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1. Introduction

This is a set of lecture notes to accompany a series of talks given as part of the Fields

Institute session on Truncated Toeplitz Operators from July–December 2021. To prepare

these notes, we intensely use two recent surveys on truncated Toeplitz operators [17, 32],

as well as [35, Chapter 13] and the founding paper [51].

Truncated Toeplitz operators on model spaces have been formally introduced by Sarason

in [51], although some special cases have long ago appeared in literature, most notably as

model operators for completely nonunitary contractions with defect numbers one and for

their commutant. This new area of study has been recently very active and many open

questions posed by Sarason in [51] have now been solved. See [6, 7, 9, 8, 16, 18, 31,

32, 33, 53, 54]. Nevertheless, there are still basic and interesting questions which remain

mysterious.

The truncated Toeplitz operators live on the model spaces KΘ, which are the closed

invariant subspaces for the backward shift operator S∗ acting on the Hardy space H2

(see Section 2 for precise definitions). Given a model space KΘ and a function φ ∈ L2 =

L2(T), the truncated Toeplitz operator AΘ
φ (or simply Aφ if there is no ambiguity regarding

the model space) is defined on a dense subspace of KΘ as the compression to KΘ of

multiplication by φ. The function φ is then called a symbol of the operator. Note that

the symbol is never uniquely defined by the operator. From this and other points of view

the truncated Toeplitz operators have much more in common with Hankel Operators than

with Toeplitz operators.

We intend to give a short introduction to this fascinating area of research. Our objective

is not to be exhaustive but rather to make discover the different techniques and the beauty

of this theory through some key results.

The structure of the paper is the following. After a preliminary section with generalities

about Hardy spaces, model spaces, one-component inner functions (which will play a special

role here), Toeplitz and Hankel operators, and Carleson measures, first for the whole

H2 and then for model spaces, truncated Toeplitz operators are introduced in Section 3.

Then, in Section 4, we discuss why it is worth studying truncated Toeplitz operators.

We explain how they appear in several natural problems in operator theory and complex

function theory. In Section 5, we describe the class of symbols, because one difficulty

with truncated Toeplitz operators, compared to the classical Toeplitz operator, is that

the symbol is never unique. In Sections 6 and 7, we give several useful characterization

of truncated Toeplitz operators and discuss some interesting connections with another

important class of operators, the so-called complex symmetric operators. In Section 8, we

give some estimates on the norm of a truncated Toeplitz operator, while in Section 9, we

obtain a complete description of the spectrum of a truncated Toeplitz operator associated
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to a symbol in H∞. In Section 9 and 10, we discuss the class of finite rank and compact

truncated Toeplitz operators. Finally, in the last section, we discuss the important problem

of the existence of a bounded symbol.

2. Preliminaries

For the content of this section, [26, 43] are classical references for general facts about

Hardy spaces, while [46] can be used for Toeplitz and Hankel operators and [35] for model

spaces. We recall the main definitions and properties but we assume that the reader is a

little familiar with the theory of Hardy spaces and Toeplitz operators

2.1. Function spaces, multiplication operators and their cognates. Recall that for

1 ≤ p < +∞, the Hardy space Hp of the open unit disk D = {z ∈ C : |z| < 1} is the space

of analytic functions f on D satisfying ‖f‖p < +∞, where

‖f‖p = sup
0≤r<1

(∫ 2π

0

|f(reit)|p dt
2π

)1/p

.

The algebra of bounded analytic functions on D, equipped with the sup norm, is denoted

by H∞. We denote also Hp
0 = zHp and Hp

− = zHp. Alternatively, Hp can be identified

(via radial limits) to the subspace of functions f ∈ Lp = Lp(T) for which f̂(n) = 0 for

all n < 0. Here T denotes the unit circle with normalized Lebesgue measure m and f̂(n)

denotes the n-th Fourier coefficient of f . We also denote by C(T) the space of continuous

functions on T.

In the case p = 2, H2 becomes a Hilbert space with respect to the scalar product

inherited from L2 and given by

〈f, g〉2 =

∫
T
f(ζ)g(ζ) dm(ζ), f, g ∈ L2.

The orthogonal projection from L2 to H2 will be denoted by P+. The space H2
− is precisely

the orthogonal of H2, and the corresponding orthogonal projection is P− = I − P+.

The Poisson transform of a function φ ∈ L1 is

(2.1) (Pφ)(z) =

∫
T

1− |z|2

|ζ − z|2
ϕ(ζ) dm(ζ),

A classical property of Poisson integral (see [49, Chapter 11]) says that if φ ∈ L1 and φ is

continuous on an open arc I ⊂ T, then for every ζ ∈ I, we have

(2.2) lim
z→ζ

(Pφ)(z) = φ(ζ).
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For φ ∈ L∞, we denote by Mφf = φf the multiplication operator on L2; we have

‖Mφ‖ = ‖φ‖∞. The Toeplitz operator Tφ : H2 −→ H2 and the Hankel operator Hφ :

H2 −→ H2
− = L2 	H2 are given by the formulae

Tφ = P+Mφ, Hφ = P−Mφ.

We have T ∗φ = Tφ and H∗φ = P+MφP−. In the case where φ is analytic, Tφ is just the

restriction of Mφ to H2.

Example 2.1. A particular important case is when φ(z) = z. The corresponding Toeplitz

operator S = Tz is called the shift operator and plays a central role in analytic function

spaces. Its adjoint S∗ = Tz̄ is called the backward shift operator . One can easily check that

(S∗f)(z) =
f(z)− f(0)

z
, f ∈ H2.

See [46] for a comprehensive study of the shift operator.

A well-known result of Brown–Halmos says that it T : H2 −→ H2 is a bounded linear

operator on H2, then T is a Toeplitz operator if and only if T = STS∗. We have an

analogue for Hankel operator : if H : H2 −→ H2
− is a bounded linear operator from H2

into H2
−, then H is a Hankel operator if and only if HS = P−ZH, where Z : L2 −→ L2 is

the shift operator on L2 (i.e. the multiplication by the independent variable z).

It should be noted that, while the symbols of Mφ and Tφ are uniquely defined by the

operators, this is not the case with Hφ. Indeed, it is easy to check that Hφ = Hψ if and

only if φ−ψ ∈ H∞. So statements about Hankel operators often imply only the existence

of a symbol with corresponding properties.

The definition of Mφ, Tφ and Hφ can be extended to the case when the symbol φ is only

in L2 instead of L∞, obtaining (possibly unbounded) densily defined operators. Then Mφ

and Tφ are bounded if and only if φ ∈ L∞ (and ‖Mφ‖ = ‖Tφ‖ = ‖φ‖∞). The situation is

more complicated for Hφ. Namely, Hφ is bounded if and only if there exists ψ ∈ L∞ with

Hφ = Hψ, and

‖Hφ‖ = inf{‖ψ‖∞ : Hφ = Hψ}
This is known as Nehari’s Theorem; see, for instance, [45, p. 182]. Moreover (but we

will not pursue this in the sequel) an equivalent condition is P−φ ∈ BMO (the space of

bounded mean oscillation on T), and ‖Hφ‖ is then a norm equivalent to ‖P−φ‖BMO.

Related results are known for compactness. The operators Mφ and Tφ are never compact

except in the trivial case φ ≡ 0. Hartman’s Theorem states that Hφ is compact if and

only if there exists ψ ∈ C(T) with Hφ = Hψ; or, equivalently, P−φ ∈ VMO (the space of

vanishing mean oscillation on T). If we know that φ is bounded, then Hφ is compact if

and only if φ ∈ C(T) +H∞.
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We end this subsection by recalling some standard notation. If H is a Hilbert space,

then L(H) denotes the algebra of linear and bounded operator on H. For x, y ∈ H, the

rank-one operator x⊗ y is defined on H by the formula

(x⊗ y)(h) = 〈h, y〉x, h ∈ H,

and for any A,B ∈ L(H), we have

A(x⊗ y)B = Ax⊗B∗y.

2.2. Model spaces and one component inner functions. Suppose now Θ is an inner

function, that is a function in H∞ whose radial limits are of modulus one almost everywhere

on T. Its spectrum is defined by

(2.3) s(Θ) := {ζ ∈ D− : lim inf
λ∈D,λ→ζ

|Θ(λ)| = 0},

where D− denotes the closed unit disc. Equivalently, if Θ = BS is the decomposition of

Θ into a Blaschke product and a singular inner function, then s(Θ) is the union between

the closure of the limit points of the zeros of B and the support of the singular measure

associated to S. We will also define

σ(Θ) = s(Θ) ∩ T.

We define the corresponding shift-coinvariant subspace generated by Θ (also called model

space) by the formula

Kp
Θ = Hp ∩ΘHp

0 = Hp ∩ΘHp
−,

where 1 ≤ p < +∞. We will be especially interested in the Hilbert case, that is when

p = 2. In this case, we also denote by KΘ = K2
Θ and it is easy to see that KΘ is also given

by the following

KΘ = H2 	ΘH2 =
{
f ∈ H2 : 〈f, g〉 = 0,∀g ∈ H2

}
.

The orthogonal projection of L2 onto KΘ is denoted by PΘ. It is well known (see [46, page

34]) that PΘ = P+ − ΘP+Θ̄. Since P+ acts boundedly on Lp, 1 < p < ∞, this formula

shows that PΘ can also be regarded as a bounded operator from Lp into Kp
Θ, 1 < p <∞.

The famous Beurling’s Theorem asserts that all non-trivial closed subspaces of H2 which

are invariant with respect to S∗ are of the form KΘ for some inner function Θ.

The spaces H2 and KΘ are reproducing kernel spaces over the unit disc D. The respective

reproducing kernels are, for λ ∈ D,

kλ(z) =
1

1− λ̄z
,

kΘ
λ (z) =

1−Θ(λ)Θ(z)

1− λ̄z
.
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In other words, for every λ ∈ D, we have

f(λ) = 〈f, kλ〉2, f ∈ H2,

and

f(λ) = 〈f, kΘ
λ 〉2, f ∈ KΘ.

Contrary to the situation of H2, evaluations at certain points ζ ∈ T may also be bounded in

KΘ; this happens precisely when Θ has an angular derivative in the sense of Caratheodory

at ζ [1]. Recall that means that Θ and Θ′ have a non-tangential limit at ζ and |Θ(ζ)| = 1.

Then it is known [1] that evaluation at ζ is continuous on KΘ, and the function kΘ
ζ , defined

by

(2.4) kΘ
ζ (z) :=

1−Θ(ζ)Θ(z)

1− ζ̄z
, (z ∈ D),

belongs to KΘ and is the corresponding reproducing kernel. In other words, for every such

points ζ and every f ∈ KΘ, we have

f(ζ) = lim
r→1−

f(rζ) = 〈f, kΘ
ζ 〉2.

Moreover we have ‖kΘ
ζ ‖2 = |Θ′(ζ)|1/2. We denote by E(Θ) the set of points ζ ∈ T where

Θ has an angular derivative in the sense of Carathéodory.

Of course, when λ ∈ D, the function kΘ
λ belongs to H∞, and thus to every Lp, for p ≥ 1.

In [1] and [25] precise conditions are given for the inclusion of kΘ
ζ into Lp (for 1 < p <∞);

namely, if (ak) are the zeros of Θ in D and σ is the singular measure on T corresponding

to the singular part of Θ, then kΘ
ζ ∈ Lp if and only if

(2.5)
∑
k

1− |ak|2

|ζ − ak|p
+

∫
T

dσ(τ)

|ζ − τ |p
<∞.

Moreover, if (2.5) is satisfied for p = 2, then ζ ∈ E(Θ) and in particular, |Θ(ζ)| = 1.

The following result will be used in Section 12.

Lemma 2.2 ([7]). Let 1 < p < +∞ and let Θ be an inner function. Then we have:

(a) E(Θ2) = E(Θ).

(b) inf
λ∈D∪E(Θ)

‖kΘ
λ ‖2 > 0.

(c) For λ ∈ D, we have

(2.6) C‖kΘ
λ ‖p ≤ ‖kΘ2

λ ‖p ≤ 2‖kΘ
λ ‖p,

where C = ‖PΘ‖−1
Lp→Lp is a constant which depends only on Θ and p. Also, if

ζ ∈ E(Θ), then kΘ2

ζ ∈ Lp if and only if kΘ
ζ ∈ Lp and (2.6) holds for λ = ζ.
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Proof. The proof of (a) is immediate using definition. For the proof of (b), note that, for

λ ∈ D ∪ E(Θ), we have

1− |Θ(0)| ≤ |1−Θ(0)Θ(λ)| = |kΘ
0 (λ)| ≤ ‖kΘ

0 ‖2‖kΘ
λ ‖2 = (1− |Θ(0)|2)1/2‖kΘ

λ ‖2,

which implies

‖kΘ
λ ‖2 ≥

(
1− |Θ(0)|
1 + |Θ(0)|

)1/2

.

It remains to prove (c). Using (2.4), we have kΘ2

λ = (1 + Θ(λ)Θ)kΘ
λ , whence PΘk

Θ2

λ = kΘ
λ .

Thus the result follows from the fact that PΘ is bounded on Lp and from the trivial estimate

|1 + Θ(λ)Θ(z)| ≤ 2, z ∈ T. It is easy to check that the above arguments also hold when

λ = ζ ∈ E(Θ). �

Lemma 2.3. Let Θ be an inner function. Then

(1) KΘ2 = KΘ ⊕ΘKΘ.

(2) KΘ · KΘ ⊂ K1
Θ2. In particular, if f, g ∈ KΘ and f or g is also bounded, then

fg ∈ KΘ2.

Proof. (1) Observe that

H2 = KΘ ⊕ΘH2 = KΘ ⊕Θ(KΘ ⊕ΘH2) = KΘ ⊕ΘKΘ ⊕Θ2H2,

which implies that KΘ2 = H2 	Θ2H2 = KΘ ⊕ΘKΘ.

(2) Let f, g ∈ KΘ, and write f = Θf1, g = Θg1, with f1, g1 ∈ H2
0 . Then fg ∈ H1 and

since f1g1 ∈ H1
0 , we also have fg = Θ2f1g1. That means that fg ∈ H1 ∩ Θ2H1

0 = K1
Θ2 .

Finally, observe that if f or g is bounded, then f1 or g1 is also bounded and then fg ∈
H2 ∩Θ2H2 = KΘ2 . �

It follows from Lemma 2.3 that for every λ ∈ D, (kΘ
Θ)2 ∈ KΘ2 .

A useful tool in the theory of model spaces is the notion of conjugation. Recall that a

map C from a Hilbert space H into itself is a conjugation on H if C is anti-linear, isometric

and involutive, meaning that the following properties are satisfied :

(1) for every x, y ∈ H and every λ ∈ C, C(αx+ y) = λCx+ Cy ;

(2) for every x, y ∈ H, 〈Cx,Cy〉 = 〈y, x〉 ;

(3) C2 = I.

It is easy to check that the map CΘ defined on L2 by

(2.7) CΘf = Θz̄f̄ ;

is a conjugation on L2 which has the convenient supplementary property of mapping KΘ

precisely onto KΘ. In other words, its restriction to KΘ is a conjugation on KΘ. When
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convenient we shall write f̃ for CΘf . It can be easily verified that

k̃Θ
λ (z) =

Θ(z)−Θ(λ)

z − λ
, z, λ ∈ D.

In particular, k̃Θ
0 = S∗Θ. Moreover, when Θ has an angular derivative in the sense of

Carathéodory at ζ ∈ T, we have

k̃Θ
ζ (z) =

Θ(z)−Θ(ζ)

z − ζ
= ζ̄Θ(ζ)kΘ

ζ (z), z ∈ D.

In view of their main role in the study of operators on model spaces, we end this sub-

section by a discussion on a particular class of inner functions. Fix a number 0 < ε < 1,

and define

(2.8) Ω(Θ, ε) = {z ∈ D : |Θ(z)| < ε}.

The function Θ is called one-component if there exists a value of ε for which Ω(Θ, ε)

is connected. (If this happens, then Ω(Θ, δ) is connected for every ε < δ < 1.) One-

component functions have been introduced by Cohn [23]. An extensive study of these

functions appears in [5, 4]; all results quoted below appear in [4]. See also [19, 20] for more

recent results on this interesting class.

The above definition is not very transparent. In fact, one-component functions are rather

special: a first immediate reason is that they must satisfy m(σ(Θ)) = 0. This condition,

of course, is not sufficient, but it suggests examining some simple cases.

