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Abstract—This paper presents a combination of real-time and
offline 3D reconstruction methods for remotely operated vehicles
(ROVs) equipped with cameras used in underwater inspection
and survey tasks. The real-time component is based on a stereo
visual simultaneous localization and mapping algorithm and a
truncated signed distance field representation for producing a
coarse online 3D reconstruction. The offline component uses
structure-from-motion techniques to create a dense point cloud
representation of the scene which is then meshed and textured to
produce a high-quality textured 3D mesh. The paper highlights
the feasibility of using ROVs for vision-based 3D reconstruction
in real-world scenarios and the potential of combining real-time
and offline processing in practice for a range of underwater
applications.

I. INTRODUCTION

Remotely operated vehicles (ROVs) equipped with cameras
are increasingly being used for underwater inspection and
survey tasks. In these scenarios, the ability to generate 3D
reconstructions of the environment can be valuable for a
variety of purposes, including navigation, mapping, inspection,
and monitoring. However, generating high-quality 3D recon-
structions in real-time can be a challenging task due to the
limited computing power and bandwidth available on ROVs,
as well as the complex and dynamic nature of underwater
environments [1]. Yet, acquiring the correct data required to
later produce high quality 3D reconstruction in an offline
manner is also challenging if there is no live feedback for
the ROV’s pilots.

For instance, ensuring the complete coverage of a site
of interest is highly time-consuming and error prone when
performed without any feedback on what part of the site has
been captured and what remains to be imaged.

To address these challenges, we present a combination of
both real-time and offline 3D reconstruction methods. The

real-time 3D reconstruction component is based on a stereo
visual simultaneous localization and mapping (VSLAM) al-
gorithm which is in charge of providing highly accurate
navigation. Leveraging on the produced trajectory estimation,
depth maps are integrated in a 3D model using a truncated
signed distance field (TSDF) representation based on a voxel
hash map [2]. This method allows us to create a coarse 3D
reconstruction online that is already extremely useful for the
ROV’s pilots in order for them to more efficiently navigate
around a structure of interest. Furthermore, the produced 3D
models could allow the ROV to navigate in a more informed
manner, allowing the development of autonomous navigation
features.

Once the acquisition is completed, the recorded images
and videos are processed with our offline 3D reconstruction
software Matisse [3]. This software integrates structure-from-
motion (SfM) techniques [4]–[6] to create a sparse point cloud
and estimate the 3D pose of the camera for all the provided
images. The output of the SfM are then processed with a multi-
view stereo (MVS) algorithm [7] in order to create a dense
point cloud representation of the scene which is finally meshed
and textured in order to produce a high quality textured 3D
mesh.

Current limitations are the quality of the depth maps
estimation for the 3D reconstruction and the ability to
re-localize on a previous reconstruction of the same site.
Perspectives brought by deep learning approaches that could
help solving these issues are also discussed.

The remaining of this paper is organized as follow. First,
we present the offline vision-based 3D reconstruction solution.
Next, we detail the real-time 3D reconstruction pipeline.
Finally, we outline the current limitations of our methods and



(a) Raw image. (b) Stretched image.

Fig. 1: Comparison of acquired raw image and enhanced
image through histogram stretching.

discuss about the perspectives brought by deep learning based
algorithms to overcome them.

Overall, this paper demonstrates the feasibility of using
ROVs for vision-based 3D reconstruction in real-world sce-
narios, and highlights the potential of combining real-time and
offline processing for practical use in surveys and inspection
tasks.

II. OFFLINE UNDERWATER STRUCTURE-FROM-MOTION
FOR 3D RECONSTRUCTION

In order to create faithful 3D reconstructions of underwater
environments explored with ROVs, we present an offline
vision-based structure-from-motion solution that can be
enhanced when navigation data are also available.

