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M
achine-learning technology powers many aspects of modern 
society: from web searches to content filtering on social net-
works to recommendations on e-commerce websites, and 

it is increasingly present in consumer products such as cameras and 
smartphones. Machine-learning systems are used to identify objects 
in images, transcribe speech into text, match news items, posts or 
products with users’ interests, and select relevant results of search. 
Increasingly, these applications make use of a class of techniques called 
deep learning. 

Conventional machine-learning techniques were limited in their 
ability to process natural data in their raw form. For decades, con-
structing a pattern-recognition or machine-learning system required 
careful engineering and considerable domain expertise to design a fea-
ture extractor that transformed the raw data (such as the pixel values 
of an image) into a suitable internal representation or feature vector 
from which the learning subsystem, often a classifier, could detect or 
classify patterns in the input. 

Representation learning is a set of methods that allows a machine to 
be fed with raw data and to automatically discover the representations 
needed for detection or classification. Deep-learning methods are 
representation-learning methods with multiple levels of representa-
tion, obtained by composing simple but non-linear modules that each 
transform the representation at one level (starting with the raw input) 
into a representation at a higher, slightly more abstract level. With the 
composition of enough such transformations, very complex functions 
can be learned. For classification tasks, higher layers of representation 
amplify aspects of the input that are important for discrimination and 
suppress irrelevant variations. An image, for example, comes in the 
form of an array of pixel values, and the learned features in the first 
layer of representation typically represent the presence or absence of 
edges at particular orientations and locations in the image. The second 
layer typically detects motifs by spotting particular arrangements of 
edges, regardless of small variations in the edge positions. The third 
layer may assemble motifs into larger combinations that correspond 
to parts of familiar objects, and subsequent layers would detect objects 
as combinations of these parts. The key aspect of deep learning is that 
these layers of features are not designed by human engineers: they 
are learned from data using a general-purpose learning procedure. 

Deep learning is making major advances in solving problems that 
have resisted the best attempts of the artificial intelligence commu-
nity for many years. It has turned out to be very good at discovering 

intricate structures in high-dimensional data and is therefore applica-
ble to many domains of science, business and government. In addition 
to beating records in image recognition1–4 and speech recognition5–7, it 
has beaten other machine-learning techniques at predicting the activ-
ity of potential drug molecules8, analysing particle accelerator data9,10, 
reconstructing brain circuits11, and predicting the effects of mutations 
in non-coding DNA on gene expression and disease12,13. Perhaps more 
surprisingly, deep learning has produced extremely promising results 
for various tasks in natural language understanding14, particularly 
topic classification, sentiment analysis, question answering15 and lan-
guage translation16,17. 

We think that deep learning will have many more successes in the 
near future because it requires very little engineering by hand, so it 
can easily take advantage of increases in the amount of available com-
putation and data. New learning algorithms and architectures that are 
currently being developed for deep neural networks will only acceler-
ate this progress. 

Supervised learning 
The most common form of machine learning, deep or not, is super-
vised learning. Imagine that we want to build a system that can classify 
images as containing, say, a house, a car, a person or a pet. We first 
collect a large data set of images of houses, cars, people and pets, each 
labelled with its category. During training, the machine is shown an 
image and produces an output in the form of a vector of scores, one 
for each category. We want the desired category to have the highest 
score of all categories, but this is unlikely to happen before training. 
We compute an objective function that measures the error (or dis-
tance) between the output scores and the desired pattern of scores. The 
machine then modifies its internal adjustable parameters to reduce 
this error. These adjustable parameters, often called weights, are real 
numbers that can be seen as ‘knobs’ that define the input–output func-
tion of the machine. In a typical deep-learning system, there may be 
hundreds of millions of these adjustable weights, and hundreds of 
millions of labelled examples with which to train the machine. 

To properly adjust the weight vector, the learning algorithm com-
putes a gradient vector that, for each weight, indicates by what amount 
the error would increase or decrease if the weight were increased by a 
tiny amount. The weight vector is then adjusted in the opposite direc-
tion to the gradient vector. 

