralité pour le problème de la complétude de la biorthogonale, on peut supposer que Λ = (λ n ) n 1 est une suite de Blaschke, sans multiplicité.

En imposant une condition sur Θ, nous donnons un résultat de complétude pour la biorthogonale, qui nous permettra, en outre, de retrouver le résultat de Young sur les systèmes d'exponentielles.

Théorème 3.1.2 Soit Θ une fonction intérieure de H ∞ (D) telle que sup z∈D |Θ (z)(1- z) 2 | < +∞. Soit (λ n ) n 1 ⊂ D telle que la suite (k Θ (., λ n )) n 1 est exacte dans K Θ . Alors sa biorthogonale est aussi exacte dans K Θ .
Pour des raisons de lisibilité de la preuve, nous allons passer au demi-plan supérieur C + . Il est facile de voir, en utilisant l'isomorphisme entre H 2 (D) et H 2 (C + ) que l'analogue du théorème 3.1.2 dans le demi-plan supérieur est : Le fait suivant, bien connu et dont la preuve est laissée au lecteur, sera également utile :

Théorème 3.1.3 Soit Θ une fonction intérieure dans H ∞ (C + ) telle que Θ ∈ L ∞ (R). Soit M = (µ n ) n 1 ⊂ C + telle que (k Θ (., µ n )) n 1 est exacte dans K + Θ . Alors,
Lemme 3.1.6 Soient f ∈ K + Θ et µ ∈ C + tels que f (µ) = 0. Alors f z -µ ∈ K + Θ .
Preuve (du théorème 3.1.3) Considérons f := (z -µ 1 )ψ 1 .

Fait 1 : les seuls zéros de f sont les µ n et chaque µ n est un zéro simple. Supposons qu'il existe µ = µ n tel que f (µ) = 0. Alors nécessairement ψ 1 (µ) = 0 et donc ψ 1 est orthogonale à (k Θ (., µ n )) n 2 ∪ (k Θ (., µ)). D'autre part, l'analogue du corollaire 2.1.8 pour le demi-plan supérieur montre que (k Θ (., µ n )) n 2 ∪ (k Θ (., µ)) est complète dans K + Θ , ce qui entraîne une contradiction car ψ 1 ≡ 0. Remarquons maintenant que, ∀n 1, f (µ n ) = 0. En effet, supposons qu'il existe n 0 1 tel que f (µ n 0 ) = 0. On a

f (z) = ψ 1 (z) + (z -µ 1 )ψ 1 (z) , et donc f (µ 1 ) = 1 Nécessairement n 0 2 et ψ 1 (µ n 0 ) = 0. Considérons alors µ = µ n , n 1, et g := z -µ z -µ n 0 ψ 1 .
On a g = ψ 1 + (µ n 0 -µ) ψ 1 z -µ n 0 et donc le lemme 3.1.6 montre que g ∈ K + Θ . D'autre part, g(µ) = 0 et g(µ n ) = 0, n 2. L'analogue du corollaire 2.1.8 pour le demi-plan supérieur permet encore d'aboutir à une contradiction. Par conséquent, f (µ n ) = 0, ∀n 1, ce qui achève la preuve du fait 1.

Soit h ∈ K + Θ telle que h, ψ n = 0 , ∀n 1 .

Il s'agit de montrer que h ≡ 0. En utilisant le lemme 3.1.6 et par unicité de la biorthogonale, il est facile de voir que

ψ n = f f (µ n )(z -µ n )
, n 1 . 

h ∈ K + Θ , on peut écrire h = p 1 a p k Θ (., γ p ) , avec h 2 2 = p 1 |a p | 2 k Θ (., γ p ) 2 < +∞ .
En utilisant (11), on obtient

p 1 a p f (γ p ) γ p -µ n = 0 , n 1 . ( 12 
)
Supposons qu'il existe p 0 ∈ N tel que γ p 0 = 0 et, pour p = p 0 , posons c p := a p f (γ p ) γ p (sinon, on définit c p de la même manière, pour tout p 1).