In a first step, images acquired with either a still camera or a
video camera are pre-processed. This pre-processing consists
in extracting images at a regular rate from the recorded
videos and applying an image processing enhancement in
order to increase the underwater images’ contrast [8]. This
enhancement is performed through an histogram stretching
for each channel independently that account for the typical
underwater visual perturbations that are due to the back-
scattering and color absorption effects. To do so, for each
channel, the lowest and highest quantiles in terms of pixel
intensity are first computed. Then, the pixel intensities are
stretched using these quantiles as the minimum and maximum
intensity values :

Ic(x) =
Ic(x)− Icqmin

Icqmax
− Icqmin

· Icqmax

where Ic(I) is the intensity of the image at the 2D pixel
coordinate I for the color channel c and Icqmin

and Icqmax
are

respectively the lowest and highest quantiles intensity values.
The result of this histogram stretching technique is illustrated
in Fig. 1.

In a second step, the collection of pre-processed images is
fed to a classical features extraction and matching pipeline. As
in most of the state-of-the-art SfM techniques, SIFT features
[9] are extracted in every images and used for matching. When
using pre-calibrated cameras, the features matching step is

applied in a guided matching fashion to improve the quality
of the found matches. This guided matching is performed
thanks to the known intrinsics and distortion parameters of
the cameras and to the relative motion computed between
paired images from the initial matches found through a brute-
force matching. In a nutshell, an initial brute-force matching is
applied to find the set of images to pair and to compute either a
two-view fundamental matrix or a homography transformation
for each pair [10], finding the most likely one based on the
number of resulting inliers after a 2D-2D filtering RANSAC
scheme [11]. The two-view transformation is then used to
match again the features of paired images through an epipolar
guidance or a homography projection to increase the number
of correct matches. Furthermore, when navigation data is
available, the coarse navigation is used to limit the number
of candidate images for the features matching, testing only
images that are close enough to the currently processed image.
This allows to significantly reduce the computation time of
this time-consuming step while also limiting the number of
possible outliers and erroneously established images pairs.

Once the features matching step performed, we obtain a
graph of connected images that is used to bootstrap the
structure-from-motion. We use an incremental SfM where
images are incrementally added to the reconstructed model
[4]. They are first registered through a P3P-RANSAC [12]
using the observed features already triangulated. Then, their
estimated pose is refined with a local Bundle Adjustment [13].

Defining camera’s pose as Twci
∈ SE(3), where SE(3)

denotes the 3D Special Euclidean group [14], the set of
3D map points λw

j ∈ R3 and a set of 3D map points 2D
observations per image xij ∈ R2 and considering a calibrated
camera, these state parameters are related by the projection
function π : R3 7→ R2 such that we have:

xij = π(Tciw ⊙ λw
j )

xij = π(Rciw · λw
j +tciw)

where Tciw = T−1
wci

and Rciw ∈ SO(3) and tciw ∈ R3

are respectively the rotation matrix and the translation part of
image i inverse pose Tciw.

The local Bundle Adjustment is then solved as a nonlinear
least-squares problem:

argmin
Tciw

,λw
j

∑
i

∑
j

∥∥xij − π(Tciw ⊙ λw
j )

∥∥γ
Σ

where the most highly connected images with the current
image are set free, as well as their set of observed 3D points.
The other connected images are kept fixed during the local
Bundle Adjustment in order to fix the gauge of the model. The
Bundle Adjustment problems are solved with the Levenberg-
Marquardt algorithm [15], using a robust Huber cost function
model γ(·) [10] during the BA optimization to limit the
impact of potential outliers and remove the detected ones.
Additionally, the residuals are weighted by their covariance Σ
through the minimization of the Mahalanobis distance [13].