The objective function, averaged over all the training examples, can 

Deep learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels 
of abstraction. These methods have dramatically improved the state-of-the-art in speech rec-ognition, visual object recognition, object detection 
and many other domains such as drug discovery and genomics. Deep learning discovers intricate structure in large data sets by using the 
backpropagation algorithm to indicate how a machine should change its internal parameters that are used to compute the representation in 
each layer from the representation in the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, 
speech and audio, whereas recurrent nets have shone light on sequential data such as text and speech. 
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be seen as a kind of hilly landscape in the high-dimensional space of 
weight values. The negative gradient vector indicates the direction 
of steepest descent in this landscape, taking it closer to a minimum, 
where the output error is low on average. 

In practice, most practitioners use a procedure called stochastic 
gradient descent (SGD). This consists of showing the input vector 
for a few examples, computing the outputs and the errors, computing 
the average gradient for those examples, and adjusting the weights 
accordingly. The process is repeated for many small sets of examples 
from the training set until the average of the objective function stops 
decreasing. It is called stochastic because each small set of examples 
gives a noisy estimate of the average gradient over all examples. This 
simple procedure usually finds a good set of weights surprisingly 
quickly when compared with far more elaborate optimization tech-
niques18. After training, the performance of the system is measured 
on a different set of examples called a test set. This serves to test the 
generalization ability of the machine — its ability to produce sensible 
answers on new inputs that it has never seen during training. 

Many of the current practical applications of machine learning use 
linear classifiers on top of hand-engineered features. A two-class linear 
classifier computes a weighted sum of the feature vector components. 
If the weighted sum is above a threshold, the input is classified as 
belonging to a particular category. 

Since the 1960s we have known that linear classifiers can only carve 
their input space into very simple regions, namely half-spaces sepa-
rated by a hyperplane19. But problems such as image and speech recog-
nition require the input–output function to be insensitive to irrelevant 
variations of the input, such as variations in position, orientation or 
illumination of an object, or variations in the pitch or accent of speech, 
while being very sensitive to particular minute variations (for example, 
the difference between a white wolf and a breed of wolf-like white 
dog called a Samoyed). At the pixel level, images of two Samoyeds in 
different poses and in different environments may be very different 
from each other, whereas two images of a Samoyed and a wolf in the 
same position and on similar backgrounds may be very similar to each 
other. A linear classifier, or any other ‘shallow’ classifier operating on 

Figure 1 - Multilayer neural networks and backpropagation. a, A multi-
layer neural network (shown by the connected dots) can distort the input 
space to make the classes of data (examples of which are on the red and 
blue lines) linearly separable. Note how a regular grid (shown on the left) 
in input space is also transformed (shown in the middle panel) by hidden 
units. This is an illustrative example with only two input units, two hidden 
units and one output unit, but the networks used for object recognition 
or natural language processing contain tens or hundreds of thousands of 
units. Reproduced with permission from C. Olah (http://colah.github.io/). 
b, The chain rule of derivatives tells us how two small effects (that of a small 
change of x on y, and that of y on z) are composed. A small change Δx in 
x gets transformed first into a small change Δy in y by getting multiplied 
by ∂y/∂x (that is, the definition of partial derivative). Similarly, the change 
Δy creates a change Δz in z. Substituting one equation into the other 
gives the chain rule of derivatives — how Δx gets turned into Δz through 
multiplication by the product of ∂y/∂x and ∂z/∂x. It also works when x, 
y and z are vectors (and the derivatives are Jacobian matrices). c, The 
equations used for computing the forward pass in a neural net with two 
hidden layers and one output layer, each constituting a module through 

which one can backpropagate gradients. At each layer, we first compute 
the total input z to each unit, which is a weighted sum of the outputs of 
the units in the layer below. Then a non-linear function f(.) is applied to 
z to get the output of the unit. For simplicity, we have omitted bias terms. 
The non-linear functions used in neural networks include the rectified 
linear unit (ReLU) f(z) = max(0,z), commonly used in recent years, as 
well as the more conventional sigmoids, such as the hyberbolic tangent, 
f(z) = (exp(z) − exp(−z))/(exp(z) + exp(−z)) and logistic function logistic, 
f(z) = 1/(1 + exp(−z)). d, The equations used for computing the backward 
pass. At each hidden layer we compute the error derivative with respect to 
the output of each unit, which is a weighted sum of the error derivatives 
with respect to the total inputs to the units in the layer above. We then 
convert the error derivative with respect to the output into the error 
derivative with respect to the input by multiplying it by the gradient of f(z). 
At the output layer, the error derivative with respect to the output of a unit 
is computed by differentiating the cost function. This gives yl − tl if the cost 
function for unit l is 0.5(yl − tl)

