Rational solutions to the KdV equation in terms of Fredholm determinants and wronskians

Pierre Gaillard

To cite this version:

Pierre Gaillard. Rational solutions to the KdV equation in terms of Fredholm determinants and wronskians. 2023. hal-04206548

HAL Id: hal-04206548

https://hal.science/hal-04206548

Preprint submitted on 13 Sep 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Rational solutions to the $K d V$ equation in terms of Fredholm determinants and wronskians

${ }^{+}$Pierre Gaillard, + Université de Bourgogne, Dijon, France :
e-mail: Pierre.Gaillard@u-bourgogne.fr,

Abstract

Rational solutions to the KdV are constructed from the finite gap solutions of the KdV equation given in terms of abelian functions. For this we use a previous result giving the connection between Riemann theta functions and Fredholm determinants and also wronskians. By choosing the parameters of these solutions according to a number intended to move towards zero, we obtain rational solutions when this number tends towards zero. So, we construct a hierarchy of rational solutions depending on multi real parameters and we give explicitly expressions for the first orders.

Keywords: KdV equation, Riemann theta functions, Rational solutions

1 Introduction

Korteweg and de Vries [10] introduced the following equation

$$
\begin{equation*}
u_{t}=6 u u_{x}-u_{x x x} \tag{1}
\end{equation*}
$$

where the subscripts x and t denote partial derivatives, for the first time in 1895 to describe the propagation of waves with weak dispersion.
A lot of studies have been realized for this equation. A method of resolution was proposed by Gardner et al. [6] in 1967. Solutions were constructed with the bilinear method [7] by Hirota in 1971; Its and Matveev constructed solutions in terms of Riemann theta functions [8] in 1975. Other works can be quoted: for example Airault et al. in 1977 [1], Freeman and Nimmo in 1984 [3], Ma in 2004 [12].

We use a recent paper [5], in which we have degenerated the solutions to this KdV equation given in terms of Riemann theta functions. We have constructed solutions in terms of Fredholm determinants and wronskians. From this representations we construct rational solutions to the KdV equation by degenerating these solutions when parameters are chosen to tend to 0 .

2 Solutions to the KdV equation in terms of Fredholm determinants and wronskians

2.1 Solutions to the KdV equation in terms of Fredholm determinants

We briefly recall the approach in terms of Riemann theta functions given in [8] in 1975. We consider the Riemann surface Γ of the algebraic curve defined by

$$
\omega^{2}=\prod_{j=1}^{2 g+1}\left(z-E_{j}\right)
$$

with $E_{j} \neq E_{k}, j \neq k$. Let D be some divisor $D=\sum_{j=1}^{g} P_{j}, P_{j} \in \Gamma$, then the finite gap solution of the KdV equation

$$
\begin{equation*}
u_{t}=6 u u_{x}-u_{x x x} \tag{2}
\end{equation*}
$$

can be written in the form [8]

$$
\begin{equation*}
u(x, t)=-2 \partial_{x}^{2}[\ln \theta(x g+t v+l)]+C . \tag{3}
\end{equation*}
$$

In (3), θ is the Riemann function defined by

$$
\begin{equation*}
\theta(z)=\sum_{k \in \mathbf{Z}^{g}} \exp \{\pi i(B k \mid k)+2 \pi i(k \mid z)\}, \tag{4}
\end{equation*}
$$

constructed from the matrix of the B-periods of the surface Γ.
In [5], we have realized the degeneracy of these solutions following the ideas exposed for example in [2]). For E_{j} reals such that $E_{m}<E_{j}$ if $m<j$, we have evaluated the limits of all objects in formula (3) when $E_{2 m}, E_{2 m+1}$ tends to $-\alpha_{m},-\alpha_{m}=-\kappa_{m}^{2}, \kappa_{m}>0$, for $1 \leq m \leq g$, and E_{1} tends to 0 .
All the details of the degeneracy of the components of the solution can be found in [5].
Different representations in terms of Fredhholm determinants have been given, in particular, we got the following representation of the solutions to the KdV equation

Theorem 2.1 The function u defined by

$$
\begin{equation*}
u(x, t)=-2 \partial_{x}^{2} \ln (\operatorname{det}(I+D)) \tag{5}
\end{equation*}
$$

with D the matrix defined by $D=\left(d_{j k}\right)_{1 \leq j, k \leq m}$

$$
\begin{equation*}
d_{j k}=(-1)^{j} \exp \left[2\left(\kappa_{j} x-4 \kappa_{j}^{3} t+\kappa_{j} k_{j}\right)\right] \prod_{l \neq j}\left|\frac{\kappa_{l}+\kappa_{k}}{\kappa_{l}-\kappa_{j}}\right| \tag{6}
\end{equation*}
$$

and κ_{j}, k_{j} arbitrary real parameters, is a solution to the $K d V$ equation (1).