Once the pose refined, new 3D points are estimated through
triangulation [16] between the 2D features matched between
registered images and not yet triangulated. In order to ensure
consistent estimations of images’ poses and 3D points, a
global Bundle Adjustment is also regularly applied, where the
intrinsics calibration parameters K and distortion coefficients
D of the camera are also optimized :

argmin
Tciw

,λw
j ,K,D

∑
i

∑
j

∥∥xij − π(Tciw ⊙ λw
j )

∥∥γ
Σ

In cases where navigation data is available, the navigation
priors are used as position measurements pi, whose covariance
is denoted as Σ′, to constrain the global Bundle Adjustment
optimization problem :

argmin
Tciw

,λw
j ,K,D

∑
i

∑
j

∥∥xij − π(Tciw ⊙ λw
j )

∥∥γ
Σ

+
∑
i

∥pi − twci
∥γ
Σ′

The advantage of tightly including the navigation priors as
measurements are two-fold: they allow to obtain scaled and
geo-referenced SfM reconstruction model, allowing us to get
rid of the well-known scale ambiguity issue of monocular
SfM techniques, and they help in detecting visual outliers,
early limiting their impact in the reconstruction process.

Once the structure-from-motion done, we obtain a sparse
point cloud that represent the 3D structure of the imaged
environment (see Fig. 2a) as well as highly accurate poses
estimation of the camera for each image.

(a) Sparse point cloud. (b) Dense point cloud.

Fig. 2: (left) Structure-from-motion sparse point cloud.
(right) Dense point cloud from depth maps estimation.

This sparse model is then used to perform a Multi-View
Stereo processing. This step consists in computing depth maps
for each image in order to densify the 3D reconstruction. To
do so, a patchmatch algorithm [17] is applied to estimate, for
each image, a dense matching with its covisible images that
will finally allow us to estimate a 3D point per matched pixel
thanks to the known images’ poses and camera’s calibration
parameters (see Fig. 3). Highly dense point clouds are then
extracted for each image from their estimated depth maps and
thus are fused with some visibility checks to remove as best
as possible the remaining outliers [18] (see Fig. 2b).

(a) Raw image used in the structure-from-motion.

(b) Resulting depth map.

Fig. 3: Depth map computed for an image processed by the
structure-from-motion through multi-view stereo.

Finally, a Delaunay meshing algorithm is applied to
compute a 3D mesh (see Fig. 4a) over the dense point cloud
[19]. This mesh is then textured (see Fig. 4b) through the
projection of the 3D mesh faces into their viewing images
and optimizing the choice of the texture to obtain a seamless
texturing of the mesh [20].

While highly accurate 3D models can be obtained through
this offline pipeline (see Fig. 5 and 6), the inherent difficulty
lies in the correct acquisition of the initial images. Indeed,
ROV’s are manually piloted and the acquisition of the images
when inspecting the scene of interests are hence performed
in a dead-reckoning way. This issue leads to very careful
survey of these scenes, navigating in an exhaustive manner
around the scene to scan, that are extremely time consuming
and always exhibit a risk of missing some parts of the scene
that will only be detected post-mission through the apparition
of holes in the reconstruction when processed through this
offline reconstruction pipeline. To overcome this issue, we next
present a method for performing real-time 3D reconstruction
that provides a live feed-back to the ROV’s pilots, thus
allowing them to optimize the survey of the scene to scan
and to ensure its full coverage.

III. REAL-TIME UNDERWATER VISUAL 3D
RECONSTRUCTION

The generation of a 3D model in real-time is extremely
valuable in underwater environments. Indeed, while this topic



(a) 3D reconstructed mesh. (b) 3D textured mesh.

Fig. 4: Depth map computed for an image processed by the
structure-from-motion through multi-view stereo.

Fig. 5: Offline 3D reconstruction of a shipwreck.

Fig. 6: Offline 3D reconstruction of a hydro-thermal vent.

is also of high interest in ground and aerial robotics for
autonomous navigation mostly, it is additionally of direct use
for the ROV’s pilot as an assistance feature for a better and
safer navigation.