2, where tl is the target value. Once the ∂E/∂zk 
is known, the error-derivative for the weight wjk on the connection from 
unit j in the layer below is just yj ∂E/∂zk.
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rule for derivatives. The key insight is that the derivative (or gradi-
ent) of the objective with respect to the input of a module can be 
computed by working backwards from the gradient with respect to 
the output of that module (or the input of the subsequent module) 
(Fig. 1). The backpropagation equation can be applied repeatedly to 
propagate gradients through all modules, starting from the output 
at the top (where the network produces its prediction) all the way to 
the bottom (where the external input is fed). Once these gradients 
have been computed, it is straightforward to compute the gradients 
with respect to the weights of each module. 

Many applications of deep learning use feedforward neural net-
work architectures (Fig. 1), which learn to map a fixed-size input 
(for example, an image) to a fixed-size output (for example, a prob-
ability for each of several categories). To go from one layer to the 
next, a set of units compute a weighted sum of their inputs from the 
previous layer and pass the result through a non-linear function. At 
present, the most popular non-linear function is the rectified linear 
unit (ReLU), which is simply the half-wave rectifier f(z) = max(z, 0). 
In past decades, neural nets used smoother non-linearities, such as 
tanh(z) or 1/(1 + exp(−z)), but the ReLU typically learns much faster 
in networks with many layers, allowing training of a deep supervised 
network without unsupervised pre-training28. Units that are not in 
the input or output layer are conventionally called hidden units. The 
hidden layers can be seen as distorting the input in a non-linear way 
so that categories become linearly separable by the last layer (Fig. 1). 

In the late 1990s, neural nets and backpropagation were largely 
forsaken by the machine-learning community and ignored by the 
computer-vision and speech-recognition communities. It was widely 
thought that learning useful, multistage, feature extractors with lit-
tle prior knowledge was infeasible. In particular, it was commonly 
thought that simple gradient descent would get trapped in poor local 
minima — weight configurations for which no small change would 
reduce the average error. 

In practice, poor local minima are rarely a problem with large net-
works. Regardless of the initial conditions, the system nearly always 
reaches solutions of very similar quality. Recent theoretical and 
empirical results strongly suggest that local minima are not a serious 
issue in general. Instead, the landscape is packed with a combinato-
rially large number of saddle points where the gradient is zero, and 
the surface curves up in most dimensions and curves down in the 

Figure 2 - Inside a convolutional network. The outputs (not the filters) 
of each layer (horizontally) of a typical convolutional network architecture 
applied to the image of a Samoyed dog (bottom left; and RGB (red, green, 
blue) inputs, bottom right). Each rectangular image is a feature map 

raw pixels could not possibly distinguish the latter two, while putting 
the former two in the same category. This is why shallow classifiers 
require a good feature extractor that solves the selectivity–invariance 
dilemma — one that produces representations that are selective to 
the aspects of the image that are important for discrimination, but 
that are invariant to irrelevant aspects such as the pose of the animal. 
To make classifiers more powerful, one can use generic non-linear 
features, as with kernel methods20, but generic features such as those 
arising with the Gaussian kernel do not allow the learner to general-
ize well far from the training examples21. The conventional option is 
to hand design good feature extractors, which requires a consider-
able amount of engineering skill and domain expertise. But this can 
all be avoided if good features can be learned automatically using a 
general-purpose learning procedure. This is the key advantage of 
deep learning. 

A deep-learning architecture is a multilayer stack of simple mod-
ules, all (or most) of which are subject to learning, and many of which 
compute non-linear input–output mappings. Each module in the 
stack transforms its input to increase both the selectivity and the 
invariance of the representation. With multiple non-linear layers, say 
a depth of 5 to 20, a system can implement extremely intricate func-
tions of its inputs that are simultaneously sensitive to minute details 
— distinguishing Samoyeds from white wolves — and insensitive to 
large irrelevant variations such as the background, pose, lighting and 
surrounding objects. 