2.2 Solutions to the KdV equation in terms of wronskians

In [5], we have given a connection between Fredholm determinants and wronskians. We use here these results.
We consider the following functions

$$
\begin{align*}
& \phi_{j}^{a}(x)=\sinh \left(\kappa_{j} x-4 \kappa_{j}^{3} t+\kappa_{j} k_{j}+\frac{1}{2} \ln \left(\frac{z+i \kappa_{j}}{z-i \kappa_{j}}\right)\right)=\sinh \left(\theta_{j}^{a}\right), \tag{7}\\
& \phi_{j}^{b}(x)=\sinh \left(\kappa_{j} x-4 \kappa_{j}^{3} t+\kappa_{j} k_{j}\right)=\sinh \left(\theta_{j}^{b}\right),
\end{align*}
$$

with k_{j}, K_{j} arbitrary parameters.
$W=W\left(\phi_{j}, \ldots, \phi_{N}\right)(x, t)$ is the classical wronskian $W=\operatorname{det}\left[\left(\partial_{x}^{j-1} \phi_{i}\right)_{i, j \in[1, \ldots, N]}\right]$. We consider the matrix $D=\left(d_{j k}\right)_{j, k \in[1, \ldots, N]}$ defined in (6)

$$
d_{j k}=(-1)^{j} \exp \left[2\left(\kappa_{j} x-4 \kappa_{j}^{3} t+\kappa_{j} k_{j}\right)\right] \prod_{l \neq j}\left|\frac{\kappa_{l}+\kappa_{k}}{\kappa_{l}-\kappa_{j}}\right|
$$

Then we recall the result proven in [5]
Theorem 2.2

$$
\begin{equation*}
\operatorname{det}(I+D)=\frac{2^{N}(-1)^{\frac{N(N+1)}{2}} \exp \left(\sum_{j=1}^{N} \theta_{j}^{b}\right)}{\prod_{j=2}^{N} \prod_{i=1}^{j-1}\left(\kappa_{j}-\kappa_{i}\right)} W\left(\phi_{1}^{b}, \ldots, \phi_{N}^{b}\right)(x, t) \tag{8}
\end{equation*}
$$

2.3 Some examples

Example 2.1 Solution of order 1: the function u defined by

$$
u(x, t)=8 \frac{\mathrm{e}^{-2 K_{1}\left(4 t K_{1}^{2}-x-k_{1}\right)} K_{1}^{2}}{\left(-1+\mathrm{e}^{-2 K_{1}\left(4 t K_{1}^{2}-x-k_{1}\right)}\right)^{2}} .
$$

is a solution to the $K d V$ equation (1).

Figure 1. Solution of order 1 to $K d V$, on the left for $K_{1}=0,1, k_{1}=0,1$; in the center for $K_{1}=0,5, k_{1}=0,5$; on the right for $K_{1}=1, k_{1}=1$.

Example 2.2 Solution of order 2: the function u defined by

$$
u(x, t)=\frac{n_{u}(x, t)}{d_{u}(x, t)}
$$

$\mathbf{n}_{\mathbf{u}}(\mathbf{x}, \mathbf{t})=16 \mathrm{e}^{2 K_{1} x-8 K_{1}{ }^{3} t+2 K_{1} k_{1}+2 K_{2} x-8 K_{2}{ }^{3} t+2 K_{2} k_{2} K_{1}{ }^{4}-8 \mathrm{e}^{-2 K_{1}\left(4 t K_{1}{ }^{2}-x-k_{1}\right)} K_{1}{ }^{4}-}$
$8 K_{1}{ }^{4} \mathrm{e}^{2} K_{1} x-8 K_{1}{ }^{3} t+2 K_{1} k_{1}+4 K_{2} x-16 K_{2}{ }^{3} t+4 K_{2} k_{2}+8 \mathrm{e}^{-2 K_{2}\left(4 t K_{2}{ }^{2}-x-k_{2}\right)} K_{2}{ }^{2} K_{1}{ }^{2}+$

$-32 K_{1}{ }^{2} \mathrm{e}^{2} K_{1} x-8 K_{1}{ }^{3} t+2 K_{1} k_{1}+2 K_{2} x-8 K_{2}{ }^{3} t+2 K_{2} k_{2} K_{2}{ }^{2}$
$+8 K_{1}{ }^{2} \mathrm{e}^{2 K_{1} x-8 K_{1}{ }^{3} t+2 K_{1} k_{1}+4 K_{2} x-16 K_{2}{ }^{3} t+4 K_{2} k_{2} K_{2}{ }^{2}+8 \mathrm{e}^{-2 K_{1}\left(4 t K_{1}{ }^{2}-x-k_{1}\right)} K_{1}{ }^{2} K_{2}{ }^{2}+}$
$16 \mathrm{e}^{2 K_{1} x-8 K_{1}{ }^{3} t+2 K_{1} k_{1}+2 K_{2} x-8 K_{2}{ }^{3} t+2 K_{2} k_{2} K_{2}{ }^{4}-8 \mathrm{e}^{-2 K_{2}\left(4 t K_{2}{ }^{2}-x-k_{2}\right)} K_{2}{ }^{4}{ }^{3} .}$
$-8 \mathrm{e}^{-16 K_{1}{ }^{3} t+4 K_{1} x+4 K_{1} k_{1}+2 K_{2} x-8 K_{2}{ }^{3} t+2 K_{2} k_{2}} K_{2}{ }^{4}$
and
$\mathbf{d}_{\mathbf{u}}(\mathbf{x}, \mathbf{t})=\left(-\mathrm{e}^{-2 K_{2}\left(4 t K_{2}^{2}-x-k_{2}\right)} K_{1}+K_{1}+\mathrm{e}^{-2 K_{1}\left(4 t K_{1}{ }^{2}-x-k_{1}\right)} K_{1}\right.$
$-K_{1} \mathrm{e}^{2} K_{1} x-8 K_{1}{ }^{3} t+2 K_{1} k_{1}+2 K_{2} x-8 K_{2}{ }^{3} t+2 K_{2} k_{2}+\mathrm{e}^{2 K_{1} x-8 K_{1}{ }^{3} t+2 K_{1} k_{1}+2 K_{2} x-8 K_{2}{ }^{3} t+2 K_{2} k_{2}} K_{2}-$
$\left.K_{2}-\mathrm{e}^{-2 K_{2}\left(4 t K_{2}{ }^{2}-x-k_{2}\right)} K_{2}+\mathrm{e}^{-2 K_{1}\left(4 t K_{1}{ }^{2}-x-k_{1}\right)} K_{2}\right)^{2}$
is a solution to the $K d V$ equation (1)

Figure 2. Solution of order 1 to $K d V$, on the left for $K_{1}=0,5, K_{2}=0$, $k_{1}=0,5, k_{2}=0$; in the center for $K_{1}=0, K_{2}=0,5, k_{1}=0, k_{2}=0,5$; on the right for $K_{1}=1, K_{2}=0, k_{1}=1, k_{2}=0$.

