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Introduction

Dirac operators with δ-interactions supported on general hypersurfaces have been actively studied since the appearance of the paper [START_REF] Arrizabalaga | Shell interactions for Dirac operators[END_REF]. Due to the presence of distributional coefficients, the self-adjointness of such operators requires special attention, and it was seen by many authors (primarily for the three-dimensional case) that the self-adjointness domain can be dependent on the coupling constants and the smoothness properties of the hypersurface and that it may lead to unusual spectral properties [START_REF] Behrndt | On Dirac operators in R 3 with electrostatic and Lorentz scalar δ-shell interactions[END_REF][START_REF] Behrndt | On Dirac operators with electrostatic δ-shell interactions of critical strength[END_REF][START_REF]Spectral properties of the Dirac operator coupled with δ-shell interactions[END_REF][START_REF]Spectral analysis of Dirac operators with singular interactions supported on the boundaries of rough domains[END_REF][START_REF] Benhellal | Curvature contribution to the essential spectrum of Dirac operators with critical shell interactions[END_REF]. The paper [START_REF] Behrndt | Twodimensional Dirac operators with singular interactions supported on closed curves[END_REF] initiated the study of the two-dimensional case, and for the case of smooth curves a very complete spectral picture could be found, which was extended in [START_REF] Cassano | General δ-shell interactions for the two-dimensional Dirac operator: self-adjointness and approximation[END_REF] to a more general class of interactions. Much less attention was given to the case of non-smooth surfaces and curves. In the present work, we discuss the self-adjointness of two-dimensional Dirac operators with δ-interactions supported on closed Lipschitz curves (in particular, on curvilinear polygons). Our results complement those obtained in the recent papers [START_REF] Behrndt | Boundary triples and Weyl functions for Dirac operators with singular interactions[END_REF][START_REF] Pizzichillo | Self-adjointness of two dimensional Dirac operators on corner domains[END_REF] and provide precise ranges of coupling constants and corner openings for which the domain of self-adjointness can be given explicitly. Compared to the preceding works, we employ two new technical ingredients: the explicit use of the Cauchy transform on non-smooth curves and a characterization of the Fredholmness for boundary integral operators using the approach of [START_REF] Yu | On the index and spectrum of integral operators of potential type along Radon curves[END_REF]. Now let us pass to precise formulations. Through the text, we use the Pauli matrices

σ 1 = 0 1 1 0 , σ 2 = 0 -i i 0 , σ 3 = 1 0 0 -1
and denote by σ 0 the 2 × 2 identity matrix. The anticommutation relations {σ j , σ k } = σ j σ k + σ k σ j = 2δ jk σ 0 for all j, k ∈ {1, 2, 3}

are well known. Let m ∈ R. The two-dimensional Dirac operator with mass m is the formally self-adjoint differential expression

D : C ∞ 0 (R 2 , C 2 ) ∋ f → -i(σ 1 ∂ 1 f + σ 2 ∂ 2 f ) + mσ 3 f ∈ C ∞ 0 (R 2 , C 2 ),
and it naturally extends to a continuous linear map in the space of distributions D ′ (Ω, C 2 ) for any open set Ω ⊂ R 2 . It is well known that the operator

Af → Df, dom A = H 1 (R 2 , C 2 ), (1.2) 
(the free two-dimensional Dirac operator), is self-adjoint in L 2 (R 2 , C 2 ) and has the absolutely continuous spectrum spec A = -∞, -|m| ∪ |m|, +∞ ,

and it occupies a central place in relativistic quantum mechanics [START_REF] Thaller | The Dirac equation[END_REF]. We will be interested in the study of some special perturbations of A.

Namely, let Ω + ⊂ R 2 be a non-empty bounded open set with Lipschitz boundary. Denote

Σ := ∂Ω + , Ω -:= R 2 \ Ω + .
For (ε, µ) ∈ R 2 we would like to discuss self-adjoint realizations in L 2 (R 2 , C 2 ) of operators given formally by

f → Df + (εσ 0 + µσ 3 )δ Σ f, (1.3) 
where δ Σ is the Dirac δ-distribution supported on Σ. The last summand can be considered as an idealized model of a relativistic potential concentrated on Σ, and the constant ε resp. µ measures the strength of the electrostatic resp. Lorentz scalar part of the interaction. The formal expression (1.3) can be given a more rigorous meaning as follows. First, for any non-empty open set Ω ⊂ R 2 consider the space

H(σ, Ω) := f ∈ L 2 (Ω, C 2 ) : Df ∈ L 2 (Ω, C 2 ) ,
which is just the domain of the maximal realization of D in L 2 (Ω, C 2 ) and becomes a Hilbert space if equipped with the scalar product

⟨f, g⟩ H(σ,Ω) := ⟨f, g⟩ L 2 (Ω,C 2 ) + ⟨Df, Dg⟩ L 2 (Ω,C 2 ) .
For s > 0 let H s (Ω, C 2 ) be the usual fractional Sobolev spaces of order s on Ω (consisting of C 2 -valued functions), and we set

H s (σ, Ω) := H(σ, Ω) ∩ H s (Ω, C 2 ),
which is a Hilbert space with the scalar product

⟨f, g⟩ H s (σ,Ω) := ⟨f, g⟩ H(σ,Ω) + ⟨f, g⟩ H s (Ω,C 2 ) .
For what follows it will be convenient to use the identification

H(σ, R 2 \ Σ) ≃ H(σ, Ω + ) ⊕ H(σ, Ω -), f ≃ (f + , f -),
with f ± being the restriction of f on Ω ± , as well as the analogous identifications for H s (R 2 \ Σ, C 2 ) and H s (σ, R 2 \ Σ). We will also use the shorthand

notation σ • x := x 1 σ 1 + x 2 σ 2 , x = (x 1 , x 2 ) ∈ R 2 ;
from the anticommutation relations (1.1) one easily obtains (σ

• x) 2 = |x| 2 σ 0 for all x ∈ R 2 .
It is known that for any f ∈ H(σ, R 2 \ Σ) the boundary traces (σ • ν)f ± on Σ are well-defined as functions in H -1 2 (Σ); remark that we keep the same symbols for the boundary traces for better readability. Denote by δ Σ f the distribution

⟨δ Σ f, φ⟩ := Σ f + + f - 2 φ ds, φ ∈ C ∞ c (R 2 ),
where ds means the integration with respect to the arclength. An application of the jump formula shows the identity