Backpropagation to train multilayer architectures 
From the earliest days of pattern recognition22,23, the aim of research-
ers has been to replace hand-engineered features with trainable 
multilayer networks, but despite its simplicity, the solution was not 
widely understood until the mid 1980s. As it turns out, multilayer 
architectures can be trained by simple stochastic gradient descent. 
As long as the modules are relatively smooth functions of their inputs 
and of their internal weights, one can compute gradients using the 
backpropagation procedure. The idea that this could be done, and 
that it worked, was discovered independently by several different 
groups during the 1970s and 1980s24–27.  

The backpropagation procedure to compute the gradient of an 
objective function with respect to the weights of a multilayer stack 
of modules is nothing more than a practical application of the chain 

corresponding to the output for one of the learned features, detected at each 
of the image positions. Information flows bottom up, with lower-level features 
acting as oriented edge detectors, and a score is computed for each image class 
in output. ReLU, rectified linear unit.
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remainder29,30. The analysis seems to show that saddle points with 
only a few downward curving directions are present in very large 
numbers, but almost all of them have very similar values of the objec-
tive function. Hence, it does not much matter which of these saddle 
points the algorithm gets stuck at. 

Interest in deep feedforward networks was revived around 2006 
(refs 31–34) by a group of researchers brought together by the Cana-
dian Institute for Advanced Research (CIFAR). The researchers intro-
duced unsupervised learning procedures that could create layers of 
feature detectors without requiring labelled data. The objective in 
learning each layer of feature detectors was to be able to reconstruct 
or model the activities of feature detectors (or raw inputs) in the layer 
below. By ‘pre-training’ several layers of progressively more complex 
feature detectors using this reconstruction objective, the weights of a 
deep network could be initialized to sensible values. A final layer of 
output units could then be added to the top of the network and the 
whole deep system could be fine-tuned using standard backpropaga-
tion33–35. This worked remarkably well for recognizing handwritten 
digits or for detecting pedestrians, especially when the amount of 
labelled data was very limited36. 

The first major application of this pre-training approach was in 
speech recognition, and it was made possible by the advent of fast 
graphics processing units (GPUs) that were convenient to program37 
and allowed researchers to train networks 10 or 20 times faster. In 
2009, the approach was used to map short temporal windows of coef-
ficients extracted from a sound wave to a set of probabilities for the 
various fragments of speech that might be represented by the frame 
in the centre of the window. It achieved record-breaking results on a 
standard speech recognition benchmark that used a small vocabu-
lary38 and was quickly developed to give record-breaking results on 
a large vocabulary task39. By 2012, versions of the deep net from 2009 
were being developed by many of the major speech groups6 and were 
already being deployed in Android phones. For smaller data sets, 
unsupervised pre-training helps to prevent overfitting40, leading to 
significantly better generalization when the number of labelled exam-
ples is small, or in a transfer setting where we have lots of examples 
for some ‘source’ tasks but very few for some ‘target’ tasks. Once deep 
learning had been rehabilitated, it turned out that the pre-training 
stage was only needed for small data sets. 

There was, however, one particular type of deep, feedforward net-
work that was much easier to train and generalized much better than 
networks with full connectivity between adjacent layers. This was 
the convolutional neural network (ConvNet)41,42. It achieved many 
practical successes during the period when neural networks were out 
of favour and it has recently been widely adopted by the computer-
vision community. 

Convolutional neural networks 
ConvNets are designed to process data that come in the form of 
multiple arrays, for example a colour image composed of three 2D 
arrays containing pixel intensities in the three colour channels. Many 
data modalities are in the form of multiple arrays: 1D for signals and 
sequences, including language; 2D for images or audio spectrograms; 
and 3D for video or volumetric images. There are four key ideas 
behind ConvNets that take advantage of the properties of natural 
signals: local connections, shared weights, pooling and the use of 
many layers. 