The set σ(Θ) is of course empty for finite Blaschke products, which are one-component.

The next simplest case is when σ(Θ) consists of just one point. One can prove easily that

the elementary singular inner functions Θ(z) = e
z+ζ
z−ζ (for ζ ∈ T) are indeed one-component.

Suppose then that Θ is a Blaschke product whose zeros an tend nontangentially to a

single point ζ ∈ T. If

(2.9) inf
n≥1

|ζ − an+1|
|ζ − an|

> 0,

then Θ is one-component. So, in particular, if 0 < r < 1 and Θ is the Blaschke product

with zeros 1 − rn, n ≥ 1, then Θ is one-component. If condition (2.9) is not satisfied,

then usually Θ is not one-component. A detailed discussion of such Blaschke products is

given in [4], including the determination of Carleson measures for such model spaces (see

Subsection 2.3).

2.3. Carleson measures for the Hardy spaces and for the model spaces. Let us

discuss first some objects related to the Hardy space; we will afterwards see what analogous

facts are true for the case of model spaces.
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A finite measure µ on D is called a Carleson measure if H2 ⊂ L2(|µ|) (such an inclusion,

if it exists, is automatically continuous). It is known that this is equivalent to Hp ⊂ Lp(|µ|)
for all 1 ≤ p <∞. Carleson measures can also be characterized by a geometrical condition,

as follows. For an arc I ⊂ T such that |I| := m(I) < 1 we define its associated Carleson

window

S(I) = {z ∈ D : 1− |I| < |z| < 1 and z/|z| ∈ I}.

Then µ is a Carleson measure if and only if

(2.10) sup
I

|µ|(S(I))

|I|
<∞.

Condition (2.10) is called the Carleson condition. Note that Carleson measures cannot have

mass on the unit circle (intervals containing a Lebesgue point of the corresponding density

would contradict the condition (2.10)). These measures and condition (2.10) appeared in

the famous work of Carleson on H∞ interpolating sequences [13, 14].

Analogous results may be proved concerning compactness. In this case the relevant

notion is that of vanishing Carleson measure, which is defined by the property

(2.11) lim
|I|→0

|µ|(S(I))

|I|
= 0.

Then the embedding Hp ⊂ Lp(|µ|) is compact if and only if µ is a vanishing Carleson

measure.

Similar questions for model spaces have been developed starting with the papers [23, 24]

and [55]; however, the results in this case are less complete. Let us introduce first some

notations. For 1 ≤ p <∞, define

Cp(Θ) = {µ finite measure on T : Kp
Θ ↪→ Lp(|µ|) is bounded},

It is clear that Cp(Θ) is a complex vectorial subspace of the complex measures on the

unit circle. Using the relations KΘ2 = KΘ ⊕ ΘKΘ and KΘ · KΘ ⊂ K1
Θ2 , it is easy to see

that C2(Θ2) = C2(Θ) and C1(Θ2) ⊂ C2(Θ).

Example 2.4. Let ζ ∈ E(Θ). Then the Dirac measure δζ at point ζ belongs to C2(Θ).

Note that this is in contrast with Carleson measures for the Hardy spaces.

It is natural to look for geometric conditions to characterize these classes. Things are,

however, more complicated, and the results are only partial. We start by fixing a number

0 < ε < 1; then the (Θ, ε)-Carleson condition asserts that

(2.12) sup
I

|µ|(S(I))

|I|
<∞,
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where the supremum is taken only over the intervals |I| such that S(I) ∩ Ω(Θ, ε) 6= ∅.
(Remember that Ω(Θ, ε) is given by (2.8).)

It is then proved in [55] that if µ satisfies the (Θ, ε)-Carleson condition, then the em-

bedding Kp
Θ ⊂ Lp(|µ|) is continuous. The converse is true if Θ is one-component ; in which

case the embedding condition does not depend on p, while fulfilling of the (Θ, ε)-Carleson

condition does not depend on 0 < ε < 1 (see Theorem 2.5 below).

As concerns the general case, it is shown by Aleksandrov [4] that if the converse is true

for some 1 ≤ p < ∞, then Θ is one-component. Also, Θ is one-component if and only if

the embedding condition does not depend on p. More precisely, the next theorem is proved

in [4] (note that a version of this result for p ∈ (1,∞) already appears in [55]).

Theorem 2.5. The following are equivalent for an inner function Θ:

(1) Θ is one-component.

(2) For some 0 < p <∞ and 0 < ε < 1, Cp(Θ) concides with the class of measures that

satisfy the (Θ, ε)-Carleson condition.

(3) For all 0 < p < ∞ and 0 < ε < 1, Cp(Θ) concides with the class of measures that

satisfy the (Θ, ε)-Carleson condition.

(4) The class Cp(Θ) does not depend on p ∈ (0,∞).

In particular, if Θ is one component, then so is Θ2, whence C1(Θ2) = C2(Θ2) = C2(Θ).

Observe that the (Θ, ε)-Carleson condition is less rigid than the Carleson condition (2.10)

because we only need to test condition (2.10) on a subclass of Carleson windows. This

can be explained by the fact that functions in KΘ are in general more regular than an

arbitrary H2 function; in particular, they can be analytically continued in a neighborhood

of T \ σ(Θ), and Ω(Θ, ε) ∩ T ⊂ σ(Θ). Note that a general characterization of C2(Θ) has

recently been obtained in [41]; however, the geometric content of this result is not easy to

see.

3. Truncated Toeplitz operators

3.1. Definition of truncated Toeplitz operators. Let Θ be a (non constant) inner

function and φ ∈ L2. The truncated Toeplitz operator Aφ = AΘ
φ , introduced by Sarason

in [51], is a densely defined, possibly unbounded operator on KΘ. Its domain contains

KΘ ∩H∞, on which it acts by the formula

(3.1) Aφf = PΘ(φf), f ∈ KΘ ∩H∞.

Note that KΘ ∩H∞ is dense in KΘ because it contains the reproducing kernels kΘ
λ , since

we trivially have the following estimate :

|kΘ
λ (z)| ≤ 2

1− |λ|
, z, λ ∈ D.
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If Aφ thus defined extends to a bounded operator, that operator is called a TTO. The class

of all TTOs on KΘ is denoted by T (Θ). In other words,

T (Θ) = {Aφ : φ ∈ L2 and Aφ ∈ L(KΘ)}.

Example 3.1. When φ ∈ L∞, then φf ∈ L2 for all f ∈ KΘ and so

‖PΘ(φf)‖2 ≤ ‖φf‖2 ≤ ‖φ‖∞‖f‖2.

In particular, Aφ is a TTO and ‖Aφ‖ ≤ ‖φ‖∞.

Example 3.2. The case when φ(z) = z will play a special role. It will be denoted by SΘ

and is called the model operator on KΘ (see Section 4.1). In other words,

SΘ(f) = PΘ(zf), f ∈ KΘ.

It is well-known that, in general, Toeplitz operators do not commute. This is also the

case for TTO but in a special case, TTO commute.

Proposition 3.3. Let φ, ψ ∈ H∞. Then AφAψ = AψAφ = Aφψ.

Proof. Let φ, ψ ∈ H∞. Since φΘH2 ⊂ ΘH2, for every f ∈ KΘ, we have

AφAψf = PΘ(φPΘψf) = PΘ(φψf) = Aφψf.

Therefore AφAψ = Aφψ. The second relation AψAφ = Aφψ immediately follows by changing

the role of φ and ψ. �

In particular, according to Proposition 3.3, if φ ∈ H∞, then

AΘ
φSΘ = SΘA

Θ
φ .

In other words, AΘ
φ is in the commutant of SΘ when φ ∈ H∞. An important result says

that the converse is true (see Section 4.2).

Example 3.4. When Θ(z) = zn, for some n ≥ 1, the space KΘ consists of polynomials of

degree less or equal to n − 1 and the set {1, z, . . . , zn−1} forms an orthonormal basis for

KΘ. Moreover, any truncated Toeplitz operator Aφ, when represented with respect to this

basis, yields a Toeplitz matrix. Indeed, for 0 ≤ j, k ≤ n− 1, we have

〈Aφzj, zk〉2 = 〈PΘ(φzj), zk〉2
= 〈φzj, zk〉2
= 〈φ, zk−j〉2
= φ̂(k − j),
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and so the matrix representation of Aφ with respect to the basis {1, z, . . . , zn−1} is the

Toeplitz matrix 

φ̂(0) φ̂(−1) φ̂(−2) . . . . . . φ̂(−n+ 1)

φ̂(1) φ̂(0) φ̂(−1)
. . .

...

φ̂(2) φ̂(1)
. . . . . . . . .

...
...

. . . . . . . . . φ̂(−1) φ̂(−2)
...

. . . φ̂(1) φ̂(0) φ̂(−1)

φ̂(−n+ 1) . . . . . . φ̂(2) φ̂(1) φ̂(0)


It is worth pointing out in this particular case that since KΘ is a finite dimensional

space, then Aφ ∈ T (Θ) for all φ ∈ L2. Conversely, any n× n Toeplitz matrix gives rise to

a truncated Toeplitz operator on KΘ.

3.2. An equivalent definition and some basic properties. The operator Aφ can al-

ternatively be understood as follows. Note that the orthogonal projection PΘ can be seen

as an integral operator on L2 by writing that, for g ∈ L2, we have

(PΘg)(λ) = 〈PΘg, k
Θ
λ 〉2 = 〈g, kΘ

λ 〉2 =

∫
T
gkΘ

λ dm, λ ∈ D.

Now, since for each compact subset K of D, there exists a constant CK such that

sup
λ∈K
|kΘ
λ (ζ)| ≤ CK ,

and since for fixed ζ ∈ T, the function λ 7−→ kΘ
λ (ζ) is analytic on D, the preceding integral

formula still makes sense, and defines an analytic function on D, even when g belongs to

the larger space L1. Moreover, for any φ ∈ L2, we have φf ∈ L1 for all f ∈ KΘ. Thus we

can define the linear transformation

Aφ : KΘ 7−→ O(D)

(here O(D) denotes the analytic function on D) by the integral formula

(3.2) (Aφf)(λ) =

∫
T
φfkΘ

λ dm, f ∈ KΘ, λ ∈ D.

Moreover, the Cauchy–Schwarz inequality yields

(3.3) |Aφf)(λ)| ≤ ‖f‖2‖φ‖2‖kΘ
λ ‖∞, λ ∈ D.

Proposition 3.5. Let Θ be inner, let φ ∈ L2 and let Aφ defined by (3.2). If Aφf ∈ KΘ

for every f ∈ KΘ, then Aφ is bounded on KΘ. Furthermore, in that case, the definitions

in (3.1) and (3.2) for Aφ coincide.
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Proof. To show that the operator defined by (3.2) is bounded, we will use the closed graph

theorem. Suppose that (fn)n≥1 is a sequence in KΘ satisfying fn → f in KΘ and Aφfn → g

in KΘ. First, it follows from (3.3) that, for every λ ∈ D, we have

(Aφfn)(λ)→ (Aφf)(λ).

Second, since Aφfn → g in KΘ, we also have that (Aφfn)(λ) → g(λ) for every λ ∈ D.

Thus Aφf = g and by the closed graph theorem, we conclude that Aφ is bounded on KΘ.

For the proof of the second part of the proposition, observe that the bounded operators

defined by the formulas in (3.1) and (3.2) agree on the dense set KΘ ∩H∞ and therefore

must be equal. �

A basic computation shows that the adjoint of a TTO is itself a TTO.

Proposition 3.6. If φ ∈ L2 such that Aφ ∈ T (Θ), then A∗φ ∈ T (Θ) and

A∗φ = Aφ.

Proof. Let f, g ∈ KΘ ∩H∞. We have

〈f, A∗φg〉2 = 〈PΘ(φf), g〉2 = 〈φf, g〉2
= 〈f, φg〉2 = 〈f, PΘ(φg)〉2
= 〈f, Aφg〉2.

That proves that A∗φ = Aφ, and in particular A∗φ ∈ T (Θ). �

Example 3.7. When φ is in H∞, it turns out that ΘH2 is obviously invariant with respect

to Tφ = Mφ, and so KΘ is invariant with respect to T ∗φ = Tφ. It then follows that

A∗φ = Tφ|KΘ.

In particular,

S∗Θ = S∗|KΘ.

Remark 3.8. The space T (Θ) forms a linear space since we easily have

αAφ + βAψ = Aαφ+βψ, α, β ∈ C, φ, ψ ∈ L2.

However, the product of two truncated Toeplitz operators is not always a truncated Toeplitz

operator. See Example 10.4.

For the class of symbols in H∞, the TTO enable to define a functional calculus for SΘ.

Proposition 3.9 (The H∞ functional calculus of Sz.-Nagy–Foias). Let T : H∞ −→ L(KΘ)

defined by T (φ) = Aφ, φ ∈ H∞. Then T is a contractive morphism of Banach algebra which

extends the polynomial calculus for SΘ. In other words, for every φ, ψ ∈ H∞, for every

α, β ∈ C and for every p ∈ C[X], we have
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(1) T (αφ+ βψ) = αT (φ) + βT (ψ) ;

(2) T (φψ) = T (φ)T (ψ) ;

(3) T (p) = p(SΘ) ;

(4) ‖T (φ)‖ ≤ ‖φ‖∞.

Proof. (1) follows from Remark 3.8, (2) follows from Proposition 3.3 and (4) follows from

Example 3.1. So the only point to check is (3). Let p be a polynomial, p(z) =
∑N

k=0 akz
k.

Using (1), we have

T (p) =
N∑
k=0

akT (zk),

and by (2), T (zk) = T (z)k. But T (z) = Az = SΘ. Hence

T (p) =
N∑
k=0

akS
k
Θ = p(SΘ).

�

In Section 9, we will see that this functional calculus satisfies a spectral mapping theorem

for the subclass of symbols in H∞ ∩C(T).

As we have just seen, the class of bounded analytic symbols already generates a rich

class of operators. Thus, the reader might wonder why we bother defining Aφ for φ ∈ L2

(and possibly unbounded) when one can define Aφ everywhere on KΘ if φ ∈ L∞. We

did not go through all this trouble when defining Toeplitz operators on H2. Indeed for

Toeplitz operators, the symbol is unique in that Tφ1 = Tφ2 if and only if φ1 = φ2 almost

everywhere. Furthermore, one can show that for a symbol φ in L2, the densely defined

operator Tφf = P+(φf), f ∈ H∞, has a bounded extension to H2 if and only if φ ∈ L∞.

For truncated Toeplitz operators, the symbol is never unique (see Theorem 5.1). Moreover,

as will see in Section 12, there are Aφ with φ ∈ L2 that extend to bounded operators on KΘ

but for which there is no bounded symbol that represents Aφ. Moreover, it is well known

that the set of bounded Toeplitz operators on H2 forms a weakly closed linear space in

L(H2). To have a similar result for truncated Toeplitz operators (see Corollary 6.4), we

need to include such unusual operators with symbols in L2.

4. Why studying truncated Toeplitz operators?

Interest in truncated Toeplitz operators has been very strong over the past 15 years.

Besides the fascinating structure of these operators, they can be seen as a natural general-

ization of Toeplitz matrices (see Example 3.4). On the other hand, they naturally appear

in several questions of operator theory and functions theory.
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4.1. The Sz.-Nagy–Foias model. One of the main reasons that model spaces and trun-

cated Toeplitz operators are worthy of study in their own rights stems from the so-called

model theory developed by Sz.-Nagy–Foias, which shows that a wide range of Hilbert space

contractions can be realized concretely as SΘ = AΘ
z on some model space KΘ.

Theorem 4.1 (Sz.-Nagy–Foias). Let T : H −→ H be a Hilbert space contraction. Assume

that

lim
n→∞

‖T nx‖H = 0, (x ∈ H)

and that the operators I − T ∗T and I − TT ∗ are of rank one. Then there exists an inner

function Θ such that T is unitarily equivalent to S∗Θ = S∗|KΘ.

Proof. Let DT be the unique positive square root of the positive operator I − T ∗T , i.e.