In opposition to offline 3D reconstruction methods such as
the one presented in the previous section, the real-time case
is highly more challenging. First, only past and present data
can be used for the current estimations. Second, the involved
algorithms must cope with the real-time constraint, that is

the processing of the data must be fast enough to perform
the estimations at approximately the data flow rate. Last, the
computation a 3D model in real-time requires that both the
3D position and orientation of the ROV are very accurately
known also in real-time as this knowledge is required to
correctly and accurately position the 3D measurements to be
used to reconstruct the model.

Here, we present a method based on the use of stereo
camera embedded on an ROV. The stereo camera is calibrated
in order to use it as a 3D sensor with metric measurements.
A naive and easy solution to build a 3D model in real-time
with such sensor would be to use the navigation data that
are produced by the Inertial Navigation System (INS) that
is usually embedded on ROVs to estimate its position and
orientation in real-time and use this information to project
3D point clouds computed through stereo matching in a 3D
space. However, the accuracy of INS for navigation is at best
in the order of tens of centimeters and more often around
one meter of uncertainty. Thus, using these raw navigation
data would lead to very inaccurate 3D models which, in
addition to being geometrically inaccurate, would also appear
extremely blurred as even errors of a few centimeters in
the pose of the 3D sensor create bad alignments between
the different 3D points clouds to integrate. Moreover, the
point clouds that are computed from stereo matching are
always noisy and corrupted by outliers. This means that,
even if an ideal system could provide a perfect navigation,
simply projecting the computed point clouds in the 3D space
would lead to inaccurate and blurry 3D models. To overcome
all these issues, we follow the monocular real-time 3D
reconstruction presented in [21]. A visual SLAM algorithm
is used to estimate in real-time the trajectory followed
by the stereo camera embedded on the ROV. This visual
SLAM allows the estimation of centimetric accurate 3D
pose of the camera and is thus way more suited to the 3D
reconstruction task. Additionally, a truncated signed distance
field (TSDF) 3D model [22] is employed in order to integrate
the 3D measurements computed through stereo matching in a
probabilistic way.

The stereo visual SLAM that we use is based on OV²SLAM
[23]. This SLAM algorithm follows the modern multi-
threading approach [24], [25] where a front-end thread is
dedicated to the processing of all the received images in real-
time, providing a pose estimation of the camera at its acqui-
sition frame-rate, and a back-end thread ensure a continuous
optimization of a subsample of the most recent camera’s poses,
i.e. the keyframes, and the triangulated 3D points observed by
these keyframes through a local Bundle Adjustment.

The front-end thread tracks features in the video stream
through a sparse optical flow method based on the KLT
algorithm [26] and estimates the pose of the camera with a PnP
method [10] through the tracked observations of previously
triangulated 3D points. When the front-end thread detects a
high motion or a significant drop in the number of tracked



features, it triggers the creation of a new keyframe and detect
new features into it. On the other side, the back-end thread is
in charge of processing the created keyframe. It ensures the
triangulation of new 3D points and perform a local BA over
the newly created keyframes, along with their neighbors and
observed 3D points:

argmin
Tciw

,λw
j

∑
i

∑
j

∥∥xij − π(Tciw ⊙ λw
j )

∥∥γ
Σ

As only a subsample of all the received images are pinned
as keyframes, the back-end thread has a higher amount of
time available for performing these local Bundle Adjustment
optimizations. This back-end thread thus provides very
accurate pose estimations for the keyframes.

For the 3D reconstruction, we set an additional thread
that receives the keyframes processed by the back-end thread
once they have been optimized. This thread is in charge of
applying a stereo matching to produce dense depth maps. This
stereo matching is done with the SGM algorithm [27] on the
keyframe’ rectified stereo images. The computed depth map is
then converted into a 3D point cloud that is projected into the
3D space using the known pose of the keyframe. The projected
point cloud is finally integrated in a 3D TSDF model.