The architecture of a typical ConvNet (Fig. 2) is structured as a 
series of stages. The first few stages are composed of two types of 
layers: convolutional layers and pooling layers. Units in a convolu-
tional layer are organized in feature maps, within which each unit 
is connected to local patches in the feature maps of the previous 
layer through a set of weights called a filter bank. The result of this 
local weighted sum is then passed through a non-linearity such as a 
ReLU. All units in a feature map share the same filter bank. Differ-
ent feature maps in a layer use different filter banks. The reason for 

this architecture is twofold. First, in array data such as images, local 
groups of values are often highly correlated, forming distinctive local 
motifs that are easily detected. Second, the local statistics of images 
and other signals are invariant to location. In other words, if a motif 
can appear in one part of the image, it could appear anywhere, hence 
the idea of units at different locations sharing the same weights and 
detecting the same pattern in different parts of the array. Mathemati-
cally, the filtering operation performed by a feature map is a discrete 
convolution, hence the name. 

Although the role of the convolutional layer is to detect local con-
junctions of features from the previous layer, the role of the pooling 
layer is to merge semantically similar features into one. Because the 
relative positions of the features forming a motif can vary somewhat, 
reliably detecting the motif can be done by coarse-graining the posi-
tion of each feature. A typical pooling unit computes the maximum 
of a local patch of units in one feature map (or in a few feature maps). 
Neighbouring pooling units take input from patches that are shifted 
by more than one row or column, thereby reducing the dimension of 
the representation and creating an invariance to small shifts and dis-
tortions. Two or three stages of convolution, non-linearity and pool-
ing are stacked, followed by more convolutional and fully-connected 
layers. Backpropagating gradients through a ConvNet is as simple as 
through a regular deep network, allowing all the weights in all the 
filter banks to be trained. 

Deep neural networks exploit the property that many natural sig-
nals are compositional hierarchies, in which higher-level features 
are obtained by composing lower-level ones. In images, local combi-
nations of edges form motifs, motifs assemble into parts, and parts 
form objects. Similar hierarchies exist in speech and text from sounds 
to phones, phonemes, syllables, words and sentences. The pooling 
allows representations to vary very little when elements in the previ-
ous layer vary in position and appearance. 

The convolutional and pooling layers in ConvNets are directly 
inspired by the classic notions of simple cells and complex cells in 
visual neuroscience43, and the overall architecture is reminiscent of 
the LGN–V1–V2–V4–IT hierarchy in the visual cortex ventral path-
way44. When ConvNet models and monkeys are shown the same pic-
ture, the activations of high-level units in the ConvNet explains half 
of the variance of random sets of 160 neurons in the monkey’s infer-
otemporal cortex45. ConvNets have their roots in the neocognitron46, 
the architecture of which was somewhat similar, but did not have an 
end-to-end supervised-learning algorithm such as backpropagation. 
A primitive 1D ConvNet called a time-delay neural net was used for 
the recognition of phonemes and simple words47,48. 

There have been numerous applications of convolutional net-
works going back to the early 1990s, starting with time-delay neu-
ral networks for speech recognition47 and document reading42. The 
document reading system used a ConvNet trained jointly with a 
probabilistic model that implemented language constraints. By the 
late 1990s this system was reading over 10% of all the cheques in the 
United States. A number of ConvNet-based optical character recog-
nition and handwriting recognition systems were later deployed by 
Microsoft49. ConvNets were also experimented with in the early 1990s 
for object detection in natural images, including faces and hands50,51, 
and for face recognition52. 

Image understanding with deep convolutional networks
Since the early 2000s, ConvNets have been applied with great success 
to the detection, segmentation and recognition of objects and regions 
in images. These were all tasks in which labelled data was relatively 
abun-dant, such as traffic sign recognition53, the segmentation of 
biological images54 particularly for connectomics55, and the detection 
of faces, text, pedestrians and human bodies in natural images36,50,51,56–

58. A major recent practical success of ConvNets is face recognition59. 
Importantly, images can be labelled at the pixel level, which will 
have applications in technology, including autonomous mobile 
robots and 
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Figure 3 - From image to text. Captions generated by a recurrent neural 
network (RNN) taking, as extra input, the representation extracted by a deep 
convolution neural network (CNN) from a test image, with the RNN trained to 
‘translate’ high-level representations of images into captions (top). Reproduced 

self-driving cars60,61. Companies such as Mobileye and NVIDIA are 
using such ConvNet-based methods in their upcoming vision sys-
tems for cars. Other applications gaining importance involve natural 
language understanding14 and speech recognition7. 

