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ABSTRACT

The high visual quality of modern deepfakes raises significant
concerns about the trustworthiness of digital media and makes
facial tampering detection more challenging. Although cur-
rent deep learning-based deepfake detectors achieve excellent
results when tested on deepfake images or image sequences
generated using known methods, generalization—where a
trained model is tasked with detecting deepfakes created with
previously unseen manipulation techniques—is still a ma-
jor challenge. In this paper, we investigate the impact of
training spatial and spatio-temporal deep learning network
architectures in the image noise residual domain using spatial
rich model (SRM) filters on generalization performance. To
this end, we conduct a series of tests on the manipulation
methods of the FaceForensics++, DeeperForensics-1.0 and
Celeb-DF datasets, demonstrating the value of image noise
residuals and temporal feature exploitation in tackling the
generalization task.

Index Terms— Deepfake detection, video manipulation
detection, image forensics, steganalysis features

1. INTRODUCTION

The rapid progress in face swapping and facial reenactment
technology has become a serious problem that facilitates the
spread of manipulated media and misinformation, especially
through the widespread availability of such tools and the wide
reach of social media. In recent years, several methods have
been proposed to effectively detect whether images or videos
of people have been tampered with, and [1, 2] provide an
overview of recent trends in the field of deepfake detection.
In particular, deep learning-based detection methods have
emerged as a popular tool, achieving excellent performance
on state-of-the-art facial deepfake datasets [3, 4, 5, 6, 7, 8].
Convolutional neural network (CNN) architectures are espe-
cially popular, typically using a cropped image of the face of
a subject in a video frame as input in order to classify it as
real or fake [9, 4]. More recent work includes Transformer-
type architectures repurposed for deepfake detection [10, 11].
Since current facial deepfakes are typically generated on
a frame-by-frame basis and can thus exhibit temporal in-

consistencies in a deepfake video, some deep architectures
additionally leverage the temporal dimension by classify-
ing sequences of images, for example by combining a CNN
backbone with a recurrent architecture [3, 5] or by using 3D
CNNs [8].

Aside from generic deep learning approaches, steganal-
ysis and image forensics tools—which are typically used
to detect forged images obtained through such methods as
splicing—have also been applied to facial deepfake detec-
tion [4, 5]. The most effective of these methods [1], such as
spatial rich model (SRM) [12] filters, leverage image noise
residuals, the intuition being that synthetically manipulating
a region in the image (i.e., the face) leads to local inconsisten-
cies in the noise features of the modified image, even when
the tampered image has been post-processed to better mask
manipulation traces.

Although steganalysis models have been applied to the
deepfake detection problem [4], notably as part of deep
learning-based architectures [5, 7], their specific impact
on generalization—the most challenging task as it exposes
trained models to novel manipulation techniques—has not
been extensively benchmarked. In this paper, we focus on
training and evaluating the generalization performance of
two types of architectures: XceptionNet [13], a popular CNN
architecture for deepfake image classification which, despite
its age, is still widely used for benchmarking purposes, and
a spatio-temporal architecture combining XceptionNet and
a long short-term memory (LSTM) network for image se-
quence classification in a cross-manipulation scenario in both
the RGB image domain and the SRM noise residual do-
main. The problem is cast as a binary classification problem
where the input data (images or image sequences depending
on the architecture) is classified into real or fake. Cross-
manipulation means that we train on real data as well as a
group of manipulation techniques but withhold one manipu-
lation type on which we evaluate generalization performance.
We also study the impact of the length of the image sequence
on generalization performance. We use FaceForensics++ [4],
DeeperForensics-1.0 [14], and Celeb-DF [15], three state-of-
the-art facial deepfake datasets in our tests. These datasets
differ in scale and visual quality and can be broken down
into three generations [16]: first (FaceForensics++), second



(Celeb-DF), and third (DeeperForensics-1.0).
The rest of the paper is organized as follows. In Sec-

tion 2, we explain the baseline architectures used as well as
the noise residual extraction method. In Section 3, we detail
the data pre-processing and training procedures. In Section 4,
we present the baseline architectures’ test and generalization
results and compare the color and noise residual domains in
terms of performance. We also discuss the impact of image
sequence length in this section. Finally, Section 5 concludes
this article.