Df = (Df + ) ⊕ (Df -) + i(σ • ν)(f + -f -)δ Σ , (1.4) 
where ν = (ν 1 , ν 2 ) is the unit normal on Σ pointing to Ω -. Then it follows that the right-hand side of (1.3) belongs to L 2 (R 2 , C 2 ) if and only if f satisfies the transmission condition

(εσ 0 + µσ 3 ) f + + f - 2 + i(σ • ν)(f + -f -) = 0 on Σ. (1.5)
Therefore, as a first attempt, it is natural to consider the following operator realizations of the expression (1.3) 

in L 2 (R 2 , C 2 ):
• the maximal realization B max with the domain

dom B max := f ∈ H(σ, R 2 \ Σ) : f satisfies (1.5) ,
• the minimal realization B min with the domain

dom B min := dom B max ∩ H 1 (R 2 \ Σ, C 2 ) ≡ f ∈ H 1 (R 2 \ Σ, C 2 ) : f satisfies (1.5) .
It is standard to see that B min is symmetric with B * min = B max , therefore, B min ⊂ B ⊂ B max for any self-adjoint realization B of (1.3). Nevertheless, an explicit description of the self-adjoint realizations turns out to be an involved problem depending on both (ε, µ) and the regularity of Σ.

The most attention was given to the case of C 2 -smooth Σ, see [START_REF] Behrndt | Boundary triples and Weyl functions for Dirac operators with singular interactions[END_REF] and references therein. Namely, if ε 2 -µ 2 ̸ = 4, then B min = B max =: B, and the spectrum of B consists of the spectrum of the free Dirac operator A and at most finitely many discrete eigenvalues in (-|m|, |m|). For ε 2 -µ 2 = 4 the operator B min is not closed, but B min = B max , so B min is at least essentially self-adjoint (so there is a unique self-adjoint realization), but the loss of regularity leads to peculiar spectral effects (e.g. new pieces of the essential spectrum), see [START_REF] Behrndt | Twodimensional Dirac operators with singular interactions supported on closed curves[END_REF][START_REF] Behrndt | Boundary triples and Weyl functions for Dirac operators with singular interactions[END_REF][START_REF] Benhellal | Curvature contribution to the essential spectrum of Dirac operators with critical shell interactions[END_REF]. Remark that [START_REF] Behrndt | Boundary triples and Weyl functions for Dirac operators with singular interactions[END_REF][START_REF] Cassano | General δ-shell interactions for the two-dimensional Dirac operator: self-adjointness and approximation[END_REF] actually consider more general interactions by admitting so-called anomalous magnetic couplings which are not covered by the above framework.

If Σ has corners, one has, in general, B min ⊊ B max , which means that there are infinitely many self-adjoint realizations [START_REF] Ourmières-Bonafos | Self-adjointness of Dirac operators with infinite mass boundary conditions in sectors[END_REF]. The work [START_REF] Ourmières-Bonafos | Self-adjointness of Dirac operators with infinite mass boundary conditions in sectors[END_REF] suggested that the H 1 2 regularity should be more natural for the case of non-smooth Σ. Namely, let

B ≡ B ε,µ be the restriction of B max to dom B max ∩ H 1 2 (R 2 \ Σ, C 2 ), i.e. B : f ≃ (f + , f -) → (Df + , Df -), dom B := f ∈ H 1 2 (σ, R 2 \ Σ) : f satisfies (1.5) . (1.6)
Due to the standard Sobolev traces theorem, the one-sided traces of functions from dom B on Σ belong to L 2 (Σ, C 2 ), so the integration by parts shows that B is a symmetric operator. The main result of [START_REF] Pizzichillo | Self-adjointness of two dimensional Dirac operators on corner domains[END_REF] reads as follows: if Σ is a curvilinear polygon (a piecewise C 2 -smooth closed curve, with finitely many corners and without cusps), ε = 0 and |µ| < 2, then B is self-adjoint. The recent work [START_REF] Behrndt | Boundary triples and Weyl functions for Dirac operators with singular interactions[END_REF] presents an extensive study of the case of general compact Lipschitz curves Σ by reducing the self-adjointness to the Fredholmness of some boundary integral operator (see also [START_REF] Arrizabalaga | Shell interactions for Dirac operators[END_REF][START_REF]Spectral analysis of Dirac operators with singular interactions supported on the boundaries of rough domains[END_REF] for the three-dimensional case): we summarize the essential components of the constructions in Section 2. Nevertheless, the self-adjoint conditions obtained in [START_REF] Behrndt | Boundary triples and Weyl functions for Dirac operators with singular interactions[END_REF] for our case are quite implicit as they depend on the (unknown) spectra of some boundary integral operators.

In the present work we extend the results of both [START_REF] Behrndt | Boundary triples and Weyl functions for Dirac operators with singular interactions[END_REF] and [START_REF] Pizzichillo | Self-adjointness of two dimensional Dirac operators on corner domains[END_REF] by providing new very explicit conditions for the self-adjointness of B in terms of the parameters (ε, µ) and the geometry of Σ. Namely, we show that B is selfadjoint in the following cases:

(A) The curve Σ is Lipschitz and |ε| ≤ |µ| (Corollary 4.3), (B) The curve Σ is C 1 -smooth and ε 2 -µ 2 ̸ = 4 (Theorem 4.4), (C) The curve Σ is a curvilinear polygon (with C 1 -smooth edges and without cusps) and

ε 2 -µ 2 < 1 m(ω) or ε 2 -µ 2 > 16m(ω),
where the constant m(ω) only depends on the sharpest corner ω of Σ (Theorem 5.4).

The value of m(ω) is not known explicitly for all ω, but some bounds can be obtained, and each of the conditions

(i) ε 2 -µ 2 < 2 or ε 2 -µ 2 > 8 (without additional geometric as- sumptions), (ii) ε 2 -µ 2 ̸ = 4 if each angle θ of Σ (measured inside Ω + ) satisfies π 2 ≤ θ ≤ 3π 2 ,
guarantees the self-adjointness of B (Corollary 5.5).

The case (B) is formally contained in (C.ii), but the proofs are very different, so we prefer to consider these two situations separately.

Remark 1.1. If the operator B is self-adjoint, a standard analysis shows that its essential spectrum coincides with the spectrum of the free Dirac operator A and that the discrete spectrum is at most finite [START_REF] Behrndt | Twodimensional Dirac operators with singular interactions supported on closed curves[END_REF]Proposition 3.8]. While all constructions of [START_REF] Behrndt | Twodimensional Dirac operators with singular interactions supported on closed curves[END_REF] are formally for smooth Σ, the proof of this specific result only uses the compact embedding of H s (Ω) to L 2 (Ω) for s > 0 and bounded open sets Ω ⊂ R 2 with Lipschitz boundaries.