DT = (I − T ∗T )1/2. The key point of the proof is the following simple observation. Let x

be any vector in H. Then we have

‖DTT
nx‖2

H = 〈D2
TT

nx, T nx〉H
= 〈(I − T ∗T )T nx, T nx〉H
= ‖T nx‖2

H − ‖T n+1x‖2
H,

which, using the fact that ‖T nx‖ −→ 0, implies that the sequence (DTT
nx)n≥0 is in `2

and its `2-norm is equal to ‖x‖. Note that DTT
nx belongs to the range of DT , which is of

dimension one and thus can be identified by C.

Now, define a linear map U from H into H2 by

(Ux)(z) =
∞∑
n=0

(DTT
nx)zn, (z ∈ D).

Since the sequence (DTT
nx)n≥0 is in `2 and of norm ‖x‖, the map U is well-defined and

isometric from H onto its range E, which is a closed subspace of H2. Then we have

(UTx)(z) =
∞∑
n=0

(DTT
n+1x)zn

= S∗

(
DTTx+

∞∑
n=0

(DTT
n+1x)zn+1

)

= S∗

(
∞∑
n=0

(DTT
nx)zn

)
= (S∗Ux)(z), (z ∈ D),

which reveals that UT = S∗U . This relations implies two things. Firstly, E is a closed

S∗-invariant subspace of H2 and, secondly, T is unitarily equivalent to S∗|E. Note that E
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cannot be equal to H2. Indeed, if E = H2, then we would obtain that the rank of I −TT ∗
would be the rank of I − S∗S which is zero (because S is a contraction on H2), which

contradicts the assumption that I −TT ∗ is of rank one. Therefore, by Beurling’s theorem,

there exists an inner function Θ such that E = KΘ and this proves that T is unitarily

equivalent to S∗|KΘ = S∗Θ. �

We can restate the Sz.-Nagy–Foias theorem as follows.

Corollary 4.2 (Sz.-Nagy–Foias). Let T : H −→ H be a Hilbert space contraction. Assume

that

lim
n→∞

‖T ∗nx‖H = 0, (x ∈ H)

and that the operators I − T ∗T and I − TT ∗ are of rank one. Then there exists an inner

function Θ such that T is unitarily equivalent to SΘ.

4.2. The commutant of SΘ. We discuss now the commutant of SΘ, that is the set

{SΘ}′ = {A ∈ L(KΘ) : ASΘ = SΘA}.

The description of this commutant was obtained by Sarason [50]. His work was motivated

by the study of interpolation problems for bounded analytic functions on the open unit

disc. The description of {SΘ}′ is a deep result known as the commutant lifting theorem

for SΘ. The term ”commutant lifting” stems from the following phenomenon. To find

solutions to the operator equation

(4.1) ASΘ = SΘA

for an A ∈ L(KΘ), we ”lift it” to the operator equation

(4.2) BS = SB,

where S is the shift operator on the larger space H2 and B ∈ L(H2). Then, we apply a

theorem of Brown–Halmos saying that B must be a Toeplitz operator Tφ with φ ∈ H∞. We

then return to (4.1) to prove that A = AΘ
φ . The main difficulty is to lift equation (4.1) into

equation (4.2). This can be proved using dilation theory, further developed by Sz.-Nagy–

Foias in an abstract context. In this note, following [45, Section 3.1.9], we will present

another approach, based on Nehari’s theorem, which uses a link between the commutant

of MΘ and Hankel operators. This link is precisely stated in the following lemma.

Lemma 4.3. Let Θ be an inner function, and let A ∈ L(KΘ). Define

A∗ : H2 −→ H2
−

f 7−→ ΘAPΘf.

Then the following assertions are equivalent.
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(i) ASΘ = SΘA.

(ii) A∗ is a Hankel operator.

Proof. First, let us verify that A∗ is a well-defined operator from H2 into H2
−. Indeed, since

KΘ = H2 ∩ΘH2
−, we have APΘH

2 ⊂ ΘH2
−, which implies that ΘAPΘH

2 ⊂ H2
−.

Moreover,

ASΘ = SΘA ⇐⇒ APΘS = PΘSA, (on KΘ),

⇐⇒ APΘSPΘ = PΘSAPΘ, (on H2).

Since zΘH2 ⊂ ΘH2, we have PΘS(I − PΘ) = 0, whence PΘSPΘ = PΘS and

APΘSPΘ = APΘS, (on H2).

Recall that PΘ = ΘP−Θ (on H2), where P− = I − P+. Thus

ASΘ = SΘA ⇐⇒ APΘS = PΘSAPΘ (on H2),

⇐⇒ APΘS = ΘP−ΘSAPΘ

⇐⇒ ΘAPΘS = P−ZΘAPΘ

⇐⇒ A∗S = P−ZA∗.

Here Z is the shift operator (i.e. the multiplication by the independent variable z) on L2(T).

The latter condition exactly means that A∗ is a Hankel operator (see Subsection 2.1). �

As we will see in Section 5, the symbol of a truncated Toeplitz operator is never unique.

In the proof of the commutant lifting theorem, we will need a special case of this.

Lemma 4.4. Let φ ∈ H∞. Then AΘ
φ = 0 if and only if φ ∈ ΘH∞.

Proof. Assume that φ = Θg for some g ∈ H∞. Then, for each f ∈ KΘ, we have

AΘ
φ f = PΘ(φf) = PΘ(Θfg) = 0,

because Θfg ∈ ΘH2 = (KΘ)⊥. Conversely, assume that AΘ
φ = 0. Since for each f ∈ H2,

φPΘH2f ∈ ΘH2, we get

PΘ(φf) = PΘ(φPΘf) + PΘ(φPΘH2f) = AΘ
φPΘf = 0,

which implies that φH2 ⊂ ΘH2. In particular, φ = gΘ, for some g ∈ H2. But, taking the

absolute values of both sides shows that |φ| = |g| a.e. on T. Hence g ∈ H∞, and finally

φ ∈ ΘH∞. �

We are now ready for the commutant lifting theorem for the operator SΘ.
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Theorem 4.5 (Sarason, [50]). Let Θ be an inner function, and let A ∈ {SΘ}′, i.e. A ∈
L(KΘ) and ASΘ = SΘA. Then there exists φ ∈ H∞ such that A = AΘ

φ .

Moreover, the following assertions hold.

(i) For any representation A = AΘ
φ , with φ ∈ H∞, we have

‖A‖ = dist(φ,ΘH∞).

(ii)

‖A‖ = inf{‖φ‖∞ : A = AΘ
φ with φ ∈ H∞}.

(iii) There exists a particular choice φ ∈ H∞ such that

A = AΘ
φ and ‖A‖ = ‖φ‖∞.

Proof. According to Lemma 4.3, the operator A∗ = ΘAPΘ is a Hankel operator. Since A

is bounded, we have

‖A∗f‖2 = ‖ΘAPΘf‖2 = ‖APΘf‖2 ≤ ‖A‖ ‖f‖2, (f ∈ H2),

which implies that A∗ is bounded and ‖A∗‖ ≤ ‖A‖. Furthermore,

‖Af‖2 = ‖APΘf‖2 = ‖ΘAPΘf‖2 = ‖A∗f‖2 ≤ ‖A∗‖ ‖f‖2, (f ∈ KΘ),

whence ‖A‖ ≤ ‖A∗‖. Therefore,

‖A‖L(KΘ) = ‖A∗‖L(H2,H2
−).

Nehari’s theorem implies that there exists a function η ∈ L∞(T) such that A∗ = Hη and

‖A∗‖ = ‖η‖∞ = dist(η,H∞). Hence,

‖A‖ = ‖A∗‖ = ‖η‖∞ = dist(η,H∞).(4.3)

Since Θη ∈ L2(T) = H2 ⊕H2
−, we can write

Θη = φ+ ψ,

where φ ∈ H2 and ψ ∈ H2
−. But,

P−Θη = HηΘ = A∗Θ = ΘAPΘΘ = 0,

which means ψ = P−Θη = 0. Hence,

Θη = φ ∈ H2 ∩ L∞ = H∞.
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Rewrite the last identity as η = Θφ, with φ ∈ H∞. This is a rewarding representation. In

fact, for f ∈ KΘ, we have

Af = Θ(ΘAPΘf)

= ΘA∗f

= ΘHΘφf

= ΘP−Θφf

= PΘφf

= AΘ
φ f,

whence A = AΘ
φ . Moreover, according to (4.3) and using the fact that |Θ| = 1 a.e. on T,

we have

‖A‖ = ‖φ‖∞ = dist(φ,ΘH∞).(4.4)

Since AΘ
φ = A, we have

‖A‖ = ‖φ‖∞ ≥ inf{‖h‖∞ : A = AΘ
h , with h ∈ H∞}.

If h ∈ H∞ is such that AΘ
h = A = AΘ

φ , then according to Lemma 4.4, h − φ ∈ ΘH∞. In

other words, there exists g ∈ H∞ such that h = φ+ Θg. Thus,

dist(h,ΘH∞) = dist(φ,ΘH∞) = ‖A‖,

and

‖h‖∞ = ‖φ+ Θg‖ ≥ dist(φ,ΘH∞) = ‖A‖.
Hence,

inf{‖h‖∞ : A = AΘ
h , with h ∈ H∞} ≥ ‖A‖,

which proves that

‖A‖ = inf{‖h‖∞ : A = AΘ
h , with h ∈ H∞} = dist(φ,ΘH∞).

Finally, (4.4) shows that the infimum is attained, which ends the proof.

�

4.3. The Nevanlinna–Pick interpolation problem. We will now explain how we can

use the commutant lifting theorem to solve the Nevanlinna-Pick interpolation problem.

Given n points λ1, λ2, . . . , λn in the open unit disc D, and n points ω1, ω2, . . . , ωn in the

complex plane, we would like to know if there exists a function f in the closed unit ball of

H∞ interpolating the points λi to the points ωi, that is

f(λi) = ωi, (1 ≤ i ≤ n).
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Before giving the answer to this question, we need an additional property of truncated

Toeplitz operators with symbols in H∞.

Lemma 4.6. Let φ ∈ H∞ and λ ∈ D such that Θ(λ) = 0. Then

Aφkλ = φ(λ)kλ.

Proof. Observe that kλ = kΘ
λ since Θ(λ) = 0. In particular, kλ ∈ KΘ. Using Proposi-

tion 3.6, we have, for every f ∈ KΘ,

〈Aφkλ, f〉2 =〈kλ, Aφf〉2
=〈kλ, φf〉2
=φ(λ)f(λ)

=〈φ(λ)kλ, f〉2.

Since this is true for every f ∈ KΘ, we conclude that Aφkλ = φ(λ)kλ. �

The following result answers the question of Nevanlinna–Pick interpolation.

Theorem 4.7 (Nevanlinna–Pick). Let (λi)1≤i≤n be n distinct points in D, and let (ωi)1≤i≤n

be complex numbers. Then the following are equivalent.

(i) There exists a function f in H∞ such that

f(λi) = ωi, (1 ≤ i ≤ n),

and, moreover, ‖f‖∞ ≤ 1.

(ii) The matrix Q = (Qj,k)1≤j,k≤n, where

Qj,k =
1− ωjωk
1− λjλk

, (j, k = 1, . . . , n),

is nonnegative.

Proof. We do not follow the original proof but the one based on the commutant lifting

theorem of Sarason. We start by introducing the operator T which is exploited in the

proof of equivalence. Let B be the (finite) Blaschke product associated to the sequence

(λi)1≤i≤n. It is not difficult to check that the sequence of reproducing kernels (kλi)1≤i≤n

forms a basis of KB. Note that KB is finite dimensional. Hence we can consider the linear

bounded operator T from KB into itself defined by

(4.5) Tkλi = ωi kλi , (1 ≤ i ≤ n).

Using Lemma 4.6 for S∗B = ABz̄ , we have

TS∗Bkλi = λi ωi kλi = S∗BTkλi , (1 ≤ i ≤ n).
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Since (kλi)1≤i≤n is a basis of KB, we deduce that TS∗B = S∗BT . Hence, Theorem 4.5 ensures

that there exists f ∈ H∞ such that T = AB
f̄

and

(4.6) ‖T‖ = min{‖g‖∞ : T = ABḡ , g ∈ H∞}.

For any function g which fulfills T = ABḡ , we have

Tkλi = ABḡ kλi = g(λi)kλi , (1 ≤ i ≤ n).

Therefore,

(4.7) g(λi) = ωi (1 ≤ i ≤ n).

To establish the connection between Q and T , let ai ∈ C, 1 ≤ i ≤ n. Then, using the

operator T , we can write∑
1≤i,j≤n

aiaj
1− ωiωj
1− λiλj

=
∑

1≤i,j≤n

aiaj
(
〈kλi , kλj〉2 − 〈Tkλi , Tkλj〉2

)
=

∑
1≤i,j≤n

aiaj〈(I − T ∗T )kλi , kλj〉2

= 〈(I − T ∗T )h, h〉2,

where h =
∑n

i=1 aikλi . Hence, the matrix Q is nonnegative if and only if the operator

I − T ∗T is positive, which is equivalent to say that T is a contraction.

(i) =⇒ (ii): Assume that there exists f ∈ H∞, ‖f‖∞ ≤ 1, such that f(λi) = ωi,

1 ≤ i ≤ n. Hence, using (4.5) and Lemma 4.6, we have

Tkλi = ωikλi = f(λi)kλi = ABf̄ kλi , (1 ≤ i ≤ n).

Thus we get T = AB
f̄

. Now, (4.6) implies that

‖T‖ ≤ ‖f‖∞ ≤ 1,

i.e. T is a contraction, and thus Q is nonnegative.

(ii) =⇒ (i): Assume that Q is nonnegative. Thus, T is a contraction. By (4.6), we

know that there exists a function f ∈ H∞, ‖f‖∞ ≤ 1 such that T = AB
f̄

. Thus, by (4.7),

f(λi) = ωi, 1 ≤ i ≤ n, which gives (i). �

4.4. A link with truncated Wiener-Hopf operators. It turns out that truncated

Toeplitz operators on the model space KΘ are closed connected with another class of oper-

ators, the truncated Wiener–Hopf operators, which arise naturally in projection methods

to solve certain convolution equations. See [40]. Let us explain the link between these two

important classes of operators.
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Let ϕ ∈ L1(R), a > 0, and let

(Wϕf)(x) =

∫ 2a

0

ϕ(x− t)f(t), dt, x ∈ (0, 2a),

for f ∈ L∞(0, 2a). It is easy to see that Wϕf ∈ L2(0, 2a), and then Wϕ is a densely defined

operator on L2(0, 2a). If Wϕ extends to a bounded operator on L2(0, 2a), then it is called

a truncated Wiener–Hopf operator .

To explain the link between a truncated Wiener–Hopf operator and a truncated Toeplitz

operator, it will be easier to go into the upper half-plane. We denote by H2(C+) the

Hardy space of the upper-half plane C+ = {z ∈ C : =m(z) > 0} and if Θ is an inner

function in C+, the associated model space KΘ is defined as KΘ = H2(C+) 	 ΘH2(C+).

Finally, we recall that if F is the Fourier transform, the Paley–Wiener Theorem says that

F−1L2(R+) = H2(C+).

Proposition 4.8. Let Θa(z) = eiaz, a > 0, and let ϕ in the Schwartz class S(R). Then,

FAΘ2a
ϕ F−1 = Wϕ̂.

Proof. Denote by Ua the (unitary) operator of translation by a on L2(R), i.e. (Uaf)(x) =

f(x+ a), f ∈ L2(R). Write

UaL2(R+) =L2(−a,+∞) = L2(−a, a)⊕ L2(a,+∞)

=L2(−a, a)⊕ U−aL2(R+).

Apply the inverse of the Fourier transform and use the Paley–Wiener Theorem and the

well-known facts that F−1Ua = ΘaF−1 and F−1U−a = ΘaF−1 to get

ΘaH
2(C+) = F−1L2(−a, a)⊕ΘaH

2(C+).

Multiply this equation by Θa gives

KΘ2a = ΘaF−1L2(−a, a) = ΘaF−1χ(−a,a)L
2(R).

It is easy to check that the operator T = ΘaF−1χ(−a,a) is a partial isometry on L2(R).

Hence TT ∗ is the orthogonal projection onto Im(T ) = KΘ2a (see [27, Theorem 7.22] for

this result on partial isometries). We deduce a nice formula for the orthogonal projection

onto KΘ2a :

PΘ2a = ΘaF−1χ(−a,a)FΘa.
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Let f ∈ L2(0, 2a). Then, we have

FAΘ2a
ϕ F−1f =FPΘ2aϕF−1f

=FΘaF−1χ(−a,a)F(ΘaϕF−1f)

=U−aχ(−a,a)F(ϕF−1Uaf)

=U−aχ(−a,a)ϕ̂ ∗ Uaf.