We use the Voxblox implementation of TSDF [28] to
integrate the produced point clouds. Voxblox integrates the
3D rays that define the point cloud into voxels and updates
a distance to the surface value for each voxel in probabilistic
way, keeping an estimate of this value and a confidence
weight for each voxel that gets updated every time a ray get
through it or close enough. In order to ensure a real-time
capacity and to stay tractable in terms of memory footprint,
chunks of voxels are allocated dynamically, any time a new
part of the 3D space gets covered [29]. This way, there is no
requirement for any prior knowledge on the size of the scene
to scan. Finally, a 3D mesh can be extracted from all the
allocated voxels at a user-defined rate. The mesh extraction
is performed using a marching cube algorithm [30] in charge
of searching the iso-contours of the 3D model through the
distance to the surface value stored in the TSDF voxels.

The results of this method can be appreciated in Fig. 8a.
As one can see in Fig. 7, parts of the scene that have not
yet been acquired are directly noticeable, allowing the pilots
of the ROV to navigate more efficiently for completing
the coverage of the site. Furthermore, when comparing the
final 3D model produced in real-time to the reconstruction
obtained with the offline method presented in section II, we
can see that the result is quite faithful in the reconstruction
of the 3D structures (see Fig. 8b).

In our case, a stereo camera is used for this real-time 3D
pipeline. While the stereo visual SLAM employed here shows
a great accuracy [31], underwater vision can be easily per-
turbed by high level of turbidity or extensive light absorption

Fig. 7: Real-time 3D reconstruction live views.

(when the ROV is navigating too far away from the structure of
interest for instance). To overcome this limitation, it could be
interesting to fuse the measurements of additional navigation
sensors [32] and add a sonar sensor [33] in order to be able
to continuously estimate the trajectory of the ROV through
SLAM, even when there are loss of visual information.

Another important feature, both for offline and real-time
3D reconstruction, lies in the ability to automatically relocate
from images only, either for loop-closure or to register images
acquired with a different camera on an existing 3D model. For
real-time processing, the quality of the estimated depth maps
is also something that could be improved. These topics are
discussed in the next section.

IV. LIMITATIONS AND PERSPECTIVES

The ability to relocalize on previously reconstructed 3D
models is of high interest for many applications such as
long-term visual localization [34] and temporal monitoring
of underwater sites of interest. Yet, when matching images
acquired by a different camera setup, possibly with a different
ROV and different lightning condition, the classical SIFT
features tend to fail. However, recent neural network for robust
features detection and matching like SuperPoint [35] and
SuperGlue [36] have proven to generalize well to underwater
images [37]. Furthermore, the use of deep pose regression
methods [38]–[40] have also shown interesting results on this
task [41].

Another topic of interest for deep learning approaches is
the estimation of more accurate depth maps. Indeed, while
stereo matching or multi-view stereo methods are usable in
the underwater context, the resulting depth maps are often
noisy and require strong filtering for optimal results in real-
time 3D reconstructions [42]. Estimation and refinement of
stereo matching based depth maps using deep convolutional
neural networks [43]–[45] could prove to be more accurate
than classical model-based stereo matching methods [27], [46].
Additionally, because of the inherent difficulty in acquiring
ground-truth underwater, the use of self-supervised methods
are quite appealing [47]–[50] and seems applicable to the
underwater context [51].



(a) Final 3D model reconstructed in real-time.

(b) Offline 3D reconstruction of the same scene as above.

Fig. 8: Final 3D models produced by: (top) the real-time
reconstruction method, (bottom) the offline method.

V. CONCLUSION

In conclusion, the proposed method demonstrates the fea-
sibility of using ROVs equipped with cameras for vision-
based 3D reconstruction in real-world underwater scenarios.
By combining real-time and offline processing, the method
offers an efficient and accurate solution for acquiring and
generating high-quality 3D reconstructions that can be used
for navigation, mapping, inspection, and monitoring purposes.
Overall, the presented methods highlight the practical usage of
vision-based 3D reconstructions with ROVs and discuss their

current limitations as well as some perspectives brought by
deep learning approaches for further improvement.
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