Remark 1.2. An additional useful property is that for any

(ε, µ) with |ε| ̸ = |µ| the operator B ε,µ is unitarily equivalent to B -4ε ε 2 -µ 2 ,-4µ ε 2 -µ 2
. Namely, a simple direct computation shows that

B ε,µ U = U B -4ε ε 2 -µ 2 ,-4µ ε 2 -µ 2
for the unitary linear map U :

L 2 (R 2 , C 2 ) → L 2 (R 2 , C 2 ) defined by U : (f + , f -) → (f + , -f -), see [4, Propositon 4.8]. In particular, the self-adjointness of B -4ε ε 2 -µ 2 ,-4µ ε 2 -µ 2
is equivalent to the self-adjoitness of B ε,µ , which will be used in the last proof steps.

Preparations for the proof

We will need some constructions related to the free Dirac operator A in (1.2). Most of these required results were already obtained in [START_REF] Behrndt | Twodimensional Dirac operators with singular interactions supported on closed curves[END_REF][START_REF] Behrndt | Boundary triples and Weyl functions for Dirac operators with singular interactions[END_REF] and we simply present them in an adapted form.

First of all, we consider the Cauchy transform on Σ, i.e. the linear operator C Σ : L 2 (Σ) -→ L 2 (Σ) defined through the complex line integration

C Σ g(x) := i 2π p. v. Σ g(y) x -y dy, g ∈ L 2 (Σ), x ∈ Σ,
and understood in the Cauchy principal value sense. It is a classical result that C Σ is well-defined and bounded [START_REF] Coifman | L'intégrale de Cauchy définit un opérateur borné sur L 2 pour les courbes lipschitziennes[END_REF]. Moreover, if one considers the analytic function

F g : C \ Σ ≃ R 2 \ Σ ∋ x → i 2π p. v. Σ g(y) x -y dy, g ∈ L 2 (Σ),
then Plemelj-Sokhotski formulas are valid:

F g (x) = ± g(x) 2 + C Σ g(x) for a.e. x ∈ Σ,
where the value on the left-hand side is understood as the non-tangential limit [14, p. 108].

Denote by K j the modified Bessel functions of order j.

For z ∈ C \ spec A consider the function ϕ z : R 2 → M 2×2 (C) given by ϕ z (x) := 1 2π K 0 m 2 -z 2 |x| mσ 3 + zσ 0 + i √ m 2 -z 2 2π|x| K 1 m 2 -z 2 |x| (σ • x).
It will be convenient to admit the additional value z = m by setting

ϕ m (x) := i 2π    0 1 x 1 + ix 2 1 x 1 -ix 2 0    .
Using the asymptotic expansions of K j one obtains

ϕ z (x) = ϕ m (x) + h 1 (x) log |x| + h 2 (x). (2.1)
with continuous functions h j , see [START_REF] Behrndt | Twodimensional Dirac operators with singular interactions supported on closed curves[END_REF]Lemma 3.3] for details. For all admissible z the function ϕ z is a fundamental solution of D -z, and it gives rise to several (singular) integral operators.

Namely, consider the layer potentials Φ z for D -z (with z ∈ C \ spec A)

Φ z : L 2 (Σ, C 2 ) -→ L 2 (R 2 , C 2 ), Φ z g(x) = Σ ϕ z (x -y)g(y) ds(y), x ∈ R 2 \ Σ,
where we recall that ds means the integration with respect to the arclength. Observe that ϕ z (x) * = ϕ z (-x) for all x. Let γ :

H 1 2 (R 2 , C 2 ) → L 2 (Σ, C
2 ) be the Sobolev trace operator (which is a bounded linear operator), then for

any u ∈ L 2 (R 2 , C 2 ) and g ∈ L 2 (Σ, C 2 ) one has, using Fubini's theorem, ⟨Φ z g, u⟩ L 2 (R 2 ,C 2 ) = R 2 Σ ϕ z (x -y)g(y) ds(y), u(x) C 2 dx = Σ g(y), R 2 ϕ * z (x -y)u(x)dx C 2 ds(y), = g, γ(A -z) -1 u L 2 (Σ,C 2 ) .
This shows that Φ z = γ(A -z) -1 * is bounded, and by replacing z with z one obtains the useful identity

Φ * z = γ(A -z) -1 , z ∈ C \ spec A. (2.2) Now let φ ∈ C ∞ 0 (R 2 , C 2 ) and h ∈ L 2 (Σ, C 2 ), then Φ z h, (D -z)φ L 2 (R 2 ,C 2 ) = h, Φ * z (D -z)φ L 2 (Σ,C 2 ) = h, γ(D -z) -1 (D -z)φ L 2 (Σ,C 2 ) = h, γφ L 2 (Σ,C 2 ) , and it follows that (D -z)Φ z h = 0 in D ′ (R 2 \ Σ). In particular, ran Φ z ⊂ ker(B max -z) ⊂ dom B max .
In fact, for any z ∈ C \ spec A one has the stronger property [5, Lemma 4.2]:

Φ z : L 2 (Σ, C 2 ) → H 1 2 (σ, R 2 \ Σ) is bounded. (2.3)
For all admissible z consider the singular integral operator

C z : L 2 (Σ, C 2 ) -→ L 2 (Σ, C 2 )
given by

C z g(x) = p. v. Σ ϕ z (x -y)g(y) ds(y), x ∈ Σ.
To summarize its properties we introduce the tangent vector field

τ = (τ 1 , τ 2 ) := (-ν 2 , ν 1 )
on Σ and denote t := the operator of multiplication by

τ 1 + iτ 2 in L 2 (Σ).
Then

C Σ t * g(x) = i 2π p. v. Σ g(y) (x 1 -y 1 ) -i(x 2 -y 2 ) ds(y), tC * Σ g(x) = i 2π p. v. Σ g(y) (x 1 -y 1 ) + i(x 2 -y 2 ) ds(y), x ∈ Σ, (2.4) 
and

C m = 0 C Σ t * tC * Σ 0 . (2.5)
Therefore, the boundedness of C Σ implies the boundedness of C m . In addition, the expansion (2.1) shows that C z -C m is an integral operator with a Hilbert-Schmidt kernel, in particular,

C z -C m : L 2 (Σ, C 2 ) → L 2 (Σ, C 2 ) is compact for any z ∈ C \ spec A,
which also shows the well-definedness and boundedness of C z for all admissible z.