Let x ∈ R. We get

(FAΘ2a
ϕ F−1f)(x) =χ(−a,a)(x− a)(ϕ̂ ∗ Uaf)(x− a)

=χ(0,2a)(x)

∫ ∞
−∞

ϕ̂(x− a− y)f(y + a) dy

=χ(0,2a)(x)

∫ 2a

0

ϕ̂(x− t)f(t) dt.

In other words, FAΘ2a
ϕ F−1 = Wϕ̂. �

Proposition 4.8 says that the class of truncated Wiener–Hopf operators (at least for

a class of symbols in the Schwartz class) is unitary equivalent to a particular class of

truncated Toeplitz operators (associated to the model space with inner function Θ2a).

Therefore, truncated Toeplitz operators can be viewed as a generalization of truncated

Wiener–Hopf operators.

5. The class of symbols for a truncated Toeplitz operator

We know that the symbol φ of a Toeplitz operator Tφ is unique. As we already noticed

(see Lemma 4.4), the story for truncated Toeplitz operators is much different.

Theorem 5.1 (Sarason, [51]). Let Θ be an inner function. A truncated Toeplitz operator

Aφ is identically zero if and only if φ ∈ ΘH2 + ΘH2. Consequently,

Aφ1 = Aφ2 ⇐⇒ φ1 − φ2 ∈ ΘH2 + ΘH2.

Proof. Suppose that φ = Θh1 + Θh2, where h1, h2 ∈ H2. Then, for f ∈ KΘ ∩H∞, we have

φf = Θfh1 + Θh2f.

The first term belongs to ΘH2 and so PΘ(Θfh1) = 0. Moreover, since KΘ = H2∩ΘzH2 ⊂
ΘzH2, the second term belongs to zH2, and thus, we also have PΘ(Θfh2) = 0. Hence

Aφ(f) = PΘ(φf) = PΘ(Θfh1) + PΘ(Θfh2) = 0.

Conversely, suppose that Aφ(f) = 0 for every f ∈ KΘ ∩H∞. Write the symbol φ ∈ L2 as

φ = ψ + χ, where ψ, χ ∈ H2. In particular, we have Aψ = −Aχ. Now, using the fact that
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ψ and χ are in H2, it is not difficult to check the following identities on KΘ ∩H∞

AψSΘ = SΘAψ and AχS
∗
Θ = S∗ΘAψ.

In particular, we deduce that Aψ and Aχ commute with both SΘ and S∗Θ. We now need

the following well-known identity

(5.1) I − SΘS
∗
Θ = kΘ

0 ⊗ kΘ
0 .

To check (5.1), note that for f ∈ KΘ, we have

(I − SΘS
∗
Θ)f =f − PΘ(SPΘ(S∗f))

=f − PΘ(SS∗f)

=f − PΘ(f − f(0))

=f(0)PΘ(1) = f(0)kΘ
0

=(kΘ
0 ⊗ kΘ

0 )f.

Now use (5.1) to deduce

Aψ(kΘ
0 ⊗ kΘ

0 ) = (kΘ
0 ⊗ kΘ

0 )Aψ.

If we evaluate this operator identity at kΘ
0 , we get

‖kΘ
0 ‖2

2Aψk
Θ
0 = 〈AψkΘ

0 , k
Θ
0 〉2kΘ

0 .

In particular, we have Aψk
Θ
0 = ckΘ

0 for some constant c ∈ C. From here we can write

0 =(Aψ − cI)kΘ
0

=PΘ(ψ − c)(1−Θ(0)Θ)

=PΘ(ψ − c)−Θ(0)PΘ((ψ − c)Θ)

=PΘ(ψ − c),

the last equality following from the fact that (ψ − c)Θ ∈ ΘH2. Thus ψ − c ∈ ΘH2. In

particular, if we apply the first part of the proof, we deduce Aψ = cI. But since Aχ =

−Aψ = −cI, repeating the same arguments yields to χ + c ∈ ΘH2, and so χ + c ∈ ΘH2.

Therefore

φ = ψ + χ = (ψ − c) + (χ+ c) ∈ ΘH2 + ΘH2,

which completes the proof. �

In particular, the preceding result tells us that there are always infinitely many symbols

(many of them unbounded) which represent the same truncated Toeplitz operator. On the

other hand, if we denote by SΘ = L2 	 (ΘH2 + ΘH2), it follows from Theorem 5.1 that

every truncated Toeplitz operator has a unique symbol φ ∈ SΘ. This space is sometimes

called the space of standard symbols . In the following result, we gather from [7, Lemma
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3.1] some interesting properties of this space. Some of them will be used in Section 12 for

the construction of a bounded truncated Toeplitz operator that has no bounded symbols.

Lemma 5.2 ([7], Lemma 3.1). Let Θ be an inner function and let QΘ (respectively PSΘ
)

the orthogonal projection onto KΘ ⊕ zKΘ (respectively onto SΘ). Then:

(1) QΘ(Θ) = Θ−Θ(0)
2
Θ;

(2) we have

KΘ ⊕ zKΘ = SΘ ⊕ CqΘ,

where qΘ = ‖QΘ(Θ)‖−1
2 QΘ(Θ);

(3) QΘ and PSΘ
are bounded on Lp for 1 < p <∞. In particular, qΘ ∈ Lp.

Proof. (a) Note that

zKΘ = zH2 ∩ΘzH2 = zH2 ∩ΘH2 = Θ(H2 ∩ΘzH2) = ΘKΘ.

Therefore, we have

KΘ ⊕ zKΘ = KΘ ⊕ΘKΘ,

and then, QΘ = PΘ +MΘPΘMΘ. In particular, we have

QΘ(Θ) =PΘ(Θ) +MΘPΘMΘ(Θ) = PΘ(Θ(0)) +MΘPΘ1

=(Θ(0) + Θ)(1−Θ(0)Θ) = Θ−Θ(0)
2
Θ,

and (a) is proved.

(b) Since L2 = ΘH2 ⊕ΘH2
0 ⊕KΘ ⊕ zKΘ, if follows that SΘ ⊂ KΘ ⊕ zKΘ, and thus

(5.2) KΘ ⊕ zKΘ = QΘ(SΘ + ΘH2 + ΘH2
0 + CΘ) = SΘ ⊕ CQΘ(Θ),

which proves (b). Note that according to (a), one easily see that QΘ(Θ) 6≡ 0.

(c) If follows from the identity QΘ = PΘ +MΘPΘMΘ, that QΘ is bounded on Lp for all

1 < p <∞. Further, according to (b), we have

(5.3) PSΘ
= QΘ − qΘ ⊗ qΘ,

and since qΘ belongs to L∞, we deduce that PSΘ
is also bounded on Lp for 1 < p <∞. �

Another interesting result observed by Sarason [51] is the following.

Corollary 5.3. Let φ ∈ L2. Then there exists a pair of functions φ1, φ2 ∈ KΘ such that

Aφ = Aφ1+φ2
. Moreover, if φ1, φ2 is one such pair, the most general such pair equals

φ1 + ckΘ
0 , φ2 − c̄kΘ

0 , where c is a complex number. In particular, φ1 and φ2 are uniquely

determined if we fix the value of one of them at the origin.
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Proof. Decompose the symbol φ as φ = ψ1 + ψ2, with ψ1, ψ2 ∈ H2. Define φ` = PΘψ`,

` = 1, 2. Observe that ψ1 − φ1 and ψ2 − φ2 both belong to ΘH2. Hence

φ− (φ1 + φ2) = (ψ1 − φ1) + (ψ2 − φ2) ∈ ΘH2 + ΘH2.

Theorem 5.1 now ensures that Aφ = Aφ1+φ2
.

Moreover, suppose that ϕ1, ϕ2 are in KΘ and Aφ = Aϕ1+ϕ2 . Then, according to Theo-

rem 5.1, we get that (ϕ1−φ1)+(ϕ2−φ2) is in ΘH2+ΘH2. In particular, ϕ1−φ1 ∈ ΘH2+H2.

Observe now that the orthogonal projection PΘ maps ΘH2 + H2 onto CkΘ
0 , which gives

that ϕ1 = φ1 + ckΘ
0 for some complex number c. Similarly, there exists a constant d ∈ C

such that ϕ2 = φ2 + dkΘ
0 . We deduce that ckΘ

0 + dkΘ
0 is in ΘH2 + ΘH2. But observe that

ckΘ
0 + dkΘ

0 = c+ d̄− cΘ(0)Θ− d̄Θ(0)Θ,

which yields c+ d̄ ∈ ΘH2 +ΘH2. Take now any f ∈ KΘ, f 6= 0. According to Theorem 5.1,

we get

0 = Ac+d̄(f) = PΘ((c+ d̄)f) = (c+ d̄)f,

which implies that c+ d̄ = 0, or d = −c̄. Therefore, ϕ1 = φ1 + ckΘ
0 and ϕ2 = φ2− c̄kΘ

0 . �

Example 5.4. Let Θ(z) = z3 and note that KΘ =
∨
{1, z, z2}. As already mentioned

(see Example 3.4), in that case, the truncated Toeplitz operator on KΘ can be viewed

as operators whose matrix with respect to the orthonormal basis {1, z, z2} is a Toeplitz

matrix. Suppose that A is a generic 3× 3 Toeplitz matrixa d e

b a d

c b a

 .

Then consider ϕ(z) = ez̄2 + dz̄ + a + bz + cz2. An easy computation shows that A = Aϕ.

The function ϕ is the standard symbol for A and we have ϕ = φ+ψ, where φ, ψ ∈ KΘ are

defined as φ(z) = a
2

+ bz + cz2 and ψ(z) = ā
2

+ d̄z + ēz2.

6. Algebraic characterization of truncated Toeplitz operators

A well known result of Brown–Halmos says that T ∈ L(H2) is a Toeplitz operator if

and only if T = STS∗, where S is the shift operator on H2. Sarason obtained an analogue

of this result for truncated Toeplitz operators, where the compressed shift (or the model

operator) SΘ plays the role of S.

Theorem 6.1 (Sarason, [51]). A bounded operator A on KΘ belongs to T (Θ) if and only

if there are functions φ, ψ ∈ KΘ such that

A = SΘAS
∗
Θ + φ⊗ kΘ

0 + kΘ
0 ⊗ ψ.



MINI-COURSE ON TRUNCATED TOEPLITZ OPERATORS 27

In that case, we have A = Aφ+ψ.

The proof of this result is based on two lemmas.

Lemma 6.2. For φ, ψ ∈ KΘ, we have

Aφ+ψ − SΘAφ+ψS
∗
Θ = φ⊗ kΘ

0 + kΘ
0 ⊗ ψ.

Proof. Since SΘ commutes with Aφ and S∗Θ commutes with Aψ (see Proposition 3.3), we

have

Aφ+ψ − SΘAφ+ψS
∗
Θ = Aφ(I − SΘS

∗
Θ) + (I − SΘS

∗
Θ)Aψ.

By (5.1), we have I − SΘS
∗
Θ = kΘ

0 ⊗ kΘ
0 , which yields

Aφ+ψ − SΘAφ+ψS
∗
Θ = Aφk

Θ
0 ⊗ kΘ

0 + kΘ
0 ⊗ A∗ψk

Θ
0

Observe now that, since φ ∈ KΘ, we have Aφk
Θ
0 = PΘ(φ − Θ(0)φΘ) = φ. According to

Proposition 3.6, we have A∗
ψ

= Aψ, and so A∗
ψ
kΘ

0 = Aψk
Θ
0 = ψ, which gives the result. �

Lemma 6.3. Let φ, ψ ∈ KΘ. For f, g ∈ KΘ ∩H∞, we have

〈Aφ+ψf, g〉2 =
∞∑
n=0

(
〈f, SnΘkΘ

0 〉2〈SnΘφ, g, 〉2 + 〈f, SnΘψ〉2〈SnΘkΘ
0 , g〉2

)
.

Proof. By Lemma 6.2,

Aφ+ψ − SΘAφ+ψS
∗
Θ = φ⊗ kΘ

0 + kΘ
0 ⊗ ψ.

Thus, for any integer n ≥ 0,

SnΘAφ+ψS
∗
Θ
n − Sn+1

Θ Aφ+ψS
∗
Θ
n+1 = SnΘφ⊗ SnΘkΘ

0 + SnΘk
Θ
0 ⊗ SnΘψ.

Now sum both sides of the equation above from n = 0 to n = N to get

Aφ+ψ =
N∑
n=0

(
SnΘφ⊗ SnΘkΘ

0 + SnΘk
Θ
0 ⊗ SnΘψ

)
+ SN+1

Θ Aφ+ψS
∗
Θ
N+1.

Thus, for f, g ∈ KΘ ∩H∞,

〈Aφ+ψf, g〉2 =
N∑
n=0

(
〈f, SnΘkΘ

0 〉2〈SnΘφ, g, 〉2 + 〈f, SnΘψ〉2〈SnΘkΘ
0 , g〉2

)
+〈Aφ+ψS

∗
Θ
N+1f, S∗Θ

N+1g〉2.

It remains to show that the last summand on the right tends to 0 as N → ∞. Using the

fac that Aψ and Aφ commute with S∗Θ, observe that

〈Aφ+ψS
∗
Θ
N+1f, S∗Θ

N+1g〉2 = 〈S∗Θ
N+1f, S∗Θ

N+1Aφg〉2 + 〈S∗Θ
N+1Aψf, S

∗
Θ
N+1g〉2.
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The desired conclusion now follows because S∗N → 0, as N → ∞, in the strong operator

topology (remind that for any h(z) =
∑∞

n=0 anz
n in H2, we have

‖S∗Nh‖2
2 =

∥∥∥∥∥
∞∑
n=N

anz
n−1

∥∥∥∥∥
2

2

=
∞∑
n=N

|an|2 → 0, as N →∞.)

�

Proof of Theorem 6.1. It follows from Lemma 6.2 and Corollary 5.3 that every operator

in T (Θ) satisfies the condition of the theorem. Suppose, conversely, that A is a bounded

operator on KΘ that satisfies the condition

A− SΘAS
∗
Θ = φ⊗ kΘ

0 + kΘ
0 ⊗ ψ,

with φ, ψ ∈ KΘ. Arguing as in the proof of Lemma 6.3, we deduce that, for every integer

N ≥ 0,

A =
N∑
n=0

(
SnΘφ⊗ SnΘkΘ

0 + SnΘk
Θ
0 ⊗ SnΘψ

)
+ SN+1

Θ AS∗Θ
N+1.

Again use the fact that S∗Θ
N → 0, N →∞, in the strong operator topology to see that

A =
∞∑
n=0

(
SnΘφ⊗ SnΘkΘ

0 + SnΘk
Θ
0 ⊗ SnΘψ

)
,

where the series converges in the strong operator topology. Finally, by Lemma 6.3, we can

conclude that A = Aφ+ψ, and in particular, A ∈ T (Θ).

�
Theorem 6.1 admits an interesting corollary.

Corollary 6.4 (Sarason, [51]). The set T (Θ) is closed in the weak operator topology.

Proof. Suppose the net (A(α)) in T (Θ) converges weakly to the bounded operator A. By

Theorem 6.1, for each index α, there are functions φα, ψα in KΘ such that

(6.1) A(α) − SΘA
(α)S∗Θ = φα ⊗ kΘ

0 + kΘ
0 ⊗ ψα.

Moreover, by Corollary 5.3, the function ψα can be taken to satisfy ψα(0) = 0. Then we

have

A(α)kΘ
0 − SΘA

(α)S∗Θk
Θ
0 = ‖kΘ

0 ‖2
2φα − 〈kΘ

0 , ψα〉2kΘ
0 = ‖kΘ

0 ‖2
2φα.