2. METHODS

2.1. Baseline architectures

In this work, we test our proposed approach in two different
scenarios: (i) image classification, and (ii) image sequence
classification.

For the former, we use an XceptionNet CNN that is pre-
trained on ImageNet-1K [17], the fully connected layer being
adapted to output scores for the two classes, real and fake. For
sequence classification, we also use a pre-trained Xception-
Net without the fully connected layer, where the last of the
remaining layers’ outputs are fed into a single-layer LSTM
with 256 hidden units. The LSTM’s output is used to classify
the input sequence which, in this case, consists of five con-
secutive frames. It is important to note that grouping frames
into sequences naturally results in fewer data points. Fig. 1
illustrates this spatio-temporal architecture.

Fig. 1. The spatio-temporal architecture used.

2.2. Image noise residual computation

Modern facial deepfakes are typically post-processed in dif-
ferent ways with the goal of hiding visible tampering artifacts
for a more photorealistic effect, which makes learning salient
tampering features from RGB data exclusively more diffi-
cult. Noise, which is modeled here by the residual between
a pixel’s value and the estimate of said value produced by a
linear combination of the neighboring pixels’ values, can sup-
press high-level image content and highlight regions where an
image has potentially been tampered with.

SRM filters are a representative method for the compu-
tation of image noise maps, also referred to as image noise
residuals. Out of the thirty available SRM kernels, we select
the same three as [18] to extract noise feature maps as, ac-
cording to the authors, using the full thirty kernels does not

improve performance significantly in their task, which is sim-
ilar to deepfake detection. Fig. 2 shows these kernels.

Each kernel is expanded into three channels and applied
to the input RGB image, which produces noise feature maps
with the same dimensions as the RGB image once all three
filters have been applied with appropriate padding of the im-
age. This approach negates the need for architectural adjust-
ments to the baseline networks, ensuring the comparability of
results between the RGB and noise residual domains. Fig. 3
illustrates the noise feature maps obtained from selected im-
ages. We can see that most image content is suppressed and
tampering traces in the eyes and the outline of the face are
strongly highlighted.

Fig. 2. The group of SRM filters used to compute noise fea-
tures.

Fig. 3. The outputs of the selected SRM filter group (right)
compared to the original FaceForensics++ images (left). Col-
ors in the right column have been edited for better visibility.
From top to bottom: real image, Face2Face, FaceSwap (see
Section 3.1 for more details).

3. EXPERIMENTAL SETUP

3.1. Datasets

We use three state-of-the-art facial deepfake video datasets:
(i) FaceForensics++ (FF++): Contains 1,000 real videos

and 5,000 fake videos made by editing the real videos us-
ing five different manipulation techniques. These manipu-
lation techniques perform face swapping (DeepFakes (DF),
FaceShifter (FSh), FaceSwap (FS)) and facial reenactment



(Face2Face (F2F), NeuralTextures (NT)). We use the H.264,
lightly compressed (HQ) version of the dataset.

(ii) DeeperForensics-1.0 (DF-1.0): We use the standard
(std) set which contains 1,000 fake videos obtained from the
same non-manipulated videos as FaceForensics++ using the
same HQ compression scheme.

(iii) Celeb-DF: Contains 5,639 fake and 590 real videos
compressed to the MPEG4.0 format.

Train Test
Xception-

Net
(RGB)

Xception-
Net

(SRM)

Xception-
Net

+ LSTM
(RGB)

Xception-
Net

+ LSTM
(SRM)

DF, F2F, FSh,
FS, NT, DF-1.0 84.12 93.43 97.73 96.51

F2F, FSh,
FS, NT,
DF-1.0

DF 73.87 83.16 91.94 89.94

DF, FSh,
FS, NT,
DF-1.0

F2F 63.68 62.03 67.92 73.44

DF, F2F,
FS, NT,
DF-1.0

FSh 58.06 65.19 61.25 69.93

DF, F2F,
FSh, NT,
DF-1.0

FS 47.27 45.32 47.79 46.06

DF, F2F,
FSh, FS,
DF-1.0

NT 58.88 62.26 67.56 70.29

DF, F2F
FSh, FS,

NT

DF-
1.0 55.05 58.97 65.75 62.92

DF, F2F,
FSh, FS,

NT

Celeb-
DF 58.94 60.97 61.40 56.12

Celeb-DF

DF 62.99 61.13 61.40 58.42
F2F 52.83 54.25 51.61 54.89
FSh 56.28 49.96 51.28 45.46
FS 50.33 55.36 49.78 55.33
NT 53.48 52.56 52.22 50.39
DF-
1.0 52.63 57.73 54.56 51.40

Table 1. Classification results of both architectures. The first
line corresponds to training and testing on the same manip-
ulation techniques as well as real data, while the rest of the
table considers the generalization scenario.

3.2. Data pre-processing

For each video, the first 120 frames are extracted, and the
MTCNN [19] face detector is used to crop the subject’s face
in each frame. We manually verify the correct detection of

the subject’s face. The resulting crop is enlarged by 20% in
both height and width to guarantee the presence of both ma-
nipulated and authentic regions then resized to 224×224. For
image sequence classification, each sequence of five succes-
sive frames is taken as a data point, in a similar fashion to [5].
75% of the data is used for training, 10% for validation, and
15% for testing. Data is split to make sure that content from
any one video does not appear in more than one set—which
could artificially inflate the results—and, in the case of FF++
and DF-1.0, the same IDs are used to split the real as well
as the fake videos from all manipulation techniques into the
various sets.

3.3. Training procedure

We use binary cross-entropy with appropriate class weights to
account for the imbalance between real and fake data. We also
use the Adam optimizer with a learning rate decay of 20% ev-
ery 2,000 training steps. Classification accuracy is used as a
performance metric, the same as in previous benchmarks [4].
In the image sequence classification task, accuracy is com-
puted over all five-frame sequences, meaning that we do not
compute scores for full videos.

For image classification, we train XceptionNet for five
epochs with a batch size of 32 and an initial learning rate of
0.01. For image sequence classification, the spatio-temporal
architecture is trained for eight epochs with a batch size of 16
and an initial learning rate of 0.001. Both architectures are
pre-trained for three epochs where the XceptionNet weights
from ImageNet-1K are frozen, allowing the fully connected
and LSTM layers to learn while preserving the learned Ima-
geNet features.

We train models on RGB images directly, then repeat the
process using the same procedure and hyperparameters on
noise residuals extracted with SRM filters.

4. RESULTS

4.1. Known manipulation techniques

Table 1 shows the classification results for the spatial and
spatio-temporal architectures in both the RGB and noise
residual domains (SRM). Since the fake videos of DF-1.0
(std) represent the same scenes as FF++, we group both
datasets together in some tests. In the first line, the training
and test sets contain real data as well as the listed manipula-
tion types. This corresponds to the common scenario used in
deepfake detection where models are evaluated on a test set
containing real as well as manipulated data generated using
methods seen during training. SRM significantly outperforms
RGB training in image classification, but slightly falls behind
in sequence classification. Note that the addition of temporal
information is beneficial, as the spatio-temporal architecture
outperforms XceptionNet overall.



This result shows that deep learning-based detection
methods perform very well when tasked with classifying
new data made using known manipulation techniques, as
they are able to detect both real and manipulated data with
relatively high accuracy.

4.2. Generalization performance

Generalization performance of the baseline architectures in a
cross-manipulation scenario is shown starting from the sec-
ond line of Table 1. Here, we evaluate the trained models
on an unknown manipulation technique. For each test, we
construct a perfectly balanced set of 150 videos of the un-
known manipulation and 150 unseen real videos drawn from
the same dataset.

We can see that training XceptionNet in the noise residual
domain generally outperforms the RGB domain, in particular
when numerous manipulation techniques are included in the
training set. The results for the spatio-temporal architecture,
however, are mixed. This can be explained by the fact that
pre-processing the image with SRM filters removes various
temporal manipulation artifacts such as abrupt illumination
changes and color inconsistency between successive frames,
which are very valuable in temporal analysis. High-frequency
information is, as such, insufficient by itself in order to exploit
all manipulation traces and allow the spatio-temporal archi-
tecture to learn rich features for tampering detection. This
suggests that high-frequency feature extraction should ideally
be viewed as a useful block to integrate into the design of a
deep learning architecture which also exploits color features,
rather than a standalone tool.

Also of note is the FaceSwap (FS) manipulation tech-
nique, which proves to be particularly challenging to detect.
FS replaces a large area of the face and uses advanced post-
processing steps [8], making it fundamentally different from
other techniques, which may explain the poor generalization
performance.

Sequence
length 5 10 20 40 60

DF 61.40 69.92 62.28 65.44 77.00
F2F 51.61 66.08 53.06 55.00 66.67
FSh 51.28 50.28 51.44 51.78 48.00
FS 49.78 55.64 49.89 48.89 44.67

DF-1.0 54.56 57.50 53.72 53.33 47.17
NT 52.22 55.83 52.17 53.11 62.50
NT

(train: FF++
& DF-1.0)

67.56 67.08 70.50 63.67 61.83

Table 2. Generalization results when varying the input se-
quence length (i.e., # successive images per sequence). Here,
the spatio-temporal architecture is trained in the RGB domain
on Celeb-DF, except in the last row.

4.3. Impact of image sequence length on generalization
performance

In this section, we study the impact of image sequence length
on generalization performance. We conduct a generaliza-
tion test where the spatio-temporal architecture is trained
on Celeb-DF multiple times, each time using a different
sequence length, and evaluate on each of the remaining tech-
niques. We train in the RGB domain only (i.e., without SRM)
in this section. The results are shown in Table 2.

We can see that a sequence length of 60 successive frame
can substantially improve generalization performance de-
pending on the target manipulation. It is, however, important
to note that longer sequences result in fewer data points for
training and generalization testing, which may help explain
why very long sequences are not always better. Results are
also sensitive to training data, as evidenced by comparing NT
results when using different training sets.

5. CONCLUSION

In this paper, we tackle the challenging deepfake general-
ization problem. We investigate the impact of training deep
learning models in the image noise residual domain without
modifying the neural network’s architecture. We evaluate two
different architectures: a CNN for image classification and
a spatio-temporal architecture combining a CNN backbone
with an LSTM for image sequence classification in a cross-
manipulation scenario.

Through a series of generalization tests, we validate the
viability of this approach and also show its limits across three
state-of-the-art facial deepfake datasets: FaceForeniscs++,
DeeperForensics-1.0, and Celeb-DF. Our experiments show
that training on image noise residuals improves generaliza-
tion performance on a majority of unseen manipulation types
in the datasets we use in image classification. However,
high-frequency information alone is insufficient for image
sequence classification as other important clues, found in
low-frequency image content, are suppressed.

We also investigate the impact of input sequence length
on generalization performance, finding that longer input se-
quences can greatly improve generalization performance
while being limited by sensitivity to the composition of the
training set.

Future work will focus on the impact of video compres-
sion levels and schemes on generalization performance, and
the integration of high-frequency processing pipelines into
purpose-built deepfake detection architectures.
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