We could go on for greater orders, but even in the simple case of order 3, the explicit expression of the solution to the KdV equation takes more than 5 pages. For this reason, we cannot give it here.

3 Rational solutions to the KdV equation

Using Riemanns theta functions, the solutions to the KdV equation were constructed in terms of Fredholm and wronskiens determinants. By degenerating these solutions, we obtain rational solutions that are simpler and more suitable for use in physics. The simplest possible solutions for small orders have been built.
To obtain rational solutions to the KdV equation, we choose $K(j)$ and k_{j} as
functions of e for each integer j and we perform a limit when the parameter e tends to 0 .

3.1 Rational solutions as a limit case

We get the following result :
Theorem 3.1 Let \tilde{D} be the matrix defined by

$$
\begin{equation*}
\tilde{d}_{j k}=(-1)^{j} \exp \left[2\left(-4 \tilde{\kappa}_{j}^{3} t+\tilde{\kappa}_{j} \tilde{k}_{j}\right)\right] \prod_{l \neq j}\left|\frac{\tilde{\kappa}_{l}+\tilde{\kappa}_{k}}{\tilde{\kappa}_{l}-\tilde{\kappa}_{j}}\right|, \tag{9}
\end{equation*}
$$

then the function u defined by

$$
\begin{equation*}
u(x, t)=-2 \lim _{e \rightarrow 0} \partial_{x}^{2} \ln (\operatorname{det}(I+\tilde{D})) \tag{10}
\end{equation*}
$$

is a rational solution to the $K d V$ equation (1)

$$
\begin{equation*}
u_{t}=6 u u_{x}-u_{x x x} \tag{11}
\end{equation*}
$$

So a hierarchy of rational solutions to the KdV equation depending on the integer N is obtained.
In the following we give some examples of rational solutions.

3.2 First order rational solutions

We replace K_{1} by $K_{1} e$ and choose k_{1} independent of e. We have the following result at order $N=1$:

Proposition 3.1 The function u defined by

$$
\begin{equation*}
u(x)=\frac{2}{x^{2}+2 k_{1} x+k_{1}^{2}} \tag{12}
\end{equation*}
$$

is a solution to the $K d V$ equation (1).

Figure 3. Rational solution of order 1 to KdV , on the left for $k_{1}=1$; in the center for $k_{1}=10$; on the right for $k_{1}=-10$.

3.3 Second order rational solutions

Here we replace K_{j} by $K_{j} e$ and k_{j} by $k_{j} e^{2}$. Then we get:
Proposition 3.2 The function u defined by

$$
\begin{equation*}
u(x)=\frac{n_{u}(x, t)}{d_{u}(x, t)} \tag{13}
\end{equation*}
$$

with
$n_{u}(x, t)=-6 x\left(24 K_{1}{ }^{4} t-6 K_{1}{ }^{2} k_{1}-48 K_{2}{ }^{2} K_{1}{ }^{2} t+6 K_{2}{ }^{2} k_{1}+24 K_{2}{ }^{4} t-6 K_{2}{ }^{2} k_{2}+\right.$ $\left.6 K_{1}{ }^{2} k_{2}-K_{1}{ }^{4} x^{3}+2 K_{2}{ }^{2} K_{1}{ }^{2} x^{3}-K_{2}{ }^{4} x^{3}\right)$
and
$d_{u}(x, t)=72 K_{1}{ }^{2} t k_{2}-48 K_{2}{ }^{2} K_{1}{ }^{2} t x^{3}-6 K_{1}{ }^{2} k_{1} x^{3}+72 K_{2}{ }^{2} k_{1} t-18 k_{1} k_{2}+6 K_{2}{ }^{2} k_{1} x^{3}+$ $6 K_{1}{ }^{2} x^{3} k_{2}-72 K_{2}{ }^{2} t k_{2}+24 K_{2}{ }^{4} t x^{3}-6 K_{2}{ }^{2} k_{2} x^{3}-72 K_{1}{ }^{2} t k_{1}+24 K_{1}{ }^{4} t x^{3}-$ $288 K_{2}{ }^{2} K_{1}{ }^{2} t^{2}+144 K_{1}{ }^{4} t^{2}+9{k_{1}}^{2}+K_{1}{ }^{4} x^{6}-2 K_{2}{ }^{2} K_{1}{ }^{2} x^{6}+144 K_{2}{ }^{4} t^{2}+9 k_{2}{ }^{2}+$ $K_{2}{ }^{4} x^{6}$
is a solution to the KdV equation (1).

The structure of the solutions being very insensitive to the coefficients K, we choose to take $K_{j}=j$ in all the following figures.

Figure 4. Rational solution of order 1 to KdV , on the left for $k_{1}=0, k_{2}=0$; in the center for $k_{1}=10, k_{2}=10$; on the right for $k_{1}=100, k_{2}=100$.