It then follows that the net (φα) converges weakly, say to a function φ in KΘ. The net

(φα⊗kΘ
0 ) thus converges in the weak operator topology, and so by (6.1), the net (kΘ

0 ⊗ψα)

also converges in the weak operator topology, implying that the net (ψα) converges weakly,

say to a function ψ in KΘ. Passing to the limit in (6.1), we obtain

A− SΘAS
∗
Θ = φ⊗ kΘ

0 + kΘ
0 ⊗ ψ,
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and it follows by Theorem 6.1 that A = Aφ+ψ is in T (Θ). �

Remark 6.5. When KΘ is finite dimensional (which means that Θ is a finite Blaschke

product), one can get more specific results using matrix representations. It has already been

noticed (see Examples 3.4 and 5.4) that if Θ(z) = zN , then the corresponding truncated

Toeplitz operators are the Toeplitz matrices (with respect to the standard orthonormal

basis {1, z, . . . , zN−1} of KΘ). For more general finite Blaschke products, we have the

following result from [22].

Theorem 6.6 (Cima–Ross–Wogen). Let Θ be a finite Blaschke product of degree n with

distincts zeros λ1, λ2, . . . , λn and let A be any operator on KΘ. If MA = (ri,j)1≤i,j≤n is the

matrix representation of A with respect to the basis {kλ1 , kλ2 , . . . , kλn}, then A ∈ T (Θ) if

and only if

ri,j =
Θ′(λ1)

Θ′(λi)

(
r1,i(λ1 − λi) + ri,j(λj − λ1)

λj − λi

)
,

for 1 ≤ i, j ≤ n and i 6= j.

7. Complex symmetric operators

7.1. Truncated Toeplitz operators are complex symmetric. A conjugation on a

complex Hilbert space H is a map C : H → H that is conjugate-linear, involutive (C2 = I)

and isometric (〈Cx,Cy〉 = 〈y, x〉 for every x, y ∈ H). We now say that T ∈ L(H)

is C-symmetric if T = CT ∗C and complex symmetric if there exists a conjugation C

on H with respect to which T is C-symmetric. This class of operators received a lot

of attention during the past few years, in particular due to the works of Garcia–Putinar

[36, 37]. Among important examples of complex symmetric operators, we have the Volterra

operator, normal operators, Toeplitz matrices,....

However, note that Toeplitz operators cannot be complex symmetric in general. Indeed,

if an operator T is complex symmetric, then, in particular, it should satisfy

dim kerT = dim kerT ∗.

But, if for instance T = Tϕ, with ϕ ∈ H∞, ϕ 6≡ 0, then kerTϕ = {0} and kerT ∗ϕ 6= {0}
(because T ∗ϕkλ = Tϕkλ = ϕ(λ)kλ). Thus, for every ϕ ∈ H∞, ϕ 6≡ 0, Tϕ is not complex

symmetric. However, the situation is dramatically different for TTO. It turns out that

truncated Toeplitz operators on KΘ are CΘ-symmetric, where CΘ is the natural conjugation

on KΘ introduced in (2.7).

Theorem 7.1 (Sarason, [51]). Let Θ be an inner function and Aφ ∈ T (Θ). Then we have

Aφ = CΘA
∗
φCΘ.
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Proof. According to Proposition 3.6, for every f, g ∈ KΘ ∩H∞, we have

〈CΘA
∗
φCΘf, g〉2 =〈CΘg, A

∗
φCΘf〉2 = 〈CΘg, PΘ(φCΘf)〉2

=〈CΘg, φCΘf〉2 = 〈Θzg, φΘzf〉2
=〈g, φf〉2 = 〈φf, g〉2 = 〈PΘ(φf), g〉2
=〈Aφ(f), g〉2.

Hence Aφ = CΘA
∗
φCΘ. �

Using the conjugation CΘ, we can give an analogue of the characterization of T (Θ) given

in Theorem 6.1.

Corollary 7.2. Let Θ be an inner function and let A ∈ L(KΘ). Then A ∈ T (Θ) if and

only if there are functions φ, ψ ∈ KΘ such that

(7.1) A− S∗ΘASΘ = φ⊗ S∗Θ + S∗Θ⊗ ψ.

Moreover, in that case, we have A = ACΘψ+CΘφ
.

Proof. Assume that A satisfies (7.1). If we apply on the left and on the right CΘ to both

sides of (7.1), we get

CΘACΘ − CΘS
∗
ΘASΘCΘ = CΘφ⊗ CΘS

∗Θ + CΘS
∗Θ⊗ CΘψ.

According to Theorem 7.1 applied to S∗Θ, we have CΘS
∗
Θ = SΘCΘ, which gives

CΘACΘ − SΘCΘACΘS
∗
Θ = CΘφ⊗ CΘS

∗Θ + CΘS
∗Θ⊗ CΘψ.

But on T, we have

CΘS
∗Θ = Θz̄(z̄(Θ−Θ(0))) = Θ(Θ−Θ(0)) = 1−Θ(0)Θ = kΘ

0 .

Thus, if B = CΘACΘ, we obtain

(7.2) B − SΘBS
∗
Θ = CΘφ⊗ kΘ

0 + kΘ
0 ⊗ CΘψ.

Then it follows from Theorem 6.1 that B ∈ T (Θ). In particular, there exists χ ∈ L2 such

that B = Aχ. Now Theorem 7.1 implies that

A = CΘBCΘ = CΘAχCΘ = A∗χ = Aχ.

In other words, A ∈ T (Θ).

Conversely, assume that A ∈ T (Θ). Then B = CΘACΘ ∈ T (Θ) and the arguments

above can be reversed showing that A must satisfy (7.1).

Moreover, according to (7.2) and Theorem 6.1, we have CΘACΘ = B = ACΘφ+CΘψ
. It

follows that A = CΘACΘφ+CΘψ
CΘ, and we get from Theorem 7.2 that

A = A∗
CΘφ+CΘψ

= ACΘψ+CΘφ
.
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�

It should be noted that the matrix representation of a truncated Toeplitz operators Aφ
with respect to a modified Clark basis is complex symmetric (i.e. self-transpose). This

fact was first observed in [36] and developed further in [34].

It is suspected that the truncated Toeplitz operators might serve as some sort of model

operator for various classes of complex symmetric operators. An increasing long list of

complex symmetric operators have been proven to be unitarily equivalent to truncated

Toeplitz operators. For example, Sarason [52] proved that the Volterra operator on L2(0, 1),

a standard example of complex symmetric operator, is unitarily equivalent to a truncated

Toeplitz operator acting on the space KΘ corresponding to the atomic inner function

Θ(z) = exp
(

1+z
1−z

)
. Among other first examples of complex symmetric operators being

unitarily equivalent to truncated Toeplitz operators are : rank-one operators, 2×2 matrices,

normal operators, for k ∈ N ∪ {∞} the k-fold inflation of a finite Toeplitz matrix. See

[32] for details and further examples. All these results yield to the following still open

questions:

Question 7.3. Is every complex symmetric operator unitarily equivalent to a truncated

Toeplitz operator? If not, which ones are?

One can also explore when a bounded operator is similar to a truncated Toeplitz operator.

In finite dimensions, it is proved in [18] that every operator on a finite dimensional space

is similar to a co-analytic truncated Toeplitz operator.

Question 7.4. Which operators are similar to truncated Toeplitz operators in infinite

dimensional spaces?

7.2. Another characterization of truncated Toeplitz operators and new exam-

ples. We now discuss another interesting characterization of truncated Toeplitz operators,

also given by Sarason [51], which yields to new examples of truncated Toeplitz operators.

We first start with three simple lemmas. In the following, we should understand (S∗Θ)⊥

as the orthogonal complement of CS∗Θ in KΘ, that is (S∗Θ)⊥ = KΘ 	 CS∗Θ.

Lemma 7.5. Let f ∈ H2. Then

(f ∈ KΘ and Sf ∈ KΘ)⇐⇒ f ∈ (S∗Θ)⊥.

Proof. First let us assume that f and Sf belong to KΘ. We thus have

〈f, S∗Θ〉2 = 〈Sf,Θ〉2 = 0.

Hence f ⊥ CS∗Θ.
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Conversely, assume that f ∈ KΘ 	 CS∗Θ. Remember that CΘ(kΘ
0 ) = S∗Θ, and then

kΘ
0 = CΘ(S∗Θ). We thus have

0 = 〈f, S∗Θ〉2 = 〈CΘ(S∗Θ), CΘf〉2 = 〈kΘ
0 , CΘf〉2 = (CΘf)(0).

In other words, CΘf = zg, for some g ∈ H2. But since g = S∗(CΘf) and S∗KΘ ⊂ KΘ, the

function g belongs indeed to KΘ. Then we get

zf = zCΘ(zg) = zΘz2g = Θzg = CΘg.

In particular, we deduce that zf ∈ KΘ. �

The second result is a simple functional analysis result.

Lemma 7.6. Let X be a Banach space, V a dense subspace of X, and let ϕ : X −→ C be

a linear continuous functional on X, ϕ 6≡ 0. Then

(1) there exists v0 ∈ V such that ϕ(v0) = 1.

(2) kerϕ ∩ V is dense in kerϕ.

Proof. (1) Since V is dense in X, ϕ|V is not identically zero, because otherwise by conti-

nuity ϕ would be identically zero, which contradicts the hypothesis. Then, in particular,

there is a vector v ∈ V such that λ = ϕ(v) 6= 0. Now take v0 = v/λ.

(2) Let w ∈ kerϕ. Then we can find a sequence (wn)n in V such that ‖wn − w‖X → 0,

as n→∞. Observe now that

|ϕ(wn)| = |ϕ(wn − w)| ≤ ‖ϕ‖‖wn − w‖X ,

which implies that ϕ(wn) → 0, as n → ∞. Applying (1), let v0 ∈ V such that ϕ(v0) = 1,

and define un = wn − ϕ(wn)v0. We easily see that un ∈ V ∩ kerϕ, and

‖un − v‖X ≤ ‖wn − v‖X + |ϕ(wn)|‖v0‖X → 0, as n→∞.

�

Lemma 7.7. Let Θ be an inner function. Then

(1) KΘ ∩H∞ ∩ (S∗Θ)⊥ is dense in (S∗Θ)⊥.

(2) KΘ ∩ A(D) ∩ (S∗Θ)⊥ is dense in (S∗Θ)⊥.

Proof. Of course (2) implies (1) and so we only prove (2). Recall that by Aleksandrov’s

theorem (see [21, Section 8.5]), the space A(D) ∩KΘ is dense in KΘ. It remains to apply

Lemma 7.6 to V = A(D) ∩KΘ and to the linear continuous functional

ϕ : KΘ −→ C
h 7−→ 〈h, S∗Θ〉2,

for which kerϕ = (S∗Θ)⊥.

�
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We can now give a new characterization of operators in T (Θ).

Theorem 7.8 (Sarason, [51]). Let A ∈ L(KΘ). Then A ∈ T (Θ) if and only if it satisfies

the relation

(7.3) f, Sf ∈ KΘ =⇒ 〈ASf, Sf〉2 = 〈Af, f〉2.

Proof. First, let us assume that A ∈ T (Θ). According to Corollary 5.3, there are φ, ψ ∈ KΘ

such that A = Aφ+ψ̄. To prove that A satisfies (7.3), it is sufficient, according to Lemma 7.5

and Lemma 7.7, to check that

〈ASf, Sf〉2 = 〈Af, f〉2,

for every f ∈ KΘ ∩H∞ ∩ (S∗Θ)⊥. We have

〈ASf, Sf〉2 = 〈Aφ+ψSf, Sf〉2 = 〈AφSf, Sf〉2 + 〈Sf,AψSf〉2.

Since f ∈ (S∗Θ)⊥, according to Lemma 7.5, Sf ∈ KΘ, and thus

〈AφSf, Sf〉2 = 〈PΘ(φzf), zf〉2 = 〈φzf, zf〉2 = 〈φf, f〉2 = 〈Aφf, f〉2.

Similarly, we have

〈Sf,AψSf, 〉2 = 〈zf, PΘ(ψzf)〉2 = 〈zf, ψzf〉2 = 〈ψf, f〉2 = 〈Aψf, f〉2.

Therefore, we deduce

〈ASf, Sf〉2 = 〈Aφ(f), f〉2 + 〈Aψf, f〉2 = 〈Af, f〉2.

For the other direction, suppose that A satisfies (7.3). We shall prove that A ∈ T (Θ)

by showing that A satisfies (7.1). Let B = A − S∗ΘASΘ. Note that for every function

f ∈ (S∗Θ)⊥, we have SΘf = Sf (by Lemma 7.5), and then

〈Bf, f〉2 =〈Af, f〉2 − 〈S∗ΘASΘf, f〉2
=〈Af, f〉2 − 〈ASΘf, SΘf〉2
=〈Af, f〉2 − 〈ASf, Sf〉2
=0.

By the polarization identity, we get

〈Bf, g〉2 = 0 whenever f, g ∈ (S∗Θ)⊥.

Note that the orthogonal projection in KΘ with range (S∗Θ)⊥ equals I − cS∗Θ ⊗ S∗Θ,

where c = ‖S∗Θ‖−2
2 . We have then

(I − cS∗Θ⊗ S∗Θ)B(I − cS∗Θ⊗ S∗Θ) = 0,
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implying

A− S∗ΘASΘ = B = cBS∗Θ⊗ S∗Θ + cS∗Θ⊗B∗S∗Θ− c2〈BS∗Θ, S∗Θ〉2S∗Θ⊗ S∗Θ.

Defining φ = cBS∗Θ− c2〈BS∗Θ, S∗Θ〉2S∗Θ and ψ = c̄B∗S∗Θ, we obtain

A− S∗ΘASΘ = φ⊗ S∗Θ + S∗Θ⊗ ψ.

Corollary 7.2 finally implies that A ∈ T (Θ). �

Using the above characterization, we can give another way of building bounded trun-

cated Toeplitz operators. For µ ∈ C2(Θ) (see Section 2.3), denote by ΓΘ
µ the sesquilinear

functional on KΘ ×KΘ defined by

ΓΘ
µ (f, g) =

∫
T
fḡ dµ.

Observe that ∣∣ΓΘ
µ (f, g)

∣∣ ≤ (∫
T
|f |2 d|µ|

)1/2(∫
T
|g|2 d|µ|

)1/2

≤ c‖f‖2‖g‖2,

because KΘ ↪→ L2(|µ|). In particular, there exists a bounded operator Aµ = AΘ
µ on KΘ

such that

〈AΘ
µ f, g〉2 =

∫
T
fḡ dµ.

The operator Aµ is another type of truncated Toeplitz operator.

Theorem 7.9 (Sarason, [51]). Let µ ∈ C2(Θ). Then Aµ ∈ T (Θ).

Proof. According to Theorem 7.8 and Lemma 7.7, it is sufficient to show that for every

f ∈ A(D) ∩KΘ ∩ (S∗Θ)⊥, we have

〈Aµ(Sf), Sf〉2 = 〈Aµ(f), f〉2.

But since |Sf | = |f | on T, we get

〈Aµ(Sf), Sf〉2 =

∫
T
|Sf |2 dµ =

∫
T
|f |2 dµ = 〈Aµ(f), f〉2.

That proves that Aµ ∈ T (Θ).

�

Example 7.10. Assume that ζ ∈ T is an angular point of Carathéodory for Θ. Then, we

know (see Subsection 2.2) that f 7−→ f(ζ) is continuous on KΘ. In other words, the Dirac

measure δζ , at point ζ, is in C2(Θ). By Theorem 7.9, the operator Aδζ is in T (Θ). Observe

that if f, g ∈ KΘ, then

〈Aδζf, g〉2 =

∫
T
fgdδζ = f(ζ)g(ζ) = 〈f, kΘ

ζ 〉2〈kΘ
ζ , g〉2,



MINI-COURSE ON TRUNCATED TOEPLITZ OPERATORS 35

where kΘ
ζ is the reproducing kernel of KΘ at point ζ. In other words, Aδζf = 〈f, kΘ

ζ 〉2kΘ
ζ ,

f ∈ KΘ, meaning that

Aδζ = kΘ
ζ ⊗ kΘ

ζ .

Thus, in particular, Aδζ is a rank-one TTO. We will come back in Section 10 to this

operator.

A natural question, posed by Sarason [51, page 513], is whether the converse of Theo-

rem 7.9 holds. In other words, does every bounded truncated Toeplitz operators arise from

a measure µ ∈ C2(Θ)? This question was settled in the affirmative in a beautiful paper by

Baranov, Bessonov and Kapustin [6].

Theorem 7.11 (Baranov–Bessonov–Kapustin). Let A ∈ L(KΘ). Then A ∈ T (Θ) if and

only if A = Aµ for some µ ∈ C2(Θ).

