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Introduction

To each ϕ ∈ L ∞ (T), we associate the Toeplitz operator defined on

H 2 as T ϕ (f ) = P + (ϕf ), f ∈ H 2 ,
where P + denotes the Riesz projection, that is the orthogonal projection of L 2 (T) onto H 2 . It is well known that T ϕ is a bounded operator on H 2 of norm equal to ϕ ∞ . In particular 

, if b ∈ H ∞ , b ∞ ≤ 1,
) ⊥ = H 2 bH 2 = K b .
In what follows, we will present some well-known general facts concerning H (b) spaces. See [START_REF] Fricain | An Introduction to H(b) spaces, Vol.I & II[END_REF][START_REF] Sarason | Sub-Hardy Hilbert spaces in the unit disk[END_REF] for more details on these spaces. An important property of H (b) spaces is that they are invariant under the backward shift operator S * = T z . These spaces have been introduced by L. de Branges and J. Rovnyak in the context of model theory [START_REF] De Branges | Canonical models in quantum scattering theory, Perturbation Theory and its Application in Quantum Mechanics[END_REF][START_REF] De Branges | Square Summable Power Series[END_REF]. A whole class of Hilbert space contractions is unitarily equivalent to S * |H (b), for an appropriate b.

It turns out that the properties of H (b) spaces depend on whether or not b is an extreme point of the closed unit ball of H ∞ , i.e., whether or not log(1 -|b|) is integrable with respect to normalized Lebesgue measure dm = dθ/2π on the unit circle T.

We will now assume that b is a non-extreme point of the closed unit ball of H ∞ , which, by the Arens-Buck-Carleson-Hoffman-Royden [START_REF] De Leeuw | Extreme points and extremum problems in H 1[END_REF] theorem, is equivalent to the condition

(1.1) T log(1 -|b|)dm > -∞.
To abbreviate, we will simply say b is non-extreme. In this case there is a unique outer function a with a(0) > 0 such that

(1.2) |a(ζ)| 2 + |b(ζ)| 2 = 1 m -a.e. ζ ∈ T.
We call a pair (a, b) satisfying the above property a Pythagorean pair.

We say that (a, b) forms a corona pair if moreover we have

|a(z)| + |b(z)| ≥ δ (z ∈ D),
for some constant δ > 0.

For φ ∈ L ∞ (T), let M (φ) := T φ H 2 endowed with the norm which makes T φ a partial isometry from

H 2 onto T φ H 2 . When b is non-extreme then M (a) = aH 2 is contractively contained in H (b), that is, for any f ∈ H 2 , the function af ∈ H (b) and (1.3) af b ≤ af M (a) = f 2 .
It is also known, when b is non-extreme, that for every f ∈ H (b), we have Tbf ∈ M (a) and one can obtain the scalar product of

f 1 , f 2 ∈ H (b) via the formula (1.4) f 1 , f 2 b = f 1 , f 2 2 + g 1 , g 2 2 ,
where g i ∈ H 2 and T b f i = T a g i , i = 1, 2. Note that g i is unique since T a is one-to-one due to the fact that a is outer .

Still under the hypothesis that b is non extreme, we have M (a) = H (b) (with equivalent norms) if and only if (a, b) forms a corona pair and T a/ā is invertible on H 2 . See [START_REF] Sarason | Doubly Shift-Invariant spaces in H 2[END_REF]Theorem 3]. Recall that the Toeplitz operator T a/ā is invertible on H 2 if and only if |a| 2 satisfies the so-called Muckenhoupt (A 2 ) condition.

We have already seen that H (b) spaces are invariant under the backward shift operator and in the case when b is non-extreme, they are also invariant under the forward shift S. We will denote by X b (respectively by Y b ) the restriction of S * (respectively of S) to H (b), i.e.

X b = S * |H (b)
and

Y b = S |H (b) .
In this note, we discuss the problem of characterizing the cyclic vectors for X b and Y b . Recall that if T is a bounded operator on a Hilbert space H , then a vector x ∈ H is said to be cyclic for

T if span H (T n x : n ≥ 0) = H ,
where span H (A) denotes the closed linear span of elements of A in H .