Fait 2 : on a, pour tout n 1, 

- a p 0 f (γ p 0 ) µ n + r + µ n p =p 0 c p γ p -µ n = 0 , (13) 

Ceci prouve que

p =p 0 c p k Θ (z, γ p ) ∈ K + Θ , et achève la preuve du fait 3. Comme g = g 1 + (z -µ 1 )g 2 + µ 1 g 2 , en utilisant le lemme 3.1.6, on montre que

g := g z -µ 1 = g 2 + g 1 + µ 1 g 2 z -µ 1 ∈ K + Θ .
Remarquons, d'autre part, que pour tout p 1, g(γ p ) = a p f (γ p ) k Θ (., γ p ) 2 . (14)

Si g(µ 1 ) = 0, comme la suite (k Θ (., µ n )) n 1 est complète dans K + Θ , cela implique que g ≡ 0, et donc, g ≡ 0. En utilisant (14), on obtient donc a p f (γ p ) k Θ (., γ p ) 2 = 0 , ∀p 1 , et comme f (γ p ) = 0, on a a p = 0, p 1, ce qui donne h ≡ 0. On peut donc supposer que g(µ 1 ) = 0, c'est à dire que g (µ 1 ) = 0. D'après le lemme 3.1.6, la fonction Remerciements : une grande partie de ce travail a été effectuée durant ma thèse, encadrée par N. Nikolski. Je voudrais à cette occasion le remercier chaleureusement.
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  Introduction Nous notons par D = {z ∈ C : |z| < 1} le disque unité, par T = {z ∈ C : |z| = 1} le cercle unité et pour 1 p + ∞, H p = {f : D -→ C holomorphe : sup 0 r<1 T |f (rζ)| p dm(ζ) < ∞} désigne l'espace de Hardy du disque unité. De façon habituelle, on identifiera H p avec le sous-espace des fonctions f ∈ L p (T) pour lesquelles f (n) = 0, n < 0. Rappelons qu'une fonction Θ ∈ H ∞ est dite intérieure si |Θ(ζ)| = 1 pour presque tout ζ ∈ T. On associe à toute fonction intérieure le sous-espace K p Θ := H p ∩ ΘH p 0 , où H p 0 = {f ∈ H p : f (0) = 0} et la barre désigne la conjugaison complexe. En considérant la dualité naturelle entre H p et H p , définie par f, g := T f (ζ)g(ζ) dm(ζ) , f ∈ H p , g ∈ H p , on peut définir de façon équivalente K p Θ comme l'ensemble des fonctions f ∈ H p pour lesquelles f, Θg = 0, ∀g ∈ H p .

  sa biorthogonale, (ψ n ) n 1 , est aussi exacte dans K + Θ .Remarque 3.1.4 La condition Θ ∈ L ∞ (R) est vérifiée, par exemple, pour Θ(z) = exp(iaz)B(z) où B est un produit de Blaschke d'interpolation pour lequel dist (B -1 (0), R) > 0. En fait, J.Garnett (voir [Gar81]) a montré que la condition Θ ∈ L ∞ (R) est équivalente à l'une des deux conditions suivantes : (i) il existe h > 0 tel que inf{|Θ(z)| : 0 < mz < h} > 0 (ii) Θ est inversible dans l'algèbre de Douglas [H ∞ , exp(-ix)], c'est-à-dire l'algèbre engendrée par H ∞ et l'ensemble de toutes les fonctions uniformément continues et bornées sur R.Pour la preuve de ce théorème, nous allons avoir besoin du résultat suivant, qui est une conséquence simple du résultat de D. Clark[START_REF] Ahern | Radial limits and invariant subspaces[END_REF]. Lemme 3.1.5 Soit Θ une fonction intérieure dans H ∞ (C + ) telle que Θ ∈ L ∞ (R). Alors, il existe une suite (γ p ) p 1 ⊂ R et |c| = 1 tels que Θ(γ p ) = c, p 1, et la famille k Θ (z, γ p ) := i 1 -cΘ(z) z -γ p p 1 forme une base orthogonale de K + Θ . De plus, lim p→+∞ |γ p | = +∞.