Despite these successes, ConvNets were largely forsaken by the 
mainstream computer-vision and machine-learning communities 
until the ImageNet competition in 2012. When deep convolutional 
networks were applied to a data set of about a million images from 
the web that contained 1,000 different classes, they achieved spec-
tacular results, almost halving the error rates of the best compet-
ing approaches1. This success came from the efficient use of GPUs, 
ReLUs, a new regularization technique called dropout62, and tech-
niques to generate more training examples by deforming the existing 
ones. This success has brought about a revolution in computer vision; 
ConvNets are now the dominant approach for almost all recognition 
and detection tasks4,58,59,63–65 and approach human performance on 
some tasks. A recent stunning demonstration combines ConvNets 
and recurrent net modules for the generation of image captions 
(Fig. 3). 

Recent ConvNet architectures have 10 to 20 layers of ReLUs, hun-
dreds of millions of weights, and billions of connections between 
units. Whereas training such large networks could have taken weeks 
only two years ago, progress in hardware, software and algorithm 
parallelization have reduced training times to a few hours. 

The performance of ConvNet-based vision systems has caused 
most major technology companies, including Google, Facebook, 

with permission from ref. 102. When the RNN is given the ability to focus its 
attention on a different location in the input image (middle and bottom; the 
lighter patches were given more attention) as it generates each word (bold), we 
found86 that it exploits this to achieve better ‘translation’ of images into captions.

Microsoft, IBM, Yahoo!, Twitter and Adobe, as well as a quickly 
growing number of start-ups to initiate research and development 
projects and to deploy ConvNet-based image understanding products 
and services. 

ConvNets are easily amenable to efficient hardware implemen-
tations in chips or field-programmable gate arrays66,67. A number 
of companies such as NVIDIA, Mobileye, Intel, Qualcomm and 
Samsung are developing ConvNet chips to enable real-time vision 
applications in smartphones, cameras, robots and self-driving cars. 

Distributed representations and language processing 
Deep-learning theory shows that deep nets have two different expo-
nential advantages over classic learning algorithms that do not use 
distributed representations21. Both of these advantages arise from the 
power of composition and depend on the underlying data-generating 
distribution having an appropriate componential structure40. First, 
learning distributed representations enable generalization to new 
combinations of the values of learned features beyond those seen 
during training (for example, 2n combinations are possible with n 
binary features)68,69. Second, composing layers of representation in 
a deep net brings the potential for another exponential advantage70 
(exponential in the depth). 

The hidden layers of a multilayer neural network learn to repre-
sent the network’s inputs in a way that makes it easy to predict the 
target outputs. This is nicely demonstrated by training a multilayer 
neural network to predict the next word in a sequence from a local 
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context of earlier words71. Each word in the context is presented to 
the network as a one-of-N vector, that is, one component has a value 
of 1 and the rest are 0. In the first layer, each word creates a different 
pattern of activations, or word vectors (Fig. 4). In a language model, 
the other layers of the network learn to convert the input word vec-
tors into an output word vector for the predicted next word, which 
can be used to predict the probability for any word in the vocabulary 
to appear as the next word. The network learns word vectors that 
contain many active components each of which can be interpreted 
as a separate feature of the word, as was first demonstrated27 in the 
context of learning distributed representations for symbols. These 
semantic features were not explicitly present in the input. They were 
discovered by the learning procedure as a good way of factorizing 
the structured relationships between the input and output symbols 
into multiple ‘micro-rules’. Learning word vectors turned out to also 
work very well when the word sequences come from a large corpus 
of real text and the individual micro-rules are unreliable71. When 
trained to predict the next word in a news story, for example, the 
learned word vectors for Tuesday and Wednesday are very similar, as 
are the word vectors for Sweden and Norway. Such representations 
are called distributed representations because their elements (the 
features) are not mutually exclusive and their many configurations 
correspond to the variations seen in the observed data. These word 
vectors are composed of learned features that were not determined 
ahead of time by experts, but automatically discovered by the neural 
network. Vector representations of words learned from text are now 
very widely used in natural language applications14,17,72–76. 