3.4 Rational solutions of order three

We replace K_{j} by $K_{j} e$ and k_{j} by $k_{j} e$. Then we get the following rational solutions given by :

Proposition 3.3 The function u defined by

$$
u(x)=\frac{n_{u}(x, t)}{d_{u}(x, t)},
$$

with
$n_{u}(x, t)=-6 x\left(24 K_{1}{ }^{4} t-6 K_{1}{ }^{2} k_{1}-48 K_{2}{ }^{2} K_{1}{ }^{2} t+6 K_{2}{ }^{2} k_{1}+24 K_{2}{ }^{4} t-6 K_{2}{ }^{2} k_{2}+\right.$ $\left.6 K_{1}{ }^{2} k_{2}-K_{1}{ }^{4} x^{3}+2 K_{2}{ }^{2} K_{1}{ }^{2} x^{3}-K_{2}{ }^{4} x^{3}\right)$
and
$d_{u}(x, t)=72 K_{1}{ }^{2} t k_{2}-48 K_{2}^{2} K_{1}{ }^{2} t x^{3}-6 K_{1}{ }^{2} k_{1} x^{3}+72 K_{2}{ }^{2} k_{1} t-18 k_{1} k_{2}+6 K_{2}{ }^{2} k_{1} x^{3}+$ $6 K_{1}{ }^{2} x^{3} k_{2}-72 K_{2}{ }^{2} t k_{2}+24 K_{2}{ }^{4} t x^{3}-6 K_{2}{ }^{2} k_{2} x^{3}-72 K_{1}{ }^{2} t k_{1}+24 K_{1}{ }^{4} t x^{3}-$ $288 K_{2}{ }^{2} K_{1}{ }^{2} t^{2}+144 K_{1}{ }^{4} t^{2}+9 k_{1}{ }^{2}+K_{1}{ }^{4} x^{6}-2 K_{2}{ }^{2} K_{1}{ }^{2} x^{6}+144 K_{2}{ }^{4} t^{2}+9 k_{2}{ }^{2}+$ $K_{2}{ }^{4} x^{6}$
is a solution to the $K d V$ equation (1).

In this case the solution has the following structure: the numerator is polynomial of degree 0 in $x, 0$ in t; the denominator is polynomial of degree 2 in $x, 0$ in t.

The shape of the solutions depending very little on the K coefficients, we choose to take $K_{j}=j$ in all these following figures.

Figure 5. Rational solution of order 1 to KdV , on the left for $k_{1}=0, k_{2}=2$, $k_{3}=3$; in the center for $k_{1}=1, k_{2}=0, k_{3}=3$; on the right for $k_{1}=10$,

$$
k_{2}=20, k_{3}=30 .
$$

3.5 Quasi rational solutions of order four

We replace K_{j} by $K_{j} e$ and l_{j} by $l_{j} e^{2}$. We get the following rational solutions given by :