Cyclicity for X b

Recall that cyclic vectors for S * have been characterized by Douglas-Shapiro-Shields. They showed in [START_REF] Douglas | Cyclic vectors and invariant subspaces for backward shift operator[END_REF] that a function f in H 2 is not cyclic for S * if and only if it has a bounded type meromorphic pseudo continuation across T to D e = {z ∈ C : 1 < |z| ≤ ∞}. This is also equivalent to the existence of two functions g, h ∈ p>0 H p such that Proof. Assume that f is cyclic for X b . Then, for any polynomial p, there exists a sequence of polynomials p n such that

p n (X b )f -p b → 0, as n → ∞.
Since, H (b) is contained contractively in H 2 , then we have

p n (S * )f -p 2 → 0, as n → ∞.
Thus, any polynomial p belongs to span H 2 (S * n f : n ≥ 0), which is a closed subspace of H 2 . Since the polynomials are dense in H 2 , we get that span H 2 (S * n f :

n ≥ 0) = H 2 .
Conversely assume that f is cyclic for S * and denote by J the closed subspace of H (b) defined by

J = span H (b) (X n b f : n ≥ 0
). Since J is a closed invariant subspace of X b , then, according to [9, Theorem 5], there exists a function u which is either inner or u ≡ 0 such that span

H (b) (X n b f : n ≥ 0) = H (b) ∩ H (u). If u is inner since f ∈ H (u)
, then it is not cyclic for S * , which is contrary to the hypothesis. Thus, u ≡ 0 and

H (u) = H 2 , which implies that span H (b) (X n b f : n ≥ 0) = H (b). Therefore, the function f is cyclic for X b .

Cyclicity for Y b

The situation of cyclic vectors for Y b appears to be dramatically more difficult, although some of the properties of cyclicity in the Hardy space are preserved. We first begin with a simple observation. Observe that a classical result of Beurling showed that cyclic functions with respect to the forward shift operator in the Hardy space are exactly outer functions.

Lemma 3.1. Let b be a non-extreme point of the unit ball of H ∞ and let f ∈ H (b). If f is cyclic for Y b , then f , as an element of H 2 , is also cyclic for S.

Proof. Since f is cyclic for Y b , then there exists a sequence of polynomials (p n ) n such that p n f -1 b → 0 as n → ∞. Using the fact that H (b) is contained contractively in H 2 , we deduce that p n f -1 2 → 0 as n → ∞. That implies that f is a cyclic vector for S.

In the light of Beurling theorem, Lemma 3.1 implies that cyclic vectors of Y b are outer functions.

In some cases, we can also provide a sufficient condition. We remind that M (a) ⊂ H (b) and the inclusion map is contractive. Lemma 3.2. Let (a, b) be a Pythagorean pair and assume that the function a -1 belongs to L 2 (T). Let f be an outer function in M (a). Then f is cyclic for Y b .

Proof. Since f is an outer function in M (a), we can write f = ag, with g ∈ H 2 . It follows from the uniqueness of the Nevanlinna factorization that g is also an outer function. In particular, it should be cyclic for S. Since a -1 ∈ L 2 (T) and a is outer, then a -1 ∈ H 2 and there exists a sequence of polynomials (p n ) n such that p n g -a -1 2 → 0 as n → ∞. It remains to remember (1.3) to conclude that

p n f -1 b = p n ag -1 b ≤ p n g -a -1
2 , and thus f is cyclic for Y b . This allows us to characterize cyclicity under a simple assumption.

Theorem 3.3. Let (a, b) be a corona pair, let the operator T a/ā be invertible, and let f ∈ H (b). Then the following assertions are equivalent:

(i) f is cyclic for Y b .

(ii) f , as an element of H 2 , is cyclic for S.

(iii) f is an outer function.

Proof. The equivalence between (ii) and (iii) is well-known and due to Beurling (see [START_REF] Fricain | An Introduction to H(b) spaces, Vol.I & II[END_REF] for instance). (i) =⇒ (ii): follows from Lemma 3.1. (iii) =⇒ (i): assume that f is an outer function. According to the hypothesis on the Pythagorean pair (a, b) we know that H (b) = M (a) (with equivalent norms). In particular, since 1 ∈ H (b), we must have a -1 ∈ H 2 . Thus it remains to apply Lemma 3.2.