D

  'autre part, d'après le lemme 3.1.5, il existe une suite (γ p ) p 1 ⊂ R, Θ(γ p ) = c, p 1, telle que la famille k Θ (z, γ p ) := i 1 -cΘ(z) z -γ p p 1 forme une base orthogonale de K + Θ . De plus, lim p→+∞ |γ p | = +∞. Comme

où r := p =p 0 c p . 2 ,

 p2 Remarquons tout d'abord que (c p ) p =p 0 ∈ 1 . En effet, on ac p =a p (γ p -µ 1 )ψ 1 (γ p ) γ p = γ p -µ 1 γ p borné a p k Θ (., γ p ) ∈ 2 ψ 1 , k Θ (., γ p ) k Θ (., γ p )∈ ce qui montre que (c p ) p =p 0 ∈ 1 . D'après (12), en écrivant γ p = (γ p -µ n ) + µ n , on obtient alors aisément (13). Considéronsg(z) := -i(1 -cΘ(z))   -a p 0 f (γ p 0 )

Fait 3 :

 3 g s'écrit g = g 1 + zg 2 , avec g 1 , g 2 ∈ K + Θ et g(µ n ) = 0, pour tout n 1. D'aprés (13), il est immédiat de voir que g(µ n ) = 0, n 1. De plus, on ag(z) = a p 0 f (γ p 0 )k Θ (z, γ p 0 ) ∈K + Θ -ir(1 -cΘ(z)) ∈zK + Θ +z p =p 0 c p k Θ (z, γ p ) , et donc, il reste à montrer que p =p 0 c p k Θ (z, γ p ) ∈ K + Θ . Or, on a |c p | 2 k Θ (., γ p ) 2 = |a p | 2 k Θ (., γ p ) 2 γ p -µ 1 γ p 2 |ψ 1 (γ p )| 2 . La condition Θ ∈ L ∞ (R) entraîne alors que K + Θ ⊂ L ∞ (R) (voir [Dya94a]) ce qui implique que (ψ 1 (γ p )) p 1 est bornée. La suite γ p -µ 1 γ p ψ 1 (γ p ) p =p 0 est donc aussi bornée et p =p 0 |c p | 2 k Θ (., γ p ) 2 < +∞ .

  g g (µ 1 )(z -µ 1 ) -f f (µ 1 )(z -µ 1 ) est dans K + Θ et s'annule aux points µ n , n 1. Par conséquent, elle est identiquement nulle et il existe A ∈ C tel que g ≡ Af . D'après (14), Af (γ p ) = a p f (γ p ) k Θ (., γ p ) 2 , ce qui donne, comme f (γ p ) = 0, |a p | 2 k Θ (., γ p ) 2 = |A| 2 k Θ (., γ p ) 2 . D'autre part, on a k Θ (., γ p ) 2 = |Θ (γ p )| Θ ∞ , et donc |A| 2 Θ ∞ |a p | 2 k Θ (., γ p ) 2 → 0 , ce qui implique nécessairement que A = 0 et donc a p = 0, p 1, c'est-à-dire h ≡ 0.En utilisant le fait que la propriété de complétude pour la biorthogonale reste invariante par transformation unitaire et en appliquant le théorème 3.1.3 à la fonction Θ(z) := exp(iaz),il est facile de voir qu'on retrouve très facilement le résultat de Young. Signalons que ce résultat sur les exponentielles a été redécouvert par Yu. Lyubarskii (1996 ; manuscrit) avec une preuve différente de celle de Young.Corollaire 3.1.7 (Young,[START_REF] Young | On complete biorthogonal systems[END_REF])Soit M = (µ n ) n 1 ⊂ C telle que inf n 1 mµ n > -∞.Si la suite d'exponentielles (exp(iµ n t)) n 1 est exacte dans L 2 (-π, π) alors sa biorthogonale est aussi exacte dans L 2 (-π, π).

  Mêmedans ce cas particulier donc, on ne connait pas de critère géométrique portant sur les fréquences (µ n ) n 1 . Les travaux les plus avancés restent ceux de A.