Proposition 3.4 The function u defined by

$$
u(x)=\frac{n_{u}(x, t)}{d_{u}(x, t)},
$$

```
with
\(n_{u}(x, t)=-6\left(K_{1}{ }^{4} K_{2}{ }^{2} k_{3}-K_{1}{ }^{4} K_{2}{ }^{2} k_{4}-K_{1}{ }^{4} K_{3}{ }^{2} k_{2}+K_{1}{ }^{4} K_{3}{ }^{2} k_{4}+K_{1}{ }^{4} K_{4}{ }^{2} k_{2}-\right.\)
\(K_{1}{ }^{4} K_{4}{ }^{2} k_{3}-K_{1}{ }^{2} K_{2}{ }^{4} k_{3}+K_{1}{ }^{2} K_{2}{ }^{4} k_{4}+K_{1}{ }^{2} K_{3}{ }^{4} k_{2}-K_{1}{ }^{2} K_{3}{ }^{4} k_{4}-K_{1}{ }^{2} K_{4}{ }^{4} k_{2}+\)
\(K_{1}{ }^{2} K_{4}{ }^{4} k_{3}+K_{2}{ }^{4} K_{3}{ }^{2} k_{1}-K_{2}{ }^{4} K_{3}{ }^{2} k_{4}-K_{2}{ }^{4} K_{4}{ }^{2} k_{1}+K_{2}{ }^{4} K_{4}{ }^{2} k_{3}-K_{2}{ }^{2} K_{3}{ }^{4} k_{1}+\)
\(K_{2}{ }^{2} K_{3}{ }^{4} k_{4}+K_{2}{ }^{2} K_{4}{ }^{4} k_{1}-K_{2}{ }^{2} K_{4}{ }^{4} k_{3}+K_{3}{ }^{4} K_{4}{ }^{2} k_{1}-K_{3}{ }^{4} K_{4}{ }^{2} k_{2}-K_{4}{ }^{4} K_{3}{ }^{2} k_{1}+\)
\(\left.K_{4}{ }^{4} K_{3}{ }^{2} k_{2}\right) x\left(-x^{3} K_{1}{ }^{4} K_{2}{ }^{2} k_{3}+x^{3} K_{1}{ }^{4} K_{2}{ }^{2} k_{4}+x^{3} K_{1}{ }^{4} K_{3}{ }^{2} k_{2}-x^{3} K_{1}{ }^{4} K_{3}{ }^{2} k_{4}-x^{3} K_{1}{ }^{4} K_{4}{ }^{2} k_{2}+\right.\)
\(x^{3} K_{1}{ }^{4} K_{4}{ }^{2} k_{3}+x^{3} K_{1}{ }^{2} K_{2}{ }^{4} k_{3}-x^{3} K_{1}{ }^{2} K_{2}{ }^{4} k_{4}-x^{3} K_{1}{ }^{2} K_{3}{ }^{4} k_{2}+x^{3} K_{1}{ }^{2} K_{3}{ }^{4} k_{4}+\)
\(x^{3} K_{1}{ }^{2} K_{4}{ }^{4} k_{2}-x^{3} K_{1}{ }^{2} K_{4}{ }^{4} k_{3}-x^{3} K_{2}{ }^{4} K_{3}{ }^{2} k_{1}+x^{3} K_{2}{ }^{4} K_{3}{ }^{2} k_{4}+x^{3} K_{2}{ }^{4} K_{4}{ }^{2} k_{1}-\)
\(x^{3} K_{2}{ }^{4} K_{4}{ }^{2} k_{3}+x^{3} K_{2}{ }^{2} K_{3}{ }^{4} k_{1}-x^{3} K_{2}{ }^{2} K_{3}{ }^{4} k_{4}-x^{3} K_{2}{ }^{2} K_{4}{ }^{4} k_{1}+x^{3} K_{2}{ }^{2} K_{4}{ }^{4} k_{3}-\)
\(x^{3} K_{4}{ }^{2} K_{3}{ }^{4} k_{1}+x^{3} K_{4}{ }^{2} K_{3}{ }^{4} k_{2}+x^{3} K_{4}{ }^{4} K_{3}{ }^{2} k_{1}-x^{3} K_{4}{ }^{4} K_{3}{ }^{2} k_{2}+24 t K_{1}{ }^{4} K_{2}{ }^{2} k_{3}-\)
\(24 t K_{1}{ }^{4} K_{2}{ }^{2} k_{4}-24 t K_{1}{ }^{4} K_{3}{ }^{2} k_{2}+24 t K_{1}{ }^{4} K_{3}{ }^{2} k_{4}+24 t K_{1}{ }^{4} K_{4}{ }^{2} k_{2}-24 t K_{1}{ }^{4} K_{4}{ }^{2} k_{3}-\)
\(24 K_{1}{ }^{2} t K_{2}{ }^{4} k_{3}+24 K_{1}{ }^{2} t K_{2}{ }^{4} k_{4}+24 K_{1}{ }^{2} t K_{3}{ }^{4} k_{2}-24 K_{1}{ }^{2} t K_{3}{ }^{4} k_{4}-24 K_{1}{ }^{2} t K_{4}{ }^{4} k_{2}+\)
\(24 K_{1}{ }^{2} t K_{4}{ }^{4} k_{3}+24 K_{2}{ }^{4} t K_{3}{ }^{2} k_{1}-24 t K_{2}{ }^{4} K_{3}{ }^{2} k_{4}-24 K_{2}{ }^{4} t K_{4}{ }^{2} k_{1}+24 t K_{2}{ }^{4} K_{4}{ }^{2} k_{3}-\)
\(24 t K_{2}{ }^{2} K_{3}{ }^{4} k_{1}+24 K_{2}{ }^{2} t K_{3}{ }^{4} k_{4}+24 t K_{2}{ }^{2} K_{4}{ }^{4} k_{1}-24 K_{2}{ }^{2} t K_{4}{ }^{4} k_{3}+24 K_{3}{ }^{4} t K_{4}{ }^{2} k_{1}-\)
\(24 K_{3}{ }^{4} t K_{4}{ }^{2} k_{2}-24 t K_{4}{ }^{4} K_{3}{ }^{2} k_{1}+24 t K_{4}{ }^{4} K_{3}{ }^{2} k_{2}-6 K_{1}{ }^{2} K_{2}{ }^{2} k_{1} k_{3}+6 K_{1}{ }^{2} K_{2}{ }^{2} k_{1} k_{4}+\)
\(6 K_{1}{ }^{2} K_{2}{ }^{2} k_{3} k_{2}-6 K_{1}{ }^{2} K_{2}{ }^{2} k_{4} k_{2}+6 K_{1}{ }^{2} K_{3}{ }^{2} k_{2} k_{1}-6 K_{1}{ }^{2} K_{3}{ }^{2} k_{1} k_{4}-6 K_{1}{ }^{2} K_{3}{ }^{2} k_{3} k_{2}+\)
\(6 K_{1}{ }^{2} K_{3}{ }^{2} k_{3} k_{4}-6 K_{1}{ }^{2} K_{4}{ }^{2} k_{2} k_{1}+6 K_{1}{ }^{2} K_{4}{ }^{2} k_{1} k_{3}+6 K_{1}{ }^{2} K_{4}{ }^{2} k_{4} k_{2}-6 K_{1}{ }^{2} K_{4}{ }^{2} k_{3} k_{4}-\)