Let γ ± : H 1 2 (Ω ± ) → L 2 (Σ)
be the Sobolev trace operators, and for any

f ∈ H 1 2 (R 2 \ Σ) we set γ ± f := γ ± f ± ,
then one has the so-called jump formula

γ ± Φ z g = ∓ i 2 σ • ν + C z g, g ∈ L 2 (Σ, C 2 ). (2.6)
In [4, Proposition 3.5] the jump formula was proved under the formal assumption that Σ is C ∞ smooth, but the same proof applies to our case as well, as the Plemelj-Sokhotski formula used in the proof also holds for closed Lipschitz curves. From the jump formula (2.6) one obtains

g = i(σ • ν) γ + Φ z g -γ -Φ z g , g ∈ L 2 (Σ, C 2 ),
which shows the injectivity of Φ z . Further direct consequences of the jump formula are the identities

γ + Φ z g -γ -Φ z g = -i(σ • ν)g, γ + Φ z g + γ -Φ z g 2 = C z g, g ∈ L 2 (Σ, C 2 ).
(2.7)

For z ∈ (C \ spec A) ∪ {m} consider the bounded linear operator

Θ z := I + (εσ 0 + µσ 3 )C z : L 2 (Σ, C 2 ) → L 2 (Σ, C 2 ),
which is closely related to the operator B from (1.6) as follows:

Lemma 2.1. For any z ∈ C \ spec A there holds ker(B -z) = Φ z ker Θ z , in particular, dim ker(B -z) = dim ker Θ z .

Proof. Remark that the last assertion follows from the injectivity of Φ

z . Let z ∈ C \ spec A and g ∈ ker Θ z . Denote f := Φ z g, then f ∈ ker(B max - z) due to the above properties of Φ z . We need to show f ∈ dom B. By (2.3) we have already f ∈ H 1 2 (σ, R 2 \ Σ). By (2.7) we have (εσ 0 + µσ 3 ) γ + Φ z g + γ -Φ z g 2 + i(σ • ν) γ + Φ z g -γ -Φ z g = (εσ 0 + µσ 3 )C z g + i(σ • ν) -i(σ • ν) g = (εσ 0 + µσ 3 )C z g + g = Θ z g = 0.
Hence, f ∈ ker(B -z). This shows the inclusion Φ z ker Θ z ⊂ ker(B -z). Now let z ∈ C \ spec A and f ∈ ker(B -z). Due to (1.4) we have

(D -z)f = (B -z)f + i(σ • ν)(f + -f -)δ Σ . (2.8) 
Let F : S ′ (R 2 ) → S ′ (R 2 ) be the Fourier transform. For any ψ ∈ S ′ (R 2 ) we have

F(D -z)ψ = (σ • ξ + mσ 3 -zσ 0 )Fψ.
The matrix σ • ξ + mσ 3 -zσ 0 is invertible for any ξ ∈ R 2 and has polynomial entries, which shows that D -z :

S ′ (R 2 ) → S ′ (R 2 ) is injective. As the function ϕ z ∈ S ′ (R 2 ) is a fundamental solution of D -z, from (2.8) one obtains f = ϕ z * i(σ • ν)(f + -f -)δ Σ . Due to f ∈ dom B we have f ± ∈ H 1 2 (Ω ± , C 2 )
, and, hence

g := i(σ • ν)(γ + f -γ -f ) ∈ L 2 (Σ, C 2 ).
Then

f = ϕ z * g = Σ ϕ z (• -y)g(y) ds(y) ≡ Φ z g.
With the help of (2.7) we obtain 0 = (εσ 0 + µσ 3 )

γ + f + γ -f 2 + i(σ • ν)(γ + f -γ -f ) = (εσ 0 + µσ 3 )C z g + g = Θ z g, which implies g ∈ ker Θ z . Hence, ker(B -z) ⊂ Φ z ker Θ z . □
For the sake of completeness, we include the proof of the following important statement (which is based on similar ideas):

Lemma 2.2. The operator C 2 Σ -1 4 is compact in L 2 (Σ, C 2 ). Proof. Let h ∈ L 2 (Σ, C 2 ) and z ∈ C \ spec A. Consider f := Φ z h, then (D -z)f = 0 in Ω ± . Consider further the function f : R 2 ∋ x → f (x), x ∈ Ω + , 0, otherwise. 
One has γ + f = γ + f and γ -f = 0, with (D -z) f = 0 in Ω ± , and (1.4) gives

(D -z) f = i(σ • ν)(γ + f -γ -f )δ Σ ≡ i(σ • ν)γ + f δ Σ in D ′ (R 2 ), which implies f = ϕ z * i(σ • ν)γ + f δ Σ ≡ Φ z i(σ • ν)γ + f . In particular, Φ z i(σ • ν)γ + f = f = Φ z h in Ω + .
(2.9)

Remark that by the construction of f we have

γ + f = - i(σ • ν) 2 + C z h.
Use this last equality in (2.9) and then apply γ + on the both parts, then one arrives at

- i(σ • ν) 2 + C z i(σ • ν) - i(σ • ν) 2 + C z h = - i(σ • ν) 2 + C z h,
which after a simple algebra takes the form

C z i(σ • ν)C z h = - i(σ • ν) 4 h,
and results in the identity

C z (σ • ν) 2 = - 1 4 I.
(2.10)

The identities are well-known for the three-dimensional case [1, Lemma 3.3], but we gave a complete argument to stay self-contained. Further remark that

σ • ν = 0 n * n 0 ,
where n is the operator of multiplication by ν 1 + iν 2 . Using (2.5) we write

C z = 0 C Σ t * tC * Σ 0 + M 0
with a compact operator M 0 . We have t * n = -iI, so the substitution into (2.10) gives, with some compact operators M j , Proof. In the case ε = µ = 0 we have obviously B = A. From now on let µ = ±ε with ε ̸ = 0.

- 1 4 I = -iC Σ 0 0 tC * Σ n * + M 1 2 = -C 2 Σ 0 0 (tC * Σ n * ) 2 + M 2 ,
Consider the following maps

P + : L 2 (Σ) ∋ f → f 0 ∈ L 2 (Σ, C 2 ), P -: L 2 (Σ) ∋ f → 0 f ∈ L 2 (Σ, C 2 ),
and their adjoints

P * + : L 2 (Σ, C 2 ) ∋ f 1 f 2 → f 1 ∈ L 2 (Σ), P * -: L 2 (Σ, C 2 ) ∋ f 1 f 2 → f 2 ∈ L 2 (Σ).
We set P := P ± for ε = ±µ.