In the proof of this result (and in many results of [6]), a key role is played by the following

Banach space X defined by

(7.4) X =

{∑
k

xkyk : xk, yk ∈ KΘ,
∑
k

‖xk‖2‖yk‖2 <∞

}
,

where the norm in X is defined as the infimum of
∑

k ‖xk‖2‖yk‖2 over all representations

of the elements in the form
∑

k xkyk.

8. Norm of a truncated Toeplitz operator

For Toeplitz operators, a classical result of Brown–Halmos says that if φ ∈ L∞, then Tφ
is bounded and ‖Tφ‖ = ‖φ‖∞. In contrast to this, we can say little more than

(8.1) ‖Aφ‖ ≤ ‖φ‖∞,

for general truncated Toeplitz operators with bounded symbols φ. For instance, observe

that AΘ = 0 and so

‖AΘ‖ < ‖Θ‖∞ = 1.

Nevertheless using Theorem 5.1, we can easily improve the estimate (8.1) and obtain

‖Aφ‖ ≤ inf{‖ψ‖∞ : φ− ψ ∈ ΘH2 + ΘH2}.

The fact that there are many symbols that represent the same truncated Toeplitz operator

makes the problem of computing the norm difficult. However, it is possible to give lower

estimates of ‖Aφ‖ for general φ in L2. Although a variety of lower bounds on ‖Aφ‖ are

provided in [39], we focus here on perhaps the most useful of these. Remind the definition

of the Poisson integral in (2.1).
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Theorem 8.1 (Garcia–Ross, [39]). Let Θ be an inner function and φ ∈ L2. Then

sup{|(Pφ)(λ)| : λ ∈ D, Θ(λ) = 0} ≤ ‖Aφ‖,

where the supremum above is regarded as 0 if Θ never vanishes on D.

Proof. Let λ ∈ D such that Θ(λ) = 0. Then kΘ
λ = kλ and we have

‖Aφ‖ ≥
∣∣∣∣〈Aφ( kλ

‖kλ‖2

)
,
kλ
‖kλ‖2

〉2
∣∣∣∣

=(1− |λ|2)|〈PΘ(φkλ), kλ〉2|
=(1− |λ|2)|〈φkλ, kλ〉2|

=(1− |λ|2)

∣∣∣∣∫
T

φ(ξ)

|ξ − λ|2
dm(ξ)

∣∣∣∣
=|(Pφ)(λ)|.

Taking the supremum over all λ in D such that Θ(λ) = 0 gives the result. �

Corollary 8.2. Let Θ be an inner function whose zeros accumulate almost everywhere on

T and let φ ∈ C(T). Then ‖Aφ‖ = ‖φ‖∞.

Proof. Let ζ be an accumulation point of Θ−1({0}). Then there exists a sequence (λn)n≥1 ⊂
D, Θ(λn) = 0 such that λn → ζ, n → ∞. According to Theorem 8.1, for every n ≥ 1, we

have

|(Pφ)(λn)| ≤ ‖Aφ‖.

Now, since φ ∈ C(T), letting n go to ∞, we get from (2.2)

|φ(ζ)| ≤ ‖Aφ‖.

But, this is true for almost every ζ ∈ T, which yields to ‖φ‖∞ ≤ ‖Aφ‖. Now combining

with (8.1) gives the result. �

Example 8.3. Let (tn)n≥1 be a dense sequence in [0, 2π] and let λn =
(
1− 1

n2

)
eitn , n ≥ 1.

We easily see that (λn)n≥1 is a Blaschke sequence and if we denote by B its associated

Blaschke product, then its boundary spectrum σ(B) is equal to T. Indeed, if eit ∈ T,

t ∈ [0, 2π], we have by classical estimates

|eit − λn| ≤ |eit − eitn|+
1

n2
≤ |t− tn|+

1

n2
.

Since (tn)n≥1 is dense sequence in [0, 2π], there exists a subsequence (tn`)`≥1 such that

tn` → t, as `→∞. Hence λn` → eit, as `→∞. Now according to Corollary 8.2, for every

φ ∈ C(T), we have ‖ABφ ‖ = ‖φ‖∞.
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The norm of some truncated Toeplitz operators can be related to the norm of some

Hankel operators and certain classical extremal problems from function theory. We refer

the reader to the papers [38, 15] for more on this. Moreover, if Θ is a finite Blaschke

product (so that the corresponding model space KΘ is finite dimensional) and φ belongs

to H∞, then straightforward residue computations allow us to represent Aφ with respect

to any of the classical orthonormal bases of KΘ (the Takeneda basis, the Clark basis,...).

In any case, one can readily compute the norm of Aφ by computing the norm of one of its

matrix representations. This approach was undertaken in the paper [38].

9. Spectral properties of AΘ
φ

The Livsic–Möeller Theorem identified the spectrum of the model operator SΘ with the

spectrum of the inner function Θ (see (2.3)). The following result of P. Fuhrmann [28, 29]

generalizes this for the analytic truncated Toeplitz operators Aφ, where φ ∈ H∞. As we

will see, the proof depends crucially on the famous Corona Theorem of L. Carleson.

Theorem 9.1 (Fuhrmann). Let Θ be an inner function and φ ∈ H∞. Then

σ(Aφ) = {λ ∈ C : inf
z∈D

(|Θ(z)|+ |φ(z)− λ|) = 0}.

Proof. Let λ ∈ C satisfying infz∈D(|Θ(z)| + |φ(z) − λ|) = 0. Then there exists a sequence

(zn)n≥1 ⊂ D such that |Θ(zn)| → 0 and |φ(zn) − λ| → 0 as n → ∞. Since φ ∈ H∞, we

have A∗φ = Tφ|KΘ and so

‖(A∗φ − λI)kΘ
zn‖2 = ‖Tφ−λkΘ

zn‖2

= ‖P+((φ− λ)(1−Θ(zn)Θ)kzn)‖2

≤ ‖P+((φ− λ)kzn)‖2 + |Θ(zn)|‖P+((φ− λ)Θkzn)‖2

Now recall that for every ψ ∈ H∞, we have P+(ψkλ) = ψ(λ)kλ. Then it follows

‖(A∗φ − λI)kΘ
zn‖2 ≤ ‖φ(zn)− λ)kzn‖2 + (‖φ‖∞ + |λ|)Θ(zn)|‖kzn‖2

≤ C(|φ(zn)− λ|+ |Θ(zn)|)‖kzn‖2,

where C = ‖φ‖∞ + |λ|+ 1. Now dividing both terms by ‖kΘ
zn‖2 gives∥∥∥∥(A∗φ − λI)

kΘ
zn

‖kΘ
zn‖2

∥∥∥∥
2

≤ C(|φ(zn)− λ|+ |Θ(zn)|)‖kzn‖2

‖kΘ
zn‖2

.

Observe now that ‖kzn‖2‖kΘ
zn
‖2 = (1− |Θ(zn)|2)−1/2 → 1 as n→ +∞, which finally gives that∥∥∥∥(A∗φ − λI)

kΘ
zn

‖kΘ
zn‖2

∥∥∥∥
2

→ 0, n→∞.
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In particular,

inf{‖(A∗φ − λI)f‖2 : f ∈ KΘ, ‖f‖2 = 1} = 0.

Hence A∗φ − λI is not bounded below and hence not invertible. Thus

λ ∈ σ(A∗φ) = σ(Aφ),

and so

{λ ∈ C : inf
z∈D

(|Θ(z)|+ |φ(z)− λ|) = 0} ⊂ σ(Aφ).

To prove the reverse inclusion, we will now show that

inf
z∈D

(|Θ(z)|+ |φ(z)− λ|) > 0 =⇒ λ /∈ σ(Aφ).

According to Carleson Corona Theorem, when infz∈D(|Θ(z)|+ |φ(z)−λ|) > 0, there exists

f, g ∈ H∞ such that

f(z)Θ(z) + g(z)(φ(z)− λ) = 1, z ∈ D.

Hence, by Proposition 3.3, we get

AfAΘ + Ag(Aφ − λI) = I.

But AΘ = 0 (see Lemma 4.4). Hence

Ag(Aφ − λ) = I.

Since Ag and Aφ commute because g and φ are in H∞, we also have (Aφ−λI)Ag = I, and

so Aφ − λI is invertible, showing that λ /∈ σ(Aφ). �

Remind from (2.3) the definition of s(Θ), the spectrum of an inner function Θ.

Corollary 9.2. Let Θ be an inner function and φ ∈ H∞ ∩C(T). Then

σ(Aφ) = φ(s(Θ)).

Proof. Let λ ∈ C. According to Theorem 9.1, λ ∈ σ(Aφ) if and only if there exists a

sequence (zn)n≥1 ⊂ D satisfying

Θ(zn)→ 0 and φ(zn)→ λ, as n→∞.

Passing to a subsequence if necessary, we may assume that (zn)n≥1 converges to some point

z0 ∈ D− (the closed unit disc). By definition, z0 ∈ s(Θ) and since φ is continuous on D−, we

have φ(zn)→ φ(z0), n→∞. In particular, λ = φ(z0) ∈ φ(s(Θ)). Hence σ(Aφ) ⊂ φ(s(Θ)).

Conversely, if λ ∈ φ(s(Θ)), then there is z0 ∈ s(Θ), such that λ = φ(z0). In particular,

there is a sequence (zn)n≥1 ⊂ D such that zn → z0 and Θ(zn) → 0, as n → ∞. By

continuity of φ, we have once more that φ(zn)→ φ(z0) = λ and so λ ∈ σ(Aφ).

�
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The natural polynomial functional calculus p(SΘ) = Ap can be extended to H∞ in such

a way that the symbol map φ 7−→ φ(SΘ) := Aφ is linear, contractive and multiplicative

(see Proposition 3.9). The above corollary says that we have a spectral mapping theorem

for symbols in H∞ ∩C(T).

Note that in the case when φ ∈ H∞, it is possible also to give an alternate description

of σ(Aφ) in terms of cluster sets for φ. See [35, page 294-296] for details. We can also

describe the point spectrum of Aφ and is adjoint. See [35, Corollaries 13.15, 13.17 and

13.18] or [27, Theorem 14.34 and Corollary 14.35].

Let us mention also another interesting new approach by Camara and Partington [12].

They give invertibility and Fredholmness criterion for truncated Toeplitz operators in

model spaces Kp
Θ of the upper half-plane, 1 < p < ∞ with essentially bounded symbols

in a class including the algebra C(R) +H∞, as well as sums of analytic and anti-analytic

functions satisfying a Θ-separation condition. Their approach is based on the equivalence

after extension of truncated Toeplitz operators to Toeplitz operators with 2 × 2 matrix

symbols.

Let us conclude this section by saying that in general determine the spectrum of a

truncated Toeplitz operator is a problem highly non trivial. We only know the answer for

particular class of symbols and a lot remain to do.

10. Finite rank truncated Toeplitz operators

Brown and Halmos [11] have showed that there are no nonzero compact Toeplitz opera-

tors on H2. In contrast, there are many example of finite rank (hence compact) truncated

Toeplitz operators. In fact, the rank-one truncated Toeplitz operators were first identified

by Sarason [51, Theorem 5.1]. For the proof of this result, we need the following two

lemmas. Remind from Subsection 2.2 the notation f̃ for f ∈ KΘ.

Lemma 10.1. Let Θ be an inner function.

(a) For λ ∈ D, we have

S∗Θk
Θ
λ = λkΘ

λ −Θ(λ)k̃Θ
0

and

SΘk̃Θ
λ = λk̃Θ

λ −Θ(λ)kΘ
0 .

(b) For λ ∈ D \ {0}, we have

SΘk
Θ
λ =

1

λ
kΘ
λ −

1

λ
kΘ

0
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and

S∗Θk̃
Θ
λ =

1

λ
k̃Θ
λ −

1

λ
k̃Θ

0 .

Proof. (a) For the first equality, note that for every f, g ∈ H∞, we have S∗(fg) = fS∗(g)+

g(0)S∗f , which yields to

S∗Θk
Θ
λ = S∗((1−Θ(λ)Θ)kλ) = (1−Θ(λΘ)S∗kλ + kλ(0)S∗(1−Θ(λ)Θ).

But S∗kλ = λkλ and S∗Θ = CΘk
Θ
0 , and so

S∗Θk
Θ
λ = λ(1−Θ(λ)Θ)kλ −Θ(λ)CΘk

Θ
0 = λkΘ

λ −Θ(λ)CΘk
Θ
0 .

Since SΘCΘ = CΘS
∗
Θ (see Theorem 7.1), we obtain the second equality by applying CΘ to

the first one:
SΘCΘk

Θ
λ = CΘ(λkΘ

λ −Θ(λ)CΘk
Θ
0 )

= λCΘk
Θ
λ −Θ(λ)kΘ

0 .

(b) For λ ∈ D \ {0}, we have

SΘk
Θ
λ = PΘ(zkΘ

λ ) = PΘ(z(1−Θ(λ)Θ)kλ) = PΘ(zkλ).

Since (1− λz)kλ = 1, we have

zkλ =
1

λ
(kλ − 1),

and we obtain

SΘk
Θ
λ =

1

λ
PΘ(kλ − 1) =

1

λ
(kΘ
λ − kΘ

0 ),

which is the first equality. As in (a), the second equality is obtained from the first through

an application of CΘ. �

Lemma 10.2. Let Θ be an inner function. Assume that Θ has an angular derivative in

the sense of Carathéodory at the point ζ ∈ T. Then the equalities of the preceding lemma

hold with ζ in place of λ.

Proof. Since Θ has an angular derivative in the sense of Carathéodory at the point ζ ∈ T, it

is known that kΘ
λ → kΘ

ζ , as λ tends nontangentially to ζ, in the H2 norm. Now, we obtain

the conclusion by letting λ tend nontangentially to ζ in the equalities of Lemma 10.1.

�

Theorem 10.3 (Sarason, [51]). Let Θ be an inner function. The operators

(i) kΘ
λ ⊗ k̃Θ

λ = A Θ
z̄−λ̄

for λ ∈ D,

(ii) k̃Θ
λ ⊗ kΘ

λ = A Θ
z−λ

for λ ∈ D,

(iii) kΘ
ζ ⊗kΘ

ζ = A
kΘ
ζ +kΘ

ζ −1
, where Θ has an angular derivative in the sense of Carathéodory

at ζ ∈ T
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are truncated Toeplitz operators having rank one.

Proof. (i) We consider first a point λ ∈ D \ {0} and apply the criterion of Theorem 6.1 to

the operator kΘ
λ ⊗ k̃Θ

λ . By Lemma 10.1,

SΘ(kΘ
λ ⊗ k̃Θ

λ )S∗Θ = SΘk
Θ
λ ⊗ SΘk̃Θ

λ

=

(
1

λ
kΘ
λ −

1

λ
kΘ

0

)
⊗
(
λk̃Θ

λ −Θ(λ)kΘ
0

)
= kΘ

λ ⊗ k̃Θ
λ − k

Θ
0 ⊗ k̃Θ

λ −
Θ(λ)

λ
kΘ
λ ⊗ kΘ

0 +
Θ(λ)

λ
kΘ

0 ⊗ kΘ
0 .

Thus

kΘ
λ ⊗ k̃Θ

λ − SΘ(kΘ
λ ⊗ k̃Θ

λ )S∗Θ = kΘ
0 ⊗ k̃Θ

λ +
Θ(λ)

λ
((kΘ

λ − kΘ
0 )⊗ kΘ

0 ).

By theorem 6.1, kΘ
λ ⊗ k̃Θ

λ = Aϕ with symbol

ϕ =
Θ(λ)

λ
(kΘ
λ − kΘ

0 ) + k̃Θ
λ .

According to Theorem 5.1, we have

AkΘ
0

= A1−Θ(0)Θ = A1 and AkΘ
λ

= A(1−Θ(λ)Θ)kλ
= Akλ ,

whence kΘ
λ ⊗ k̃Θ

λ = Aψ, with ψ, written as a function of the variable z ∈ T, equals to

ψ(z) =
Θ(λ)

λ
(kλ(z)− 1) + k̃Θ

λ (z)

=
Θ(λ)

λ

(
1

1− λz
− 1

)
+

Θ(z)−Θ(λ)

z̄ − λ̄

=Θ(λ)
z

1− λz
+
z(Θ(z)−Θ(λ))

1− λz

=
zΘ(z)

1− λz
=

Θ(z)

z̄ − λ̄

Taking the limit as λ → 0, we find that kΘ
0 ⊗ k̃Θ

0 is the truncated Toeplitz operator with

symbol Θ(z)
z̄

.