\(6 K_{2}{ }^{2} K_{3}{ }^{2} k_{2} k_{1}+6 K_{2}{ }^{2} K_{3}{ }^{2} k_{1} k_{3}+6 K_{2}{ }^{2} K_{3}{ }^{2} k_{4} k_{2}-6 K_{2}{ }^{2} K_{3}{ }^{2} k_{3} k_{4}+6 K_{2}{ }^{2} K_{4}{ }^{2} k_{2} k_{1}-\)
\(6 K_{2}{ }^{2} K_{4}{ }^{2} k_{1} k_{4}-6 K_{2}{ }^{2} K_{4}{ }^{2} k_{3} k_{2}+6 K_{2}{ }^{2} K_{4}{ }^{2} k_{3} k_{4}-6 K_{3}{ }^{2} K_{4}{ }^{2} k_{1} k_{3}+6 K_{3}{ }^{2} K_{4}{ }^{2} k_{1} k_{4}+\)
\(\left.6 K_{3}{ }^{2} K_{4}{ }^{2} k_{2} k_{3}-6 K_{3}{ }^{2} K_{4}{ }^{2} k_{2} k_{4}\right)\)
\(d_{u}(x, t)=\left(x^{3} K_{1}{ }^{4} K_{2}{ }^{2} k_{3}-x^{3} K_{1}^{4} K_{2}{ }^{2} k_{4}-x^{3} K_{1}{ }^{4} K_{3}{ }^{2} k_{2}+x^{3} K_{1}{ }^{4} K_{3}{ }^{2} k_{4}+x^{3} K_{1}^{4} K_{4}{ }^{2} k_{2}-\right.\)
\(x^{3} K_{1}{ }^{4} K_{4}{ }^{2} k_{3}-x^{3} K_{1}{ }^{2} K_{2}{ }^{4} k_{3}+x^{3} K_{1}{ }^{2} K_{2}{ }^{4} k_{4}+x^{3} K_{1}{ }^{2} K_{3}{ }^{4} k_{2}-x^{3} K_{1}{ }^{2} K_{3}{ }^{4} k_{4}-\)
\(x^{3} K_{1}{ }^{2} K_{4}{ }^{4} k_{2}+x^{3} K_{1}{ }^{2} K_{4}{ }^{4} k_{3}+x^{3} K_{2}{ }^{4} K_{3}{ }^{2} k_{1}-x^{3} K_{2}{ }^{4} K_{3}{ }^{2} k_{4}-x^{3} K_{2}{ }^{4} K_{4}{ }^{2} k_{1}+\)
\(x^{3} K_{2}{ }^{4} K_{4}{ }^{2} k_{3}-x^{3} K_{2}{ }^{2} K_{3}{ }^{4} k_{1}+x^{3} K_{2}{ }^{2} K_{3}{ }^{4} k_{4}+x^{3} K_{2}{ }^{2} K_{4}{ }^{4} k_{1}-x^{3} K_{2}{ }^{2} K_{4}{ }^{4} k_{3}+\)
\(x^{3} K_{4}{ }^{2} K_{3}{ }^{4} k_{1}-x^{3} K_{4}{ }^{2} K_{3}{ }^{4} k_{2}-x^{3} K_{4}{ }^{4} K_{3}{ }^{2} k_{1}+x^{3} K_{4}{ }^{4} K_{3}{ }^{2} k_{2}+12 t K_{1}{ }^{4} K_{2}{ }^{2} k_{3}-\)
\(12 t K_{1}{ }^{4} K_{2}{ }^{2} k_{4}-12 t K_{1}{ }^{4} K_{3}{ }^{2} k_{2}+12 t K_{1}{ }^{4} K_{3}{ }^{2} k_{4}+12 t K_{1}{ }^{4} K_{4}{ }^{2} k_{2}-12 t K_{1}{ }^{4} K_{4}{ }^{2} k_{3}-\)
\(12 K_{1}{ }^{2} t K_{2}{ }^{4} k_{3}+12 K_{1}{ }^{2} t K_{2}{ }^{4} k_{4}+12 K_{1}{ }^{2} t K_{3}{ }^{4} k_{2}-12 K_{1}{ }^{2} t K_{3}{ }^{4} k_{4}-12 K_{1}{ }^{2} t K_{4}{ }^{4} k_{2}+\)
\(12 K_{1}{ }^{2} t K_{4}{ }^{4} k_{3}+12 K_{2}{ }^{4} t K_{3}{ }^{2} k_{1}-12 t K_{2}{ }^{4} K_{3}{ }^{2} k_{4}-12 K_{2}{ }^{4} t K_{4}{ }^{2} k_{1}+12 t K_{2}{ }^{4} K_{4}{ }^{2} k_{3}-\)
\(12 t K_{2}{ }^{2} K_{3}{ }^{4} k_{1}+12 K_{2}{ }^{2} t K_{3}{ }^{4} k_{4}+12 t K_{2}{ }^{2} K_{4}{ }^{4} k_{1}-12 K_{2}{ }^{2} t K_{4}{ }^{4} k_{3}+12 K_{3}{ }^{4} t K_{4}{ }^{2} k_{1}-\)
\(12 K_{3}{ }^{4} t K_{4}{ }^{2} k_{2}-12 t K_{4}{ }^{4} K_{3}{ }^{2} k_{1}+12 t K_{4}{ }^{4} K_{3}{ }^{2} k_{2}-3 K_{1}{ }^{2} K_{2}{ }^{2} k_{1} k_{3}+3 K_{1}{ }^{2} K_{2}{ }^{2} k_{1} k_{4}+\)
\(3 K_{1}{ }^{2} K_{2}{ }^{2} k_{3} k_{2}-3 K_{1}{ }^{2} K_{2}{ }^{2} k_{4} k_{2}+3 K_{1}{ }^{2} K_{3}{ }^{2} k_{2} k_{1}-3 K_{1}{ }^{2} K_{3}{ }^{2} k_{1} k_{4}-3 K_{1}{ }^{2} K_{3}{ }^{2} k_{3} k_{2}+\)
\(3 K_{1}{ }^{2} K_{3}{ }^{2} k_{3} k_{4}-3 K_{1}{ }^{2} K_{4}{ }^{2} k_{2} k_{1}+3 K_{1}{ }^{2} K_{4}{ }^{2} k_{1} k_{3}+3 K_{1}{ }^{2} K_{4}{ }^{2} k_{4} k_{2}-3 K_{1}{ }^{2} K_{4}{ }^{2} k_{3} k_{4}-\)
\(3 K_{2}{ }^{2} K_{3}{ }^{2} k_{2} k_{1}+3 K_{2}{ }^{2} K_{3}{ }^{2} k_{1} k_{3}+3 K_{2}{ }^{2} K_{3}{ }^{2} k_{4} k_{2}-3 K_{2}{ }^{2} K_{3}{ }^{2} k_{3} k_{4}+3 K_{2}{ }^{2} K_{4}{ }^{2} k_{2} k_{1}-\)
\(3 K_{2}{ }^{2} K_{4}{ }^{2} k_{1} k_{4}-3 K_{2}{ }^{2} K_{4}{ }^{2} k_{3} k_{2}+3 K_{2}{ }^{2} K_{4}{ }^{2} k_{3} k_{4}-3 K_{3}{ }^{2} K_{4}{ }^{2} k_{1} k_{3}+3 K_{3}{ }^{2} K_{4}{ }^{2} k_{1} k_{4}+\)
\(\left.3 K_{3}{ }^{2} K_{4}{ }^{2} k_{2} k_{3}-3 K_{3}{ }^{2} K_{4}{ }^{2} k_{2} k_{4}\right)^{2}\)
is a solution to the \(K d V\) equation (1).
```