As the operator B is symmetric, it is sufficient to show that ran(B -z) = L 2 (R 2 , C 2 ) for any z ∈ C \ R. For that, we will explicitly construct the inverse (B -z) -1 .

Let z ∈ C \ R. As B is symmetric, ker(B -z) = {0}, and Lemma 2.1 implies ker Θ z = {0}. Remark that in the present case, we have

Θ z = I + 2εP P * C z , Θ z P = P + 2εP P * C z P ≡ 2εP λ z for λ z := 1 2ε I + P * C z P : L 2 (Σ, C 2 ) → L 2 (Σ, C 2 ) ≡ 1 2ε I + (z ± m)S z
with the operator S z : L 2 (Σ) → L 2 (Σ) given by

(S z g)(x) := 1 2π Σ K 0 m 2 -z 2 |x -y| g(y) ds(y), x ∈ Σ, g ∈ L 2 (Σ).
The integral kernel of S z has a logarithmic singularity on the diagonal, therefore, S z is Hilbert-Schmidt (in particular, compact). It follows that λ z is a Fredholm operator of index zero. From the injectivity of Θ z and P one obtains the injectivity of λ z , and it follows that λ z : L 2 (Σ) → L 2 (Σ) is bijective. Now we are going to show that the operator

R(z) := (A -z) -1 -Φ z P λ -1 z P * Φ * z , is the inverse of B -z. Let v ∈ L 2 (R 2 , C 2 ). Due to (2.2) one has f := R(z)v ∈ H 1 2 (R 2 \ Σ, C 2 ).
Using the jump formulas (2.7) we obtain

γ + f + γ -f 2 = γ(A -z) -1 v -C z P λ -1 z P * Φ * z v ≡ Φ * z v -C z P λ -1 z P * Φ * z v, γ + f -γ -f = i(σ • ν)P λ -1 z P * Φ * z v. We have then (εσ 0 + µσ 3 ) γ + f + γ -f 2 + i(σ • ν)(γ + -γ -f ) ≡ 2εP P * γ + f + γ -f 2 + i(σ • ν)(γ + -γ -f ) = 2εP P * Φ * z v -C z P λ -1 z P * Φ * z v + i(σ • ν)i(σ • ν)P λ -1 z P * Φ * z v = 2εP P * Φ * z v -C z P λ -1 z P * Φ * z v -P λ -1 z P * Φ * z v = P 2εI -2εP * C z P λ -1 z -λ -1 z P * Φ * z v, while 2ε -2εP * C z P λ -1 z -λ -1 z = 2εI -2ε P * C z P + 1 2ε I λ -1 z = 2εI -2ελ z λ -1 z = 0
. This shows that f satisfies the transmission condition (1.5) and, therefore,

f ∈ dom B. Further, in D ′ (R 2 \ Σ, C 2 ) we have (D -z)Φ z P λ -1 z P * Φ * z v = 0, therefore, (B -z)f = (D -z)f = (D -z)(A -z) -1 v = (A -z)(A -z) -1 v = v, which shows R(z) = (B -z) -1 . □ 4. Case |ε| ̸ = |µ|
For |ε| ̸ = |µ| the matrix εσ 0 + µσ 3 is invertible, with

(εσ 0 + µσ 3 ) -1 = 1 ε 2 -µ 2 (εσ 0 -µσ 3 ),
and it will be more convenient to consider the auxiliary bounded linear operators

Λ z := 1 ε 2 -µ 2 (εσ 0 -µσ 3 ) + C z ≡ (εσ 0 + µσ 3 ) -1 Θ z for z ∈ (C \ spec A) ∪ {m}.
The symmetry property ϕ z (y -x) * = ϕ z (x -y) entails that both C z and Λ z are self-adjoint for real admissible z.

The following assertion can be viewed as a simplified version of the results of [START_REF] Behrndt | Boundary triples and Weyl functions for Dirac operators with singular interactions[END_REF], and this is the entry point for the subsequent analysis:

Theorem 4.1. Let |ε| ̸ = |µ| such that the operator Λ a is Fredholm for some a ∈ (C \ spec A) ∪ {m}, then the operator B in (1.6) is self-adjoint.
Proof. Let Λ a be Fredholm. As noted above, for any z ∈ C \ spec A the difference Λ z -Λ a ≡ C z -C a is a compact operator, and it follows that Λ z is also Fredholm and has the same index as Λ a . Now let z ∈ -|m|, |m| ∪ {m}, then Λ z is self-adjoint. From the Fredholmness and the self-adjointness, it follows that the index of Λ z is zero. We have just seen above that the index is independent of z, so Λ z is Fredholm of index zero for all z ∈ C \ spec A.

As B is symmetric, and in order to show its self-adjointness it is sufficient to show that ran(B -z) = L 2 (R 2 , C 2 ) for all z ∈ C \ R. We will do it by constructing explicitly the inverse (B -z) -1 defined on L 2 (R 2 , C 2 ).

Let z ∈ C \ R. As B is symmetric, there holds ker(B -z) = {0}. By Lemma 2.1 one obtains ker Λ z = {0}. As Λ z is Fredholm of index zero, one has ran

Λ z = L 2 (Σ, C 2 ), so Λ z : L 2 (Σ, C 2 ) → L 2 (Σ, C 2 )
is bijective with a bounded inverse. Consider the bounded linear operator

R(z) = (A -z) -1 -Φ z Λ -1 z Φ * z : L 2 (R 2 , C 2 ) → L 2 (R 2 , C 2 ).
We are going to show that