The issue of representation lies at the heart of the debate between 
the logic-inspired and the neural-network-inspired paradigms for 
cognition. In the logic-inspired paradigm, an instance of a symbol is 
something for which the only property is that it is either identical or 
non-identical to other symbol instances. It has no internal structure 
that is relevant to its use; and to reason with symbols, they must be 
bound to the variables in judiciously chosen rules of inference. By 
contrast, neural networks just use big activity vectors, big weight 
matrices and scalar non-linearities to perform the type of fast ‘intui-
tive’ inference that underpins effortless commonsense reasoning. 

Before the introduction of neural language models71, the standard 
approach to statistical modelling of language did not exploit distrib-
uted representations: it was based on counting frequencies of occur-
rences of short symbol sequences of length up to N (called N-grams). 
The number of possible N-grams is on the order of VN, where V is 
the vocabulary size, so taking into account a context of more than a 

handful of words would require very large training corpora. N-grams 
treat each word as an atomic unit, so they cannot generalize across 
semantically related sequences of words, whereas neural language 
models can because they associate each word with a vector of real 
valued features, and semantically related words end up close to each 
other in that vector space (Fig. 4). 

Recurrent neural networks 
When backpropagation was first introduced, its most exciting use was 
for training recurrent neural networks (RNNs). For tasks that involve 
sequential inputs, such as speech and language, it is often better to 
use RNNs (Fig. 5). RNNs process an input sequence one element at a 
time, maintaining in their hidden units a ‘state vector’ that implicitly 
contains information about the history of all the past elements of 
the sequence. When we consider the outputs of the hidden units at 
different discrete time steps as if they were the outputs of different 
neurons in a deep multilayer network (Fig. 5, right), it becomes clear 
how we can apply backpropagation to train RNNs. 

RNNs are very powerful dynamic systems, but training them has 
proved to be problematic because the backpropagated gradients 
either grow or shrink at each time step, so over many time steps they 
typically explode or vanish77,78. 

Thanks to advances in their architecture79,80 and ways of training 
them81,82, RNNs have been found to be very good at predicting the 
next character in the text83 or the next word in a sequence75, but they 
can also be used for more complex tasks. For example, after reading 
an English sentence one word at a time, an English ‘encoder’ network 
can be trained so that the final state vector of its hidden units is a good 
representation of the thought expressed by the sentence. This thought 
vector can then be used as the initial hidden state of (or as extra input 
to) a jointly trained French ‘decoder’ network, which outputs a prob-
ability distribution for the first word of the French translation. If a 
particular first word is chosen from this distribution and provided 
as input to the decoder network it will then output a probability dis-
tribution for the second word of the translation and so on until a 
full stop is chosen17,72,76. Overall, this process generates sequences of 
French words according to a probability distribution that depends on 
the English sentence. This rather naive way of performing machine 
translation has quickly become competitive with the state-of-the-art, 
and this raises serious doubts about whether understanding a sen-
tence requires anything like the internal symbolic expressions that are 
manipulated by using inference rules. It is more compatible with the 
view that everyday reasoning involves many simultaneous analogies 

Figure 4 - Visualizing the learned word vectors. On the left is an illustration 
of word representations learned for modelling language, non-linearly projected 
to 2D for visualization using the t-SNE algorithm103. On the right is a 2D 
representation of phrases learned by an English-to-French encoder–decoder 
recurrent neural network75. One can observe that semantically similar words 

or sequences of words are mapped to nearby representations. The distributed 
representations of words are obtained by using backpropagation to jointly learn 
a representation for each word and a function that predicts a target quantity 
such as the next word in a sequence (for language modelling) or a whole 
sequence of translated words (for machine translation)18,75.
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a sorted list of symbols when their input consists of an unsorted 
sequence in which each symbol is accompanied by a real value that 
indicates its priority in the list88. Memory networks can be trained 
to keep track of the state of the world in a setting similar to a text 
adventure game and after reading a story, they can answer questions 
that require complex inference90. In one test example, the network is 
shown a 15-sentence version of the The Lord of the Rings and correctly 
answers questions such as “where is Frodo now?”89.  

The future of deep learning 
Unsupervised learning91–98 had a catalytic effect in reviving interest in 
deep learning, but has since been overshadowed by the successes of 
purely supervised learning. Although we have not focused on it in this 
Review, we expect unsupervised learning to become far more important 
in the longer term. Human and animal learning is largely unsupervised: 
we discover the structure of the world by observing it, not by being told 
the name of every object. 