In this case, the solution to the $K d V$ equation has the following structure : the numerator is a polynomial of degree 4 in $x, 1$ in t; the denominator is a polynomial of degree 6 in $x, 2$ in t; the solution depends on six arbitrary parameters k_{j} and K_{j} for $1 \leq j \leq 3$.

The structure of the solutions depending very little on the K coefficients, we choose to take $K_{j}=j$ in all the following figures.

Figure 6. Rational solution of order 1 to KdV , on the left for $k_{1}=0, k_{2}=2$, $k_{3}=3, k_{4}=4$; in the center for $k_{1}=10, k_{2}=0, k_{3}=0, k_{4}=0$; on the right for $k_{1}=10, k_{2}=0, k_{3}=30, k_{4}=0$.

These simple solutions could be used in various fields, including in particular physics. These solutions are singular. These solutions are new and different from the previous ones built by the author [5, 60, 68]. For example, in this paper, in the case of order 3 , the denominator of the solution is a polynomial od degree 6 in x and 2 in t; in [5], the denominator of the solution of order 3 is a polynomial of degree 12 in $x, 4$ in t; in [60], the denominator of the solution of order 3 is a polynomial of degree 12 in $x, 4$ in t different from this of [5]; in [68], the denominator of the solution of order 3 is a polynomial of degree 12 in $x, 4$ in t different from the previous ones.
The structure of the solutions obtained for this equation is completely different from that obtained for the NLS equation [68].
I must mention the article [74] in connection with my research which deals with equations such as the KdV equation and the representation of solutions as sum of solitons, and also the relationship of these solutions with Riemann's theta functions in particular.

4 Conclusion

From the degenerate θ solutions to the KdV equation expressed in terms of Fredholm determinants or wronskians, we succeeded to get rational solutions to the KdV equation. So we obtain an infinite hierarchy of multi-parametric families of rational solutions to the KdV equation as a quotient of a polynomials depending on real parameters.
The quasi-rational solutions to the KdV equation were obtained by the passage to the limit when one of the parameters tends towards zero. These solutions are not obtained uniformly as in the construction of the solutions for example to the non-linear Schrödinger equation [4]. In the quasi-rational solutions constructed, the parameters were chosen in such a way as to obtain quasi-rational solutions
of maximum degree in x and in t. It would be relevant to continue this work for higher orders and to study the structure of polynomials defining these solutions.