R(z) = (B -z) -1 . Let v ∈ L 2 (R 2 , C 2 ). Due to (2.
2) one has

f := R(z)v ∈ H 1 2 (R 2 \ Σ, C 2 ).
Using (2.7) we obtain

γ + f + γ -f 2 = γ(A -z) -1 v -C z Λ -1 z Φ * z v = Φ * z v -C z Λ -1 z Φ * z v, γ + f -γ -f = i (σ • ν)(Λ z ) -1 Φ * z v. Then (εσ 0 +µσ 3 ) γ + f + γ -f 2 + i(σ • ν)(γ + f -γ -f ) = (εσ 0 + µσ 3 )(I -C z Λ -1 z ) -Λ -1 z Φ * z v, while (εσ 0 + µσ 3 )(I -C z Λ -1 z ) -Λ -1 z = (εσ 0 + µσ 3 )(Λ z -C z ) -I Λ -1 z = (εσ 0 + µσ 3 ) 1 ε 2 -µ 2 (εσ 0 -µσ 3 ) -I Λ -1 z = (I -I)Λ -1 z = 0. This shows that f satisfies the transmission condition (1.5), i.e. f ∈ dom B. In addition, in D ′ (R 2 \ Σ) we have (D -z)Φ z Λ -1 z Φ * z = 0, therefore, (B -z)f = (D -z)f = (D -z)R(z)v = (D -z)(A -z) -1 = (A -z)(A -z) -1 v = v, which shows the required identity R(z) = (B -z) -1 .
□

The following lemma gives a precise range of (ε, µ) for which B is selfadjoint without additional assumptions on Σ. Theorem 4.2. Assume that |ε| < |µ|, then is self-adjoint.

Proof. By Proposition 4.1 it is sufficient to show that (ε 2 -µ 2 )Λ m is Fredholm. Using (2.5) we represent

(ε 2 -µ 2 )Λ m = (εσ 0 -µσ 3 ) + (ε 2 -µ 2 )C m = (εσ 0 -µσ 3 ) + (ε 2 -µ 2 ) 0 C Σ t * tC * Σ 0 = εσ 0 + Γ, with Γ := -µ (ε 2 -µ 2 )C Σ t * (ε 2 -µ 2 )tC * Σ µ .
Remark that Γ is self-adjoint and Remark that the preceding discussion is valid without any additional assumptions on Σ (i.e. only assumes that Σ is Lipschitz). Under stronger geometric assumptions one can indeed enlarge the range of parameters for which the self-adjointness is guaranteed. The following result follows implicitly from the machinery of [START_REF] Behrndt | Boundary triples and Weyl functions for Dirac operators with singular interactions[END_REF], but we prefer to give an explicit formulation with a direct argument.

Γ 2 = µ 2 + (ε 2 -µ 2 ) 2 C Σ C * Σ 0 0 tC * Σ C Σ t * . The last term is a non-negative operator, which shows spec(Γ 2 ) ⊂ [µ 2 , ∞), spec Γ ∩ -|µ|, |µ| = ∅. Therefore, if |ε| < |µ|, then the operator (ε 2 -µ 2 )Λ m ≡ ε + Γ : L 2 (Σ, C 2 ) → L 2 (Σ, C 2 )
Theorem 4.4. If Σ is C 1 -smooth and ε 2 -µ 2 ̸ = then B is self-adjoint.
Proof. The case |ε| = |µ| is already covered by Theorem 3.1, so from now on assume |ε| ̸ = |µ|. By Proposition 4.1 it is sufficient to show that Λ m is Fredholm. Due to the self-adjointness of Λ m this is equivalent to

0 / ∈ spec ess (ε 2 -µ 2 )Λ m . (4.1) 
Using (2.5) we represent

(ε 2 -µ 2 )Λ m = (εσ 0 -µσ 3 ) + (ε 2 -µ 2 )C m = (εσ 0 -µσ 3 ) + (ε 2 -µ 2 ) 0 C Σ t * tC * Σ 0 = εσ 0 + Γ, with Γ := -µI (ε 2 -µ 2 )C Σ t * (ε 2 -µ 2 )tC * Σ µI
.

By [15, Theorem 3.2] the operator C Σ -C * Σ is compact, therefore, Γ = -µ (ε 2 -µ 2 )C Σ t * (ε 2 -µ 2 )tC Σ µ + M 0
with some compact operator M 0 . Using Lemma 2.2 we obtain, with some compact operators M 1 and M 2 ,

Γ 2 = µ 2 + (ε 2 -µ 2 ) 2 C 2 Σ 0 0 tC 2 Σ t * + M 1 ≡ µ 2 + (ε 2 -µ 2 ) 2 4 
I 0 0 I + M 2 .
It follows that

spec ess (Γ 2 ) = µ 2 + (ε 2 -µ 2 ) 2 4 ,
and the self-adjointness of Γ implies

spec ess Γ ∈ -µ 2 + (ε 2 -µ 2 ) 2 4 , µ 2 + (ε 2 -µ 2 ) 2 4 .
Due to the above identity (ε 2 -µ 2 )Λ m = ε+Γ the condition (4.1) is equivalent to

|ε| ̸ = µ 2 + (ε 2 -µ 2 ) 2 4 , i.e. ε 2 -µ 2 ̸ = (ε 2 -µ 2 ) 2 4 which reduces to ε 2 -µ 2 ̸ = 4. □

Fredholmness for curvilinear polygons

From now assume that Σ is a piecewise C 1 -smooth Lipschitz curve, with finitely many corner points a 1 , . . . , a n . For each corner a j , let θ j ∈ (0, 2π) \ {π} be the non-oriented interior angle of Σ at the point a j measured inside Ω + . Our main goal is to give a complete characterization of the values of ε and µ for which the operators Λ z are Fredholm in L 2 (Σ, C 2 ). To do so, we are going to implement the technique proposed by Shelepov [START_REF] Yu | On the index and spectrum of integral operators of potential type along Radon curves[END_REF]. Remark that some components of the approach implicitly appear in other works [START_REF] Bolt | The Kerzman-Stein operator for piecewise continuously differentiable regions[END_REF][START_REF] Costabel | A direct boundary integral equation method for transmission problems[END_REF].

Actually the work [START_REF] Yu | On the index and spectrum of integral operators of potential type along Radon curves[END_REF] also applies to the so-called Radon curves, which are more general than curvilinear polygons, but we prefer to restrict our attention to the case of piecewise C 1 -smooth curves in order to avoid a series of involved definitions. Let us describe the general scheme of [START_REF] Yu | On the index and spectrum of integral operators of potential type along Radon curves[END_REF]. Denote

S := x ∈ R 2 : |x| = 1
and let M k be the space of k × k complex matrices. Let

G : R × R × S × S × S → M k
be a matrix-valued function whose entries G i,j are Lipschitz (with respect to all variables) and such that for some C > 0 one has

G ij (x, y, ξ, η, ζ) ≤ C ⟨ξ, ζ⟩ + ⟨η, ζ⟩ (5.1) 
for all (x, y, ξ, η, ζ).