Human vision is an active process that sequentially samples the optic 
array in an intelligent, task-specific way using a small, high-resolution 
fovea with a large, low-resolution surround. We expect much of the 
future progress in vision to come from systems that are trained end-to-
end and combine ConvNets with RNNs that use reinforcement learning 
to decide where to look. Systems combining deep learning and rein-
forcement learning are in their infancy, but they already outperform 
passive vision systems99 at classification tasks and produce impressive 
results in learning to play many different video games100. 

Natural language understanding is another area in which deep learn-
ing is poised to make a large impact over the next few years. We expect 
systems that use RNNs to understand sentences or whole documents 
will become much better when they learn strategies for selectively 
attending to one part at a time76,86. 

Ultimately, major progress in artificial intelligence will come about 
through systems that combine representation learning with complex 
reasoning. Although deep learning and simple reasoning have been 
used for speech and handwriting recognition for a long time, new 
paradigms are needed to replace rule-based manipulation of 
symbolic expressions by operations on large vectors101. 
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Figure 5 - A recurrent neural network and the unfolding in time of the 
computation involved in its forward computation. The artificial neurons 
(for example, hidden units grouped under node s with values st at time t) get 
inputs from other neurons at previous time steps (this is represented with the 
black square, representing a delay of one time step, on the left). In this way, a 
recurrent neural network can map an input sequence with elements xt into an 
output sequence with elements ot, with each ot depending on all the previous 
xtʹ (for tʹ ≤ t). The same parameters (matrices U,V,W ) are used at each time 
step. Many other architectures are possible, including a variant in which the 
network can generate a sequence of outputs (for example, words), each of 
which is used as inputs for the next time step. The backpropagation algorithm 
(Fig. 1) can be directly applied to the computational graph of the unfolded 
network on the right, to compute the derivative of a total error (for example, 
the log-probability of generating the right sequence of outputs) with respect to 
all the states st and all the parameters.

that each contribute plausibility to a conclusion84,85. 
Instead of translating the meaning of a French sentence into an 

English sentence, one can learn to ‘translate’ the meaning of an image 
into an English sentence (Fig. 3). The encoder here is a deep Con-
vNet that converts the pixels into an activity vector in its last hidden 
layer. The decoder is an RNN similar to the ones used for machine 
translation and neural language modelling. There has been a surge of 
interest in such systems recently (see examples mentioned in ref. 86). 

RNNs, once unfolded in time (Fig. 5), can be seen as very deep 
feedforward networks in which all the layers share the same weights. 
Although their main purpose is to learn long-term dependencies, 
theoretical and empirical evidence shows that it is difficult to learn 
to store information for very long78.  

To correct for that, one idea is to augment the network with an 
explicit memory. The first proposal of this kind is the long short-term 
memory (LSTM) networks that use special hidden units, the natural 
behaviour of which is to remember inputs for a long time79. A special 
unit called the memory cell acts like an accumulator or a gated leaky 
neuron: it has a connection to itself at the next time step that has a 
weight of one, so it copies its own real-valued state and accumulates 
the external signal, but this self-connection is multiplicatively gated 
by another unit that learns to decide when to clear the content of the 
memory. 

LSTM networks have subsequently proved to be more effective 
than conventional RNNs, especially when they have several layers for 
each time step87, enabling an entire speech recognition system that 
goes all the way from acoustics to the sequence of characters in the 
transcription. LSTM networks or related forms of gated units are also 
currently used for the encoder and decoder networks that perform 
so well at machine translation17,72,76. 

Over the past year, several authors have made different proposals to 
augment RNNs with a memory module. Proposals include the Neural 
Turing Machine in which the network is augmented by a ‘tape-like’ 
memory that the RNN can choose to read from or write to88, and 
memory networks, in which a regular network is augmented by a 
kind of associative memory89. Memory networks have yielded excel-
lent performance on standard question-answering benchmarks. The 
memory is used to remember the story about which the network is 
later asked to answer questions. 

Beyond simple memorization, neural Turing machines and mem-
ory networks are being used for tasks that would normally require 
reasoning and symbol manipulation. Neural Turing machines can 
be taught ‘algorithms’. Among other things, they can learn to output 
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