References

[1] H. Airault, H.P. McKean, J. Moser, Rational and elliptic solutions of the KdV equation and a related many-body problem, Comm. Pure and Appl. Math., V. XXX, 2, 95-148, 1977
[2] E.D. Belokolos, A.I. Bobenko, A.R. Its, V.Z. Enolskij and V.B. Matveev, Algebro-geometric approach to nonlinear integrable equations, Springer series in nonlinear dynamics, Springer Verlag, 1-360, 1994.
[3] N. C Freeman, J.J.C. Nimmo Rational solutions of the KdV equation in wronskian form, Phys. Letters, V. 96 A, N. 9, 443-446, 1983
[4] P. Gaillard, Towards a classification of the quasi rational solutions to the NLS equation, Theor. and Math. Phys., V. 189, N. 1, 14401449, 2016
[5] P. Gaillard, Degenerate Riemann theta functions, Fredholm and wronskian representations of the solutions to the KdV equation and the degenerate rational case, Jour. Of Geom. And Phys., V. 161, 104059-1-12, 2021
[6] C. S. Gardner, J. M. Green, M. D. Kruskall, R. M Miura, Method for solving the Korteweg-de Vries equation, Phys. Rev. Let., V. 19, N. 19, 1095-1097, 1967
[7] R. Hirota, Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons, Phys. Rev. Let., V. 27, N. 18, 1192-1194, 1971
[8] A.R. Its, V.B. Matveev, Hill's operator with finitely many gaps, Funct. Anal. and Appl., V. 9, 69-70, 1975
[9] M. Jaworski, J. Zagrodzinski, Positon and positon-like solution of the Korteweg-de Vries and Sine-Gordon equations, Chaos Solitons Fractals, V. 5, N. 12, 2229-2233, 1995.
[10] D.J .Korteweg, G. de Vries, On the change of form of long wawes adwancing in a rectangular canal, and on a new type of long stationary waves, Phil. Mag., V. 39, 442-443, 1895
[11] M. Kovalyov, M.H Ali Abadi, An explicit formula for a class of solutions of KdV equation, University of Alberta, Canada, 1997.
[12] W.X. Ma, Y. You, Solving the KdV equation by its bilinear form wronskian solutions, Trans. Of The A. M. S., V. 357, N. 5, 1753-1778, 2004
[13] C. Rasinariu, U. Sukhatme, A. Khare, Negaton and positon solutions of the KdV and the mKdV hierarchy, J. Phys. A, V. 29, 1803-1823, London, 1996.
[14] P. Gaillard, V.B. Matveev, Wronskian addition formula and its applications, Max-Planck-Institut für Mathematik, MPI 02-31, V. 161, 2002
[15] P. Gaillard, A new family of deformations of Darboux-Pöschl-Teller potentials, Lett. Math. Phys., V. 68, 77-90, 2004
[16] P. Gaillard, V.B. Matveev, New formulas for the eigenfunctions of the two-particle Calogero-Moser system, Lett. Math. Phys., V. 89, 1-12, 2009
[17] P. Gaillard, V.B. Matveev, Wronskian and Casorai determinant representations for Darboux-Pöschl-Teller potentials and their difference extensions, J. Phys A : Math. Theor., V. 42, 404409-1-16, 2009
[18] P. Dubard, P. Gaillard, C. Klein, V. B. Matveev, On multi-rogue wave solutions of the NLS equation and positon solutions of the KdV equation, Eur. Phys. J. Spe. Top., V. 185, 247-258, 2010
[19] P. Gaillard, Families of quasi-rational solutions of the NLS equation and multi-rogue waves, J. Phys. A : Meth. Theor., V. 44, 435204-1-15, 2011
[20] P. Gaillard, Wronskian representation of solutions of the NLS equation and higher Peregrine breathers, J. Math. Sciences : Adv. Appl., V. 13, N. 2, 71-153, 2012
[21] P. Gaillard, Degenerate determinant representation of solution of the NLS equation, higher Peregrine breathers and multi-rogue waves, J. Math. Phys., V. 54, 013504-1-32, 2013
[22] P. Gaillard, Wronskian representation of solutions of NLS equation and seventh order rogue waves, J. Mod. Phys., V. 4, N. 4, 246-266, 2013
[23] P. Gaillard, V.B. Matveev, Wronskian addition formula and Darboux-Pöschl-Teller potentials, J. Math., V. 2013, ID 645752, 1-10, 2013
[24] P. Gaillard, Two-parameters determinant representation of seventh order rogue waves solutions of the NLS equation, J. Theor. Appl. Phys., V. 7, N. 45, 1-6, 2013
[25] P. Gaillard, Deformations of third order Peregrine breather solutions of the NLS equation with four parameters, Phys. Rev. E, V. 88, 042903-1-9, 2013
[26] P. Gaillard, Two parameters deformations of ninth Peregrine breather solution of the NLS equation and multi rogue waves, J. Math., V. 2013, 1-111, 2013
[27] P. Gaillard, Six-parameters deformations of fourth order Peregrine breather solutions of the NLS equation, J. Math. Phys., V. 54, 073519-1-22, 2013
[28] P. Gaillard, The fifth order Peregrine breather and its eight-parameters deformations solutions of the NLS equation, Commun. Theor. Phys., V. 61, 365-369, 2014
[29] P. Gaillard, Ten parameters deformations of the sixth order Peregrine breather solutions of the NLS equation, Phys. Scripta, V. 89, 015004-1-7, 2014
[30] P. Gaillard, Higher order Peregrine breathers, their deformations and multirogue waves, J. Of Phys. : Conf. Ser., V. 482, 012016-1-7, 2014
[31] P. Gaillard, M. Gastineau, Eighteen parameter deformations of the Peregrine breather of order ten solutions of the NLS equation, Int. J. Mod. Phys. C, V. 26, N. 2, 1550016-1-14, 2014
[32] P. Gaillard, Two parameters wronskian representation of solutions of nonlinear Schrödinger equation, eight Peregrine breather and multi-rogue waves, J. Math. Phys., V. 5, 093506-1-12, 2014
[33] P. Gaillard, Hierarchy of solutions to the NLS equation and multi-rogue waves, J. Phys. : Conf. Ser., V. 574, 012031-1-5, 2015
[34] P. Gaillard, Tenth Peregrine breather solution of the NLS, Ann. Phys., V. 355, 293-298, 2015
[35] P. Gaillard, M. Gastineau, The Peregrine breather of order nine and its deformations with sixteen parameters solutions of the NLS equation Phys. Lett. A, V. 379, 1309-1313, 2015
[36] P. Gaillard, Other 2N-2 parameters solutions to the NLS equation and $2 \mathrm{~N}+1$ highest amplitude of the modulus of the N -th order AP breather, J. Phys. A: Math. Theor., V. 48, 145203-1-23, 2015
[37] P. Gaillard, Multi-parametric deformations of the Peregrine breather of order N solutions to the NLS equation and multi-rogue waves, Adv. Res., V. 4, N. 5, 346-364, 2015
[38] P. Gaillard, Higher order Peregrine breathers solutions to the NLS equation, Jour. Phys. : Conf. Ser., V. 633, 012106-1-6, 2016
[39] P. Gaillard, M. Gastineau Patterns of deformations of Peregrine breather of order 3 and 4 , solutions to the NLS equation with multi-parameters, Journal of Theoretical and Applied Physics, V. 10,1-7, 2016
[40] P. Gaillard, M. Gastineau Twenty parameters families of solutions to the NLS equation and the eleventh Peregrine