Beurling et P. Malliavin qui ont donné une méthode pour calculer le rayon de complétude d'une suite d'exponentielles (exp(iµ n t)) n 1 en fonction d'une certaine densité (voir [BM62] et [BM67] pour les travaux originaux, [KT90] pour une réinterprétation de ces résultats, [Red77] et [Koo96] pour une présentation très complète du sujet). Dans cet article, nous allons étudier deux problèmes plus particulièrs relatifs à cette complétude des noyaux reproduisants. Le premier problème auquel nous nous intéressons est un problème de stabilité :

  voir théorème 2.2.3). Si B Λ et B Λ sont les transformées de Frostman d'une même fonction intérieure, alors (k Θ (., λ n )) n 1 et (k Θ (., λ n )) n 1 sont simultanément complètes ou non dans K p Θ (voir théorème 2.2.10). Ce résultat nous permet d'obtenir comme corollaire l'existence, pour toute fonction intérieure Θ de H ∞ , d'une suite de Blaschke

  Ceci prouve que notre théorème n'est pas optimal. Cependant, cet exemple montre aussi que le résultat 2.1.4 n'est plus valide pour les noyaux reproduisants de l'espace modèle K

			permet d'affirmer que si
	|δ n |	1 2q	,	∀n ∈ Z ,

alors (exp(iµ n t)) n∈Z est complète dans L p (-π, π). D'autre part, si on calcule |b + µn (µ n )|, le corollaire 2.1.2 donne comme condition suffisante de stabilité n∈Z |δ n | < +∞ .

  mµ n < 0 En utilisant la théorie des fonctions entières et la factorisation d'Hadamard, on peut alors montrer (voir [Fri99], théorème 2.2.4, page 61-62) que les suites (exp(iµ n t)) n 1 et (exp(iµ * n t)) n 1 d'une part et, les suites (exp(iµ n t)) n 1 et (exp(iµ n * t)) n 1 d'autre part, sont complètes ou non simultanément dans L 2 (-a, a). ) n 1 d'autre part, sont complètes ou non simultanément dans L 2 (-a, a). Le résultat se déduit alors aisément du corollaire 2.1.2 et du calcul suivant

	iδ)t)
	Fixons maintenant δ > 0. Comme l'application φ(t) -→ φ(t) exp(-δt) est
	un isomorphisme sur L 2 (-a, a), on remarque que les suites (exp(iµ * n t)) n 1 et (exp(i(µ * n + iδ)t)) n 1 d'une part et, les suites (exp(iµ n * t)) n 1 et (exp(i(µ n * +

  Chan et S. Seubert cherchent des conditions nécessaires et suffisantes pour que le noyau d'un opérateur de Toeplitz soit non trivial, dans le cas où le symbole est le quotient de deux fonctions intérieures. Ils montrent, en particulier, que si Θ 0 et Θ 1 sont deux fonctions intérieures telles que ker 2

  Corollaire 2.2.11 Soit Θ une fonction intérieure de H ∞ . Alors il existe une suite de BlaschkeΛ = (λ n ) n 1 ⊂ D telle que (k Θ (., λ n )) n 1 est complète dans K p Θ , pour tout 1 < p < +∞.Preuve D'après le théorème 2.2.10, on a dim ker q T ΘΘ λ ≡ cte , ∀λ ∈ D . D'autre part, T ΘΘ 0 = T ΘΘ = T I où I désigne l'application identiquement égale à 1 et donc dim ker q T ΘΘ λ = 0 ∀λ ∈ D . Il suffit alors de choisir λ ∈ D tel que Θ λ := Remarque 2.2.12 Dans [Nik86], N. Nikolski a posé la question suivante : étant donnée une fonction intérieure Θ arbitraire, existe-t-il une suite Λ = (λ n ) n 1 ⊂ D telle que (k Θ (., λ n )) n 1 forme une base inconditionnelle de K Θ ? Dans [Dya92], K. Dyakonov a obtenu le résultat suivant : il y a une constante absolue N ∈ N telle que, pour toute fonction intérieure Θ, il existe un produit de Blaschke B d'interpolation et vérifiant dist

	b λn soit un produit de Blaschke
	n 1
	à zéros simples, ce qui est possible d'après la remarque 2.2.9
	produits de Blaschke
	à zéros simples, il suffit d'appliquer le lemme 2.2.1.