(ii) Conjugating the identity proved in (a) conclusion, we find that for every λ ∈ D

k̃Θ
λ ⊗ k

Θ
λ = (kΘ

λ ⊗ k̃Θ
λ )∗ = A∗ψ = Aψ,

where ψ(z) = Θ(z)
z−λ .
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(iii) Let ζ be a point of T at which Θ has an angular derivative in the sense of Carathéodory.

By Lemma 10.2, the first part of the proof of (i) can be repeated with ζ in place of λ to

show that kζ ⊗ k̃Θ
ζ is the truncated Toeplitz operator with symbols

Θ(ζ)

ζ̄
(kΘ
ζ − kΘ

0 ) + k̃Θ
ζ .

Using that k̃Θ
ζ = ζ̄Θ(ζ)kΘ

ζ , we see that kΘ
ζ ⊗ kΘ

ζ is the truncated Toeplitz operator with

symbol kΘ
ζ + kΘ

ζ − kΘ
0 . As above in the proof of (i), we can replace kΘ

0 by 1, obtaining the

symbol kΘ
ζ + kΘ

ζ − 1. �

It turns out that Sarason proved [51, Theorem 5.1] that Theorem 10.3 gives all the

possible rank-one operators in T (Θ). In other words, any truncated Toeplitz operators of

rank one is a nonzero scalar multiple of one of the above. We should also mention the

somewhat more involved results of Sarason [51, Theorems 6.1 and 6.2] which identify a

variety of natural finite-rank truncated Toeplitz operators. Finally, the full classification

of the finite-rank truncated Toeplitz operators was given by Bessonov in [8].

We would like to finish this section by giving an example of a rank-two operator A ∈
T (Θ) such that A2 /∈ T (Θ).

Example 10.4. Let Θ be an inner function such that dim(KΘ) ≥ 3. Consider A =

kΘ
0 ⊗ k̃Θ

0 + k̃Θ
0 ⊗ kΘ

0 . Then A ∈ T (Θ) but A2 /∈ T (Θ).

Indeed, the fact that A ∈ T (Θ) follows directly from Theorem 10.3. Let us now check

that A2 is not a truncated Toeplitz operator. Argue by absurd, and assume that A2 ∈
T (Θ). We have

A2 = 〈kΘ
0 , k̃

Θ
0 〉2(kΘ

0 ⊗ k̃Θ
0 ) + 〈k̃Θ

0 , k
Θ
0 〉2(k̃Θ

0 ⊗ kΘ
0 )

+ ‖k̃Θ
0 ‖2

2(kΘ
0 ⊗ kΘ

0 ) + ‖kΘ
0 ‖2

2(k̃Θ
0 ⊗ k̃Θ

0 ).

As kΘ
0 ⊗ k̃Θ

0 and k̃Θ
0 ⊗ kΘ

0 are in T (Θ) and ‖kΘ
0 ‖2 = ‖k̃Θ

Θ‖2 (because CΘ is an isometry),

it follows that the operator B := kΘ
0 ⊗ kΘ

0 + k̃Θ
0 ⊗ k̃Θ

0 is in T (Θ). It now follows from

Theorem 6.1 that the operator B − SΘBS
∗
Θ has rank one or two. By Lemma 10.1

SΘ(k̃Θ
0 ⊗ k̃Θ

0 )S∗Θ =SΘk̃Θ
0 ⊗ SΘk̃Θ

0

=(−Θ(0)kΘ
0 )⊗ (−Θ(0)kΘ

0 ) = |Θ(0)|2kΘ
0 ⊗ kΘ

0 ,

and so

B − SΘBS
∗
Θ = k̃Θ

0 ⊗ k̃Θ
0 + (1− |Θ(0)|2)kΘ

0 ⊗ kΘ
0 − SΘk

Θ
0 ⊗ SΘk

Θ
0 .

Observe that kΘ
0 is a cyclic vector for the operator SΘ. Indeed, let f ∈ KΘ and assume

that f ⊥ SnΘk
Θ
0 for all non negative integers n. Then, we have

0 = 〈f, PΘ(znkΘ
0 )〉2 = 〈f, zn(1−Θ(0)Θ)〉2 = 〈f, zn〉2
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which says that all the Taylor coefficients of f at the origin vanish, hence that f = 0.

In particular, we get that kΘ
0 and SΘk

Θ
0 are linearly independent. If k̃Θ

0 is not a linear

combination of kΘ
0 and SΘk

Θ
0 , then the operator B− SΘBS

∗
Θ would have rank three which

is not possible. Hence there are scalar a and b such that k̃Θ
0 = akΘ

0 + bSΘk
Θ
0 . Applying SΘ

to the last equality and using Lemma 10.1 again, we get

−Θ(0)kΘ
0 = aSΘk

Θ
0 + bS2

Θk
Θ
0 .

Since kΘ
0 and SΘk

Θ
0 are linearly independent, b 6= 0. Hence S2

Θk
Θ
0 is a linear combination of

kΘ
0 and SΘk

Θ
0 . By the cyclicity of kΘ

0 for SΘ, we obtain that dim(KΘ) = 2, a contradiction.

Therefore, A2 is not in T (Θ).

11. Compact truncated Toeplitz operators

Surprisingly enough, the first result about compactness of truncated Toeplitz operators

dates from 1970. In [1, Section 5] Ahern–Clark introduced what are, in our terminology,

truncated Toeplitz operators with continuous symbol, and they proved the following result.

Theorem 11.1 (Ahern–Clark). . Let Θ be an inner function and φ ∈ C(T). Then Aφ is

compact if and only if φ|σ(Θ) ≡ 0.

This result has been rediscovered more recently in [33]; see also [32]. We follow the proof

given in [33].

Proof. Suppose that φ|σ(Θ) ≡ 0. Let ε > 0 and pick ψ ∈ C(T) such that ψ vanishes on an

open set containing σ(Θ) and ‖φ− ψ‖∞ ≤ ε. Since ‖Aφ − Aψ‖ ≤ ‖φ− ψ‖∞ ≤ ε, and the

set of compact operators is norm closed in L(KΘ), it suffices to show that Aψ is compact.

Take a sequence (fn)n≥1 in KΘ that tends weakly to zero, and let us check that Aψfn → 0

in norm.

To this end, let K denote the closure of ψ−1(C \ {0}), and observe that K ⊂ T \ σ(Θ).

Then, we know that for every ζ ∈ K, the function

kΘ
ζ (z) =

1−Θ(ζ)Θ(z)

1− ζ̄z
,

belongs to KΘ and for every f ∈ KΘ, we have

f(ζ) = 〈f, kΘ
ζ 〉2

and

‖kΘ
ζ ‖2

2 =
1− |Θ(ζ)|2

1− |ζ|2
= |Θ′(ζ)|.
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In particular, since (fn)n converges weakly to zero in KΘ, we have fn(ζ) = 〈fn, kΘ
ζ 〉2 → 0

as n→∞ and there exists a constant C > 0 such that for every n ≥ 1, ‖fn‖2 ≤ C. Since

Θ is analytic on a neighborhood of K, we obtain

(11.1) |fn(ζ)| = |〈fn, kΘ
ζ 〉2| ≤ ‖fn‖2 ‖kΘ

ζ ‖2 ≤ Csup
ζ∈K

√
|Θ′(ζ)| <∞,

for every ζ ∈ K. By the Dominated Convergence Theorem, it follows that

‖Aψfn‖2
2 = ‖PΘ(ψfn)‖2

2 ≤ ‖ψfn‖2
2 =

∫
K

|ψ|2|fn|2 dm→ 0,

as n→∞, whence Aψfn tends to zero in norm, as desired.

Conversely, suppose that φ ∈ C(T) and Aφ is compact. Let

κλ =
kΘ
λ

‖kΘ
λ ‖2

be the normalized reproducing kernel for KΘ at point λ, and define

Fλ(z) =
1− |λ|2

1− |Θ(λ)|2

∣∣∣∣∣1−Θ(λ)Θ(z)

1− λ̄z

∣∣∣∣∣
2

,

Observe that Fλ(z) ≥ 0 and

1

2π

∫ 2π

0

Fλ(e
it) dt = 1.

Suppose that ξ = eiα ∈ σ(Θ). By definition, there is a sequence (λn)n≥1 ⊂ D such that

λn → ξ and |Θ(λn)| → 0. If |t− α| ≥ δ > 0, then

Fλn(eit) ≤ Cδ
1− |λn|2

1− |Θ(λn)|2
,

for some positive absolute constant Cδ. In particular, since |Θ(λn)| → 0, as n → ∞, we

get

(11.2) sup
|t−α|≥δ

Fλn(eit)→ 0, as n→∞.

First we show that

(11.3) lim
n→∞

∣∣∣∣φ(ξ)− 1

2π

∫ 2π

0

φ(eit)Fλn(eit) dt

∣∣∣∣ = 0.
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To do this, note that∣∣∣∣φ(ξ)− 1

2π

∫ 2π

0

φ(eit)Fλn(eit) dt

∣∣∣∣ =
1

2π

∣∣∣∣∫ 2π

0

(φ(ξ)− φ(eit))Fλn(eit) dt

∣∣∣∣
≤ 1

2π

∫
|t−α|≤δ

|φ(ξ)− φ(eit)|Fλn(eit) dt+

+
1

2π

∫
|t−α|≥δ

|φ(ξ)− φ(eit)|Fλn(eit) dt

≤ 1

2π

∫
|t−α|≤δ

|φ(ξ)− φ(eit)|Fλn(eit) dt+

+ 2‖φ‖∞ sup
|t−α|≥δ

Fλn(eit).

The first integral can be made small by the absolute continuity of φ (choosing an appro-

priate δ) and the fact that Fλn always integrate to one. Once δ > 0 is fixed, the second

term goes to zero by (11.2). This verifies (11.3).

Next, we show that

(11.4) lim
n→∞

∫
T
φFλn dm = 0.

We need the fact that κλn → 0 weakly in KΘ. To prove this, note that, for every z ∈ D,

we have

κλn(z) =
(1− |λn|2)1/2

(1− |Θ(λn)|2)1/2

1−Θ(λn)Θ(z)

1− λnz
,

and since λn → ζ ∈ T and Θ(λn)→ 0, n→∞, we get that

κλn(z)→ 0, as n→∞.

On the other hand, since (κλn)n≥1 is norm bounded (it is of norm 1 for every n), we deduce

that κλn → 0 weakly in H2, whence in KΘ.

Now to verify (11.4), observe that∣∣∣∣∫
T
φFλn dm

∣∣∣∣ = |〈φκλn , κλn〉2| = |〈PΘ(φκλn), κλn〉2| = |〈Aφκλn , κλn〉2|.

Then, an application of Cauchy-Schwartz inequality yields∣∣∣∣∫
T
φFλn dm

∣∣∣∣ ≤ ‖Aφκλn‖2‖κλn‖2 = ‖Aφκλn‖2.

Now use the fact that Aφ is compact and κλn → 0 weakly as n → ∞ to conclude that

‖Aφκλn‖2 → 0. This proves (11.4).

Combining (11.3) with (11.4) shows that φ(ξ) = 0 for every ξ ∈ σ(Θ), and completes

the proof the theorem. �
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Remark 11.2. Note that Theorem 11.1 admits a more precise version: if φ ∈ C(T), then

the essential spectrum of Aφ is

(11.5) σe(Aφ) = φ(σ(Θ),

and

‖Aφ‖e = sup
ζ∈σ(Θ)

|φ(ζ)|.

This can be proved using the explicit triangularization theory developed by Ahern and

Clark in [1] (see also the exposition in [46, Lecture V]). Recently, Garcia–Ross–Wogen

gave an algebraic proof of these formulae using the unital C∗-algebra generated by SΘ.

Thinking of Hartmann’s theorem, it seems plausible to believe that continuous symbols

play for compact TTOs the role played by bounded symbols for general TTOs. However,

as we will see in the next section, there exist inner functions Θ for which even rank-one

operators might not have bounded symbols (not to speak about continuous). So we have

to consider only certain classes of inner functions, suggested by the boundedness results in

the previous section. In this sense one has the following result proved by Bessonov [9].

Theorem 11.3 (Bessonov). Let Θ be an inner function and let φ ∈ C(T) +H∞. Then

σe(Aϕ) = φ(σ(Θ)).

Here we should understand φ(σ(Θ) ∩ T) as

φ(σ(Θ)) =

{
ζ ∈ C : lim inf

z∈D,|z|→1
(|(Pφ)(z)− ζ|+ |Θ(z)| = 0

}
,

where Pφ is the Poisson extension of φ, see (2.1).

The main step in the proof of Theorem 11.3 is an application of a corona Theorem for

the algebra H∞ + C(T) obtained by Mortini and Wick [44].

If we impose some conditions on the inner function, one can get some characterization

of compact truncated Toeplitz operators. Remind here, from Subsection 2.3, the classes of

Carleson measures Cp(Θ), p ≥ 1.

Theorem 11.4 (Bessonov). Let Θ be an inner function such that C1(Θ2) = C2(Θ), and let

A be a truncated Toeplitz operator on KΘ. Then the following are equivalent:

(1) A is compact.

(2) A = AφΘ for some φ ∈ C(T).

In particular, this characterization of compact TTO applies when Θ is one component.

One can see that instead of C(T) the main role is played by ΘC(T). We give below

some ideas about the connection between these two classes.
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Theorem 11.5 (Chalendar-Fricain-Timotin, [17]). Let Θ be an inner function such that

C2(Θ) = C1(Θ2) and m(σ(Θ)) = 0, and let A ∈ T (Θ). The following are equivalent:

(i) A is compact.

(ii) A = Aφ for some φ ∈ C(T) with φ|σ(Θ) = 0.

Proof. (ii) =⇒ (i) is proved in Theorem 11.1.

Suppose now (i) is true. By Theorem 11.4, there is a ψ ∈ C(T) such that A = AΘψ. By

the Rudin–Carleson interpolation theorem (see, for instance, [30, Theorem II.12.6]), there

exists a function ψ1 ∈ C(T)∩H∞ (that is, in the disk algebra) such that ψ|σ(Θ) = ψ1|σ(Θ).

Then one checks easily that φ = Θ(ψ−ψ1) is continuous on T, φ|σ(Θ) = 0, and Aφ = AΘψ

(since AΘψ1 = 0). �

In particular, Theorem 11.5 applies to the case when Θ one-component, since for such

functions we have C2(Θ) = C1(Θ2) and m(ρ(Θ)) = 0 [2, Theorem 6.4].

We also have the following result which is contained in [9, Proposition 2.1]; it was

revisited in [17].

Proposition 11.6 (Bessonov). Let Θ be an inner function.

(i) If φ ∈ ΘC(T) + ΘH∞, then Aφ is compact.

(ii) If φ ∈ C(T) +H∞, then the converse is also true.

Proof. (i) Assume that φ ∈ ΘC(T) + ΘH∞. Hence Θφ ∈ C(T) + H∞, which implies by

Hartmann’s theorem that HΘφ is compact. On the other hand, since C(T) + H∞ is an

algebra and Θ ∈ H∞ ⊂ C(T) + H∞, we deduce that the function φ = ΘΘφ also belongs

to C(T) +H∞. Another application of Hartmann’s theorem gives that the operator Hφ is

also compact. The fact that Aφ is compact follows now from the relation

(11.6) Aφ = (ΘHΘφ −Hφ)|KΘ.

To prove (11.6), observe that for every f ∈ KΘ, we have

(ΘHΘφ −Hφ)f =ΘP−(Θφf)− P−(φf)

=Θ(Θφf − P+(Θφf))− (φf − P+(φf)

=P+(φf)−ΘP+(Θφf)

=PΘ(φf)

=Aφ(f).