An important example

We will now give an example showing that the hypothesis that the operator T a/ā is invertible cannot be dropped in Theorem 3.3. Consider b(z) = (1 + z)/2 and a(z) = (1 -z)/2. It is easy to check that (a, b) is a corona pair. Moreover, the operator T a/ā = -S is not invertible. We show that the outer function f

(z) = 1 -z is not cyclic in H (b). Indeed, let n ≥ 0. It is easy to check that Tb1 = T ā1 and Tb(z n (1 -z)) = -T ā(z n (1 + z)).
Thus, using (1.4), we get that

1, z n f b = 1, (1 -z)z n 2 -1, (1 + z)z n 2 = -2 1, z n+1 2 
= 0. This proves that 1 ⊥ z n f for any n ≥ 0 and thus f cannot be cyclic for Y b .

In fact, in this particular case, we can completely determine the cyclic vectors for Y b using a description given by Sarason in [START_REF] Sarason | Local Dirichlet spaces as de Branges-Rovnyak spaces[END_REF]. More precisely, it is proved that in the case when b(z) = (1 + z)/2, then

H (b) = (z -1)H 2 C
where the symbol means that the decomposition is direct (not necessarily orthogonal). Moreover, the subspace (z -1)H 2 is a closed subspace of H (b) and we have

f b g 2 + |λ|
for every f = (z -1)g +λ where g ∈ H Proof. Decompose f as f = (z -1)g + f (1), where g ∈ H 2 . Let (p n ) n be a sequence of polynomials and write p n = p n (1) + (z -1)q n where q n is a polynomial. We have

p n f -1 = p n ((z -1)g + f (1)) -1 = (z -1)p n g + f (1)p n -1 = (z -1)(p n g + f (1)q n ) + (f (1)p n (1) -1). 
Thus, we get (4.1)

p n f -1 b p n g + f (1)q n 2 + |f (1)p n (1) -1|.
First, assume that f (1) = 0. Then, for any sequence of polynomials (p n ) n , we have by (4.1)

p n f -1 b 1,
and thus, f cannot be cyclic for Y b .

Conversely, assume now that f is an outer function such that f (1) = 0 and let us prove that f is cyclic for Y b . Put λ = 1/f (1). Since f is outer, by Beurling theorem, there exists a sequence of polynomials (q n ) n such that q n f + λg 2 → 0, n → ∞.

If we consider p n = λ + (z -1)q n then p n (1) = λ and we have p n g + f (1)q n = λg + f q n . Hence, p n g + f (1)q n 2 → 0 as n → +∞. Thus by (4.1), we conclude that

p n f -1 b → 0 as n → ∞, which proves that f is cyclic for Y b .
In particular, we get the following corollary. Denote by Hol(D), the set of all functions that are holomorphic on an open neighbourhood of the unit disk. Remark 4.4. One should note that if we combine results of [START_REF] Guillot | Fine boundary behavior and invariant subspaces of harmonically weighted Dirichlet spaces[END_REF] and [START_REF] Costara | Which de Branges-Rovnyak spaces are Dirichlet spaces (and vice versa)?[END_REF], then we can generalize Theorem 4.1 to the case when (a, b) is a rational pair and the function a has simple zeros on T. However, the result given in [START_REF] Guillot | Fine boundary behavior and invariant subspaces of harmonically weighted Dirichlet spaces[END_REF] is based on a difficult description of invariant subspaces of H (b) (in the case when b(z) = (1 + z)/2) obtained by Sarason in [START_REF] Sarason | Doubly Shift-Invariant spaces in H 2[END_REF] and our approach seems to us more elementary, though a little bit less general.
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 241 Since |g(z)| = O((1-|z|) -1/2 ), we easily see that every function f ∈ H (b) has a non tangential limit at 1 and λ = f (1). Let b(z) = (1 + z)/2 and f ∈ H (b). Then f is cyclic for Y b if and only if f is an outer function such that f (1) = 0.

Corollary 4 . 2 .

 42 Let b(z) = (1 + z)/2 and f be a function in Hol(D). Then f is cyclic for Y b if and only if f has no zeros on D and f (1) = 0.

Remark 4 . 3 .

 43 It should be noted that the result of Theorem 4.1 can be rephrased like this: let b(z) = (1 + z)/2 and let f ∈ H (b). Then, f is cyclic for Y b if and only if f is an outer function such that f / ∈ M (a). Note that in the case when M (a) is a proper closed subspace of H (b), then the fact that f is an outer function such that f / ∈ M (a) still remains a necessary condition for cyclicity.
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