Consider the bounded integral operator T :

L 2 (Σ, C k ) → L 2 (Σ, C k ), T g(x) = Σ 1 |x -y| G x, y, ν(x), ν(y), x -y |x -y| g(y) ds(y), x, y ∈ Σ, g ∈ L 2 (Σ, C k ).
We assume without loss of generality that each connected component of Σ is oriented in the anticlockwise sense. Fix a corner point a on Σ with an interior angle θ. A small arc of Σ around a is separated by a into two nonempty parts Γ + and Γ -that project in one-to-one fashion on the one-sided tangents to Σ at a, and denote the projections by Γ + and Γ -respectively. Let τ + and τ -be the unit vectors along Γ + and Γ -directed away from the corner a, and let ν + (a) and ν -(a) be the corresponding one-sided limits of the inner normal to Σ at a. We then denote by τ = -τ -the unit vector of the left positive tangent to Σ at a and by ν(a) = ν -(a) the vector obtained from τ by a counterclockwise rotation through the angle π/2, see Figure 1. Finally, we will use the parameters

ξ := η + i 2 , η ∈ R. τ + τ - τ ν θ Ω + Ω - Σ Γ - Γ + a Figure 1.
Construction near a corner a.

Following [START_REF] Yu | On the index and spectrum of integral operators of potential type along Radon curves[END_REF], we define a function ζ : R → R and matrix-valued functions 

H (j) a : R + i 2 → M k , j ∈ {1, 2}, by ζ(t) = e -t 2 cos θ -e t 2 τ -νe -t 2 sin θ e t + e -t -2 cos θ , H (1) a (ξ) = ∞ -∞ e (iξ+1/2)t √ e t + e -t -2 cos θ G a, a, ν, -τ sin θ -ν cos θ, ζ(-t) dt, H (2) a (ξ) = ∞ -∞ e (iξ+1/
∆ a (ξ) = det σ 0 -H (1) a (ξ) H (2) a (ξ) , ξ ∈ R + i 2 .
The following result was shown in [18, Theorem 2]:

Proposition 5.1. The operator

I -T is Fredholm in L 2 (Σ, C 2 ) if and only if ∆ a j (ξ) ̸ = 0 for all ξ ∈ R + i 2
and all corners a 1 , ..., a n of Σ.

We are now going to apply this machinery to our particular situation. For θ ∈ (0, 2π) consider the function We have the obvious symmetry m(θ) = m(2π -θ) for any θ ∈ (0, 2π).

M θ : R ∋ x → cosh (π -θ)x 2 1 + cosh(πx) ∈ R,
(5.

2)

The following elementary properties of m will be needed as well: Proof. For any |a| ≤ |b| we have cosh a ≤ cosh b. It follows that for any x ∈ R there holds

1 4 = M ω (0) ≤ M ω (x) = cosh (π -ω)x 2 1 + cosh(πx) ≤ cosh(πx) 2 1 + cosh(πx) ≤ 1 2 ,
which gives (5.3). For 0 < ω ≤ ω ′ < π and any x ∈ R one has We further remark that for any ω ∈ (0, π) the function M θ is even, and for any x ≥ 0 one has

M ω ′ (x) = cosh (π -ω ′ )x 2 1 + cosh(πx) ≤ cosh (π -ω)x 2 1 + cosh(πx) = M ω (x),
M ′ ω (x) = 1 2 1 + cosh(πx) 2 (π -ω) sinh (π -ω)x 1 + cosh(πx) -π cosh (π -ω)x sinh(πx) ≡ π 1 + cosh(πx) cosh (π -ω)x 2 1 + cosh(πx) 2 N ω (x) with N ω (x) := π -ω π sinh (π -ω)x cosh (π -ω)x - sinh(πx) 1 + cosh(πx) ≡ π -ω π sinh (π -ω)x cosh (π -ω)x - sinh πx 2 cosh πx 2 ≡ π -ω π tanh (π -ω)x -tanh πx 2 .
The function [0, ∞) ∋ a → tanh a in increasing, therefore, N ω (x) < 0 for all x > 0 and ω ∈ π 2 , π , and then M ′ ω (x) < 0 for the same x and ω. Then for each ω ∈ π 2 , π the function M ω is decreasing on (0, +∞), and by parity its maximum is located at the origin, i.e.

m(ω) = sup x∈R M ω (x) = M ω (0) = 1 4 for all ω ∈ π 2 , π . □ Remark 5.3.
The condition for ω in (5.5) is not expected to be optimal. A rough numerical simulation indicates that

min ω ∈ (0, π) : m(ω) = 1 4 ≃ 0.3 π.
Using the above preparations we arrive at the main result:

Theorem 5.4. Denote by ω the smallest angle of Σ, defined by

ω := min j∈{1,...,n} min{θ j , 2π -θ j } ∈ (0, π). If ε 2 -µ 2 < 1 m(ω) or ε 2 -µ 2 > 16m(ω), (5.6) 
then the operator B is self-adjoint.

Proof. As the case |ε| ≤ |µ| is already covered by Corollary 4.3, for the rest of the proof we assume |ε| > |µ|.

By Theorem 4.1 it is sufficient to show that Λ m is Fredholm, which is in turn equivalent to the Fredholmness of the operator

Θ m ≡ (εσ 0 + µσ 3 )Λ m ≡ I + (εσ 0 + µσ 3 )C m : L 2 (Σ, C 2 ) → L 2 (Σ, C 2 ).
Eq. (2.5) for C m gives the representation

Θ m g(x) = g - Σ 1 |x -y| G x, y, ν(x), ν(y), x -y |x -y| g(y)ds(y) with g ∈ L 2 (Σ, C 2 ) and the 2 × 2 matrix function G defined by G x, y, ν(x), ν(y), x -y |x -y| = - i 2π      0 (ε + µ) x -y |x -y| (ε -µ) x -y |x -y| 0     
for x, y ∈ Σ, where the integral representations in (2.4) were used. The entries of G are obviously Lipschitz and satisfy (5.1), so the above machinery is applicable to the analysis of Θ m .