(ii) Assume now that φ ∈ C(T) + H∞ and also that Aφ is compact. Then, by (11.6),

the operator ΘHΘφ|KΘ = Aφ + Hφ|KΘ is also compact, whence HΘφ|KΘ is compact. Let

us now remark that

(11.7) HΘφ = HφΘPΘH2 +HΘφPΘ|H2,



48 EMMANUEL FRICAIN

where PΘH2 denotes the orthogonal projection from H2 onto ΘH2. Indeed, let f ∈ H2,

and decompose f as f = Θg1 + g2, where g1 ∈ H2 and g2 ∈ KΘ. Then

HΘφf =P−(ΘφΘg1) + P−(Θφg2)

=P−(φg1) + P−(Θφg2)

=Hφg1 +HΘφg2,

and it remains to observe that g1 = ΘPΘH2f and g2 = PΘf . Now it follows from (11.7)

that HΘφ is compact, and Hartmann’s theorem implies that Θφ ∈ C(T) +H∞. �

Finally, let us mention that the problem of deciding when certain truncated Toeplitz

operators are in Schatten–von-Neumann classes Sp has no clear solution, yet, even in the

usually simple case of the Hilbert–Schmidt ideal. In [42], Lopatto–Rochberg give criteria

for particular cases. For the case of one-component inner functions Θ, a conjecture is

proposed in [9] for the characterization of Schatten–von Neumann TTOs in KΘ. It states

essentially that a truncated Toeplitz operator is in Sp if and only if it has at least one

symbol φ in the Besov space B
1/p
pp (note that this would not necessarily be the standard

symbol). This last space admits several equivalent characterizations; for instance, if we

define, for τ ∈ T, ∆τf(z) = f(τz)− f(z), then

B1/p
p,p =

{
f ∈ Lp :

∫
T

‖∆τf‖pp
|1− τ |2

dm(τ) <∞
}
.

The conjecture is suggested by the similar result in the case of Hankel operators [47,

Chapter 6]. It is true if Θ(z) = e
z+1
z−1 , as shown by Bessonov in [10]. Bessonov also proposes

some alternate characterizations in terms of Clark measures.

12. Problem of the existence of a bounded symbol

Recall that a famous result of Brown–Halmos says that a Toeplitz operator Tφ on H2 is

bounded if and only if its symbol φ is in L∞. Moreover, we have ‖Tφ‖ = ‖φ‖∞. In other

words, the map φ 7→ Tφ is isometric from L∞ onto the space of bounded Toeplitz operator

on H2. In the case of truncated Toeplitz operators, the map φ 7→ AΘ
φ is again contractive

from L∞ into T (Θ). It is then natural to ask whether it is onto, that is whether any

bounded truncated Toeplitz operator on KΘ possesses an L∞ symbol. This question was

addressed by Sarason in [51]. As one may expect, the answer will depend on the inner

function Θ. In [7], Baranov, Chalendar, Fricain, Mashreghi and Timotin give an answer to

this question by constructing an example of a rank-one truncated Toeplitz operator that

has no bounded symbols. The construction is based on the following crucial lemma.



MINI-COURSE ON TRUNCATED TOEPLITZ OPERATORS 49

Lemma 12.1 ([7], Lemma 5.2). Let Θ be an inner function and 1 < p <∞. There exists

a constant C depending only on Θ and p such that if φ, ψ ∈ L2 are two symbols for the

same truncated Toeplitz operator, with φ ∈ KΘ ⊕ z̄KΘ, then

‖φ‖p ≤ C(‖ψ‖p + ‖φ‖2).

In particular, if ψ ∈ Lp, then φ ∈ Lp.

Proof. Remind that SΘ = L2 	 (ΘH2 + ΘH2). By hypothesis and Theorem 5.1, we have

PSΘ
φ = PSΘ

ψ; therefore, using (5.3),

φ = QΘφ = PSΘ
φ+ 〈φ, qΘ〉2qΘ = PSΘ

ψ + 〈φ, qΘ〉2qΘ.

By Lemma 5.2, we have

‖PSΘ
ψ‖p ≤ C1‖ψ‖p,

while

‖〈φ, qΘ〉2qΘ‖p ≤ ‖φ‖2‖qΘ‖p,

whence the lemma follows. �

In Theorem 10.3, it is proved that if ζ ∈ E(Θ) (remind that it means that Θ has an

angular derivative in the sense of Carathéodory at ζ), then kΘ
ζ ⊗kΘ

ζ is a rank-one truncated

Toeplitz operator with symbol kΘ
ζ + kΘ

ζ − 1. Lemma 12.1 suggests to look for the symbol

in KΘ ⊕ zKΘ.

Lemma 12.2. Let ζ ∈ E(Θ) and define φζ = ζΘ(ζ)ΘzkΘ2

ζ . Then φζ belongs to KΘ⊕ zKΘ

and Aφζ = kΘ
ζ ⊗ kΘ

ζ .

Proof. First note that if ζ ∈ E(Θ), then by Lemma 2.2, ζ ∈ E(Θ2) and kΘ2

ζ ∈ KΘ2 . Now,

using that KΘ2 = KΘ ⊕ΘKΘ, we can write kΘ2

ζ = f + Θg, with f, g ∈ KΘ. Then

ΘzkΘ2

ζ = Θ(zf + Θzg) = Θzf + zg = CΘ(f) + zg.

Since CΘ(f) ∈ KΘ, we deduce that φζ ∈ KΘ ⊕ zKΘ.

It remains to prove that φζ is a symbol for kΘ
ζ ⊗ kΘ

ζ . According to Theorem 5.1, this

is equivalent to φζ − (kΘ
ζ + kΘ

ζ − 1) ∈ ΘH2 + ΘH2. First note that for almost all points

z, ζ ∈ T, we have

1

1− ζz
+

1

1− zζ
=

ζz

ζz − 1
+

1

1− zζ
= 1.
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Hence

φζ − (kΘ
ζ + kΘ

ζ − 1) =ζΘ(ζ)Θ(z)z
1−Θ2(ζ)Θ2(z)

1− ζz
−

(
1−Θ(ζ)Θ(z)

1− ζz
+

1−Θ(ζ)Θ(z)

1− ζz
− 1

)

=ζΘ(ζ)Θ(z)z
1−Θ2(ζ)Θ2(z)

1− ζz
+

Θ(ζ)Θ(z)

1− ζz
+

Θ(ζ)Θ(z)

1− ζz

=
Θ(ζ)Θ(z)

ζz − 1
− ζzΘ(ζ)Θ(z)

1− ζz
+

Θ(ζ)Θ(z)

1− ζz
+

Θ(ζ)Θ(z)

1− ζz

=
Θ(ζ)Θ(z)

1− ζz
(1− ζz)

=Θ(ζ)Θ(z).

Therefore φζ − (kΘ
ζ + kΘ

ζ − 1) ∈ ΘH2 and then Aφζ = A
kΘ
ζ +kΘ

ζ −1
= kΘ

ζ ⊗ kΘ
ζ .

�

We are now ready to answer negatively to the question of Sarason.

Theorem 12.3 (Baranov-Chalendar-Fricain-Mashreghi-Timotin, [7]). Suppose that Θ is

an inner function which has an angular derivative in the sense of Carathéodory at ζ ∈ T.

Let p ∈ (2,∞). Then, the following are equivalent:

(i) the bounded truncated Toeplitz operator kΘ
ζ ⊗ kΘ

ζ has a symbol ψ ∈ Lp;
(ii) kΘ

ζ ∈ Lp.
In particular, if kΘ

ζ /∈ Lp, for some p ∈ (2,∞), then kΘ
ζ ⊗kΘ

ζ is a bounded truncated Toeplitz

operator with no bounded symbol.

Proof. According to Lemma 12.2, a symbol for the operator kΘ
ζ ⊗ kΘ

ζ is φζ = Θ(ζ)ζΘzkΘ2

ζ .

Since by Lemma 2.2, φ ∈ Lp if and only if kΘ
ζ ∈ Lp, we obtain that (ii) implies (i).

Conversely, assume that the bounded truncated Toeplitz operator kΘ
ζ ⊗ kΘ

ζ has a symbol

ψ ∈ Lp. Since φζ is a symbol in KΘ ⊕ zKΘ, we may then apply Lemma 12.1 and obtain

that φ ∈ Lp. Once again according to Lemma 2.2, we get that kΘ
ζ ∈ Lp, which proves that

(i) implies (ii). �

To obtain a bounded truncated Toeplitz operator with no bounded symbol, it is now

sufficient to have a point ζ ∈ T such that (2.5) is true for p = 2 but not for some strictly

larger value of p. It is easy to give concrete examples, as, for instance:

(1) a Blaschke product with zeros ak accumulating to the point 1, and such that∑
k

1− |ak|2

|1− ak|2
<∞,

∑
k

1− |ak|2

|1− ak|p
=∞ for some p > 2;
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(2) a singular function σ =
∑

k ckδζk with
∑

k ck <∞, ζk → 1, and∑
k

ck
|1− ζk|2

<∞,
∑
k

ck
|1− ζk|p

=∞ for some p > 2.

As we have just seen, one can construct some inner functions Θ for which there exists

some bounded truncated Toeplitz operators with no bounded symbols. On the contrary, it

is also proved in [7] that for the singular inner function Θ1(z) = exp
(
z+1
z−1

)
, every bounded

truncated Toeplitz operator has a bounded symbol. This follows from results obtained by

Rochberg [48] on the Paley–Wiener space. That of course yields the following question:

can we characterize inner functions Θ for which every bounded truncated Toeplitz oper-

ator on KΘ has a bounded symbol? In [6], Baranov–Bessonov–Kapustin gave interesting

characterizations of such inner functions in terms of set Cp(Θ), and also some factorization

properties. We will now detail a little bit some of their results.

Theorem 12.4 (Baranov–Bessonov–Kapustin, [6]). Let A ∈ T (Θ). Then A admits a

bounded symbol if and only if A = Aµ for some µ ∈ C1(Θ2).

This result should be compared with Theorem 7.11.

Proof. Let us assume that A = Aφ, where φ ∈ L∞. Then A = Aµ with dµ := φ dm. Notice

now that for every f ∈ K1
Θ2 , we have∫
T
|f | d|µ| =

∫
T
|f ||φ| dm ≤ ‖φ‖∞‖f‖1,

whence K1
Θ2 ↪→ L1(|µ|), proving that µ ∈ C1(Θ2).

Conversely, assume that A = Aµ, where µ ∈ C1(Θ2). Consider E the subspace of L1

formed by functions which are finite sums of functions of the forms xkyk, with xk, yk ∈ KΘ,

and define the functional ` on E by

` : f 7−→
∫
T
f dµ,

Let us check that ` is well defined and continuous (if E is equipped with the L1-norm).

Note that for every xk, yk ∈ KΘ, we have xkyk = xkΘzỹk, where ỹk = CΘ(yk) ∈ KΘ ⊂ H2.

In particular, Θz̄xkyk = xkỹk ∈ H1. On the other hand, writing xk = Θzx̃k, we also have

Θz̄xkyk = Θ2z2x̃kyk ∈ Θ2zH1.

Thus Θz̄xkyk ∈ H1 ∩ Θ2zH1 = K1
Θ2 . Moreover, since µ ∈ C1(Θ2) ⊂ C2(Θ), it can be

proved (see [6, Proposition 3.2]) that |Θ| = 1, |µ|-almost everywhere. Thus, for any f ∈ E ,

we have Θz̄f ∈ K1
Θ2 , and we obtain∫

T
|f | d|µ| =

∫
T
|Θz̄f | d|µ| ≤ C‖f‖1.
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In particular, ` is well defined and continuous, and so, by Hahn-Banach Theorem, it can

be continuously extended to L1. Hence, there exists a function φ ∈ L∞ such that∫
T
f dµ = `(f) =

∫
T
fφ dm, ∀f ∈ E .

It follows that, for every x, y ∈ KΘ,

〈Aµx, y〉2 =

∫
T
xȳ dµ = `(xȳ) =

∫
T
xyφ dm = 〈 Aφx, y〉2,

and thus Aµ = Aφ, with φ ∈ L∞. �

It follows immediately from Theorem 12.4 and Theorem 7.11 that if C1(Θ2) = C2(Θ),

then every bounded truncated Toeplitz operator admits a bounded symbol. Baranov–

Bessonov–Kapustin have showed that the converse is also true and they also make an

interesting connection with a factorization problem involving the space X (see (7.4)).

Theorem 12.5 (Baranov–Bessonov-Kapustin, [6]). Let Θ be an inner function. The fol-

lowing assertions are equivalent:

(i) every bounded truncated Toeplitz operator on KΘ admits a bounded symbol;

(ii) C1(Θ2) = C2(Θ2);

(iii) for any f ∈ H1 ∩Θ2z2H1, there exists xk, yk ∈ KΘ with

f =
∑
k

xkyk and
∑
k

‖xk‖2‖yk‖2 <∞.

If Θ is a one-component inner function, then all classes Cp(Θ) coincide (see [4, Theorem

1.4]). Moreover, if Θ is a one-component inner function, the Θ2 is, too, hence C1(Θ2) =

C2(Θ2). An immediate consequence of Theorem 12.5 is then the following.

Corollary 12.6. Let Θ be a one-component inner function. Then every bounded truncated

Toeplitz operator on KΘ admits a bounded symbol.

Question 12.7. Does the converse is true? That means: assume that every bounded

truncated Toeplitz operator on KΘ admits a bounded symbol. Does it follows that Θ is

one component?

Let us notice that it is shown in [3, Theorem 8] that the condition C1(Θ2) = C2(Θ2)

implies that all the Clark measures σα, α ∈ T, (associated to Θ) are discrete. It implies

immediately another class of counterexamples to the existence of a bounded symbol.

Corollary 12.8. Let Θ be an inner function and assume that for some α ∈ T, the Clark

measure σα is not discrete. Then there exist a bounded truncated Toeplitz operator on KΘ

that do not admit a bounded symbol.
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Let µ be a continuous singular measure. It is well known (see [35, Chapter 11]) that

there exists an inner function Θ such that

1− |Θ(z)2|
|1−Θ(z)|2

=

∫
T

1− |z|2

|z − ζ|2
dµ(ζ).

In particular, we get that µ is the Clark measure σ1 associated to Θ at point 1. By

Corollary 12.8, we know that there exist a bounded truncated Toeplitz operator on KΘ

that does not admit a bounded symbol.

References

[1] P. R. Ahern and D. N. Clark. On functions orthogonal to invariant subspaces. Acta Math., 124:191–

204, 1970.

[2] A. B. Aleksandrov. Inner functions and related spaces of pseudocontinuable functions. Zap. Nauchn.

Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 170(Issled. Linein. Oper. Teorii Funktsii. 17):7–33,

321, 1989. English translation in J. Soviet Math. 63 (1993), no. 2, 115–129.

[3] A. B. Aleksandrov. On the existence of angular boundary values of pseudocontinuable functions. Zap.

Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 222(Issled. po Linein. Oper. i Teor.

Funktsii. 23):5–17, 307, 1995.

[4] A. B. Aleksandrov. Embedding theorems for coinvariant subspaces of the shift operator. II. Zap.

Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 262(Issled. po Linein. Oper. i Teor.

Funkts. 27):5–48, 231, 1999. English translation in J. Math. Sci. (New York) 110 (2002), no. 5, 2907–

2929.

[5] A.B. Aleksandrov. On embedding theorems for coinvariant subspaces of the shift operator I. In Com-

plex analysis, operators and related topics, volume 113 of Oper. Theory Adv. Appl., pages 45–64.
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Translated from the Russian by Jaak Peetre.

[47] Vladimir V. Peller. Hankel operators and their applications. Springer Monographs in Mathematics.

Springer-Verlag, New York, 2003.

[48] R. Rochberg. Toeplitz and Hankel operators on the Paley-Wiener space. Integral Equations Operator

Theory, 10(2):187–235, 1987.

[49] W. Rudin. Real and complex analysis. McGraw-Hill Book Co., New York, third edition, 1987.

[50] D. Sarason. Generalized interpolation in H∞. Trans. Amer. Math. Soc., 127:179–203, 1967.

[51] D. Sarason. Algebraic properties of truncated Toeplitz operators. Oper. Matrices, 1(4):491–526, 2007.

[52] Donald Sarason. A remark on the Volterra operator. J. Math. Anal. Appl., 12:244–246, 1965.

[53] N. A. Sedlock. Algebras of truncated Toeplitz operators. Oper. Matrices, 5(2):309–326, 2011.

[54] E. Strouse, D. Timotin, and M. Zarrabi. Unitary equivalence to truncated Toeplitz operators. Indiana

Univ. Math. J., 61(2):525–538, 2012.



56 EMMANUEL FRICAIN

[55] A. L. Vol′berg and S. R. Treil′. Embedding theorems for invariant subspaces of the inverse shift

operator. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 149(Issled. Linein. Teor.

Funktsii. XV):38–51, 186–187, 1986.
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