Let a be a corner point of Σ with an interior angle θ, then

G a, a, ν, -τ sin θ -ν cos θ, ζ(-t) = - i 2π   0 (ε + µ)ζ(-t) (ε -µ)ζ(-t) 0   , G(a, a, -τ sin θ -ν cos θ, ν, -ζ(t)) = i 2π   0 (ε + µ)ζ(t) (ε -µ)ζ(t) 0   where one uses the usual identification R 2 ∋ (x 1 , x 2 ) = x ≃ x = x 1 +ix 2 ∈ C. We have iξ + 1 = i ξ for all ξ ∈ R + i 2 ,
and one easily sees that the matrices H

(1) a and H

(2) a for this specific case have the form

H (1) a (ξ) =   0 (ε + µ)A τ ,ν (ε -µ)A τ,ν 0   , H (2) a 
(ξ) =   0 (ε + µ)B τ ,ν (ε -µ)B τ,ν 0   ,
where A τ,ν and B τ,ν are given by

A τ,ν = +∞ -∞
e i ξt cos(θ) -e iξt τ -e i ξt sin(θ) ν e t + e -t -2cos(θ) dt,

B τ,ν = +∞ -∞
e iξt cos(θ) -e i ξt τ -e iξt sin(θ) ν e t + e -t -2 cos(θ) dt.

Hence, applying the change of variable x = e t , we can rewrite A τ,ν and B τ,ν as follows

A τ,ν = +∞ 0 (x i ξ cos(θ) -x iξ )τ -x i ξ sin(θ) ν x 2 + 2xcos(π -θ) + 1 dx, B τ,ν = +∞ 0 (x iξ cos(θ) -x i ξ )τ -x iξ sin(θ) ν x 2 + 2xcos(π -θ) + 1 dx.
Now recall that for all b > 0, 0 < |ω| < π and 0 < Re(α) < 2 one has Consequently, the product H Using the trigonometric identity cosh(x ± iy) = cosh(x) cos(y) ± i sinh(x) sin(y), for all x, y ∈ R, and a straightforward computation we transform the above expression for S(ξ) to S(ξ) = 2 sin 2 (θ) cosh 2η(π -θ) 1 + cosh(2πη) with ξ = η + i 2 .

Thus,

∆ a (ξ) = 1 -(ε 2 -µ 2 ) cosh 2η(π -θ) 2 1 + cosh(2πη) 2 = 1 -(ε 2 -µ 2 )M θ (2η) 2 ,
and the condition ∆ a (ξ) ̸ = 0 for all ξ is equivalent to

M θ (x) ̸ = 1 ε 2 -µ 2 for all x ∈ R.
(5.7)

Remark that for any θ ∈ (0, 2π) one has Thus, for each corner point a j we have shown the equivalence ∆ a j (ξ) ̸ = 0 for all ξ ∈ R + i 2 if and only if ε 2 -µ 2 < 1 m(θ j ) .

(5.8)

Using the symmetry and monotonicity properties of m, see (5.2) and Proposition 5.2, we conclude that that Θ m is Fredholm if and only if We finish this paper by pointing out the following remark.

Remark 5.6. In the proof of Theorem 5.4 one sees that for ε 2 -µ 2 > 16m(ω) the operator B is self-adjoint but the operators Λ z are not Fredholm. This shows that the converse of Theorem 4.1 does not hold.

3 .Theorem 3 . 1 .

 331 and the upper left block gives the sought result. □ Case |ε| = |µ| We first consider the self-adjointness of B for |ε| = |µ|. The operator B in (1.6) is self-adjoint for |ε| = |µ|.

  is an isomorphism and, in particular, Fredholm. □ By summarizing Theorems 3.1 and 4.2 we arrive at Corollary 4.3. The operator B is self-adjoint for any (ε, µ) with |ε| ≤ |µ|.

Proposition 5 . 2 . 3 )

 523 For any ω ∈ (0, π) Moreover, the function ω → m(ω) is non-increasing, with lim

  so taking the supremum over all x one shows m(ω ′ ) ≤ m(ω), i.e. m is non-increasing. In addition, for any fixed x the function θ → M θ (x) is non-increasing too. It follows lim

+∞ 0 x

 0 α-1 x 2 + 2bx cos(ω) + b 2 dx = -πb α-2 1 sin(ω) 1 sin(απ) sin (α -1)ω , see the formula[START_REF] Costabel | A direct boundary integral equation method for transmission problems[END_REF] in[13, p. 327]. Applying this formula with b = 1 and ω = π -θ, one obtains thatA τ,ν = i 2 sin(θ) cos(θ) sinh ξ(π -θ) sinh(ξπ) -sinh ξ(π -θ) sinh(ξπ) τ -sin(θ) sinh ξ(π -θ) sinh(ξπ) ν , B τ,ν = -i 2 sin(θ) cos(θ) sinh ξ(π -θ) sinh(ξπ) -sinh ξ(π -θ) sinh(ξπ) τ-sin(θ) sinh(ξ(π -θ)) sinh(ξπ) ν .

  a (ξ)H(2) a (ξ) = ε 2 -µ 2 4sin 2 (θ) × S(ξ) σ 0 ,where S(ξ) is given byS(ξ) = 2 sinh ξ(π -θ) sinh(ξπ) sinh ξ(π -θ) sinh( ξπ) -cos(θ) sinh 2 ξ(π -θ) sinh 2 ( ξπ) + sinh 2 ξ(π -θ)sinh 2 (ξπ) .

M

  θ (x) ≥ 0 for all x ∈ R, lim x→±∞ M θ (x) = 0, then the condition (5.7) is satisfied if any only if (recall that |ε| > |µ| by assumption) 1 ε 2 -µ 2 > m(θ) := sup x∈R M θ (x), i.e. ε 2 -µ 2 < 1 m(θ).

ε 2 - 2 -µ 2 weCorollary 5 . 5 . 2 ≤ θ j ≤ 3π 2

 2225522 µ 2 < min j∈{1,...,n} 1 m(θ j ) = 1 max j∈{1,...,n} m(θ j ) = 1 m(ω) ,which is a sufficient condition for the self-adjointness of B ≡ B ε,µ and gives the first half of(5.6). By applying the above result toB := B -4ε ε 2 -µ 2 ,-4µ ε which holds for ε 2 -µ 2 > 16m(ω).As the self-adjointness of B is equivalent to the self-adjointness of B (see Remark 1.2), we obtain the second half of (5.6). □ By combining Theorem 5.4 with Proposition 5.2 we obtain: Let Σ be a curvilinear polygon (with C 1 -smooth edges and without cusps). Assume that one of the following three conditions holds:(a) ε 2 -µ 2 < 2, (b) ε 2 -µ 2 > 8, (c) ε 2 -µ 2 ̸ = 4and the interior angles θ j of Σ satisfy π for all j ∈ {1, . . . , n}, then B is self-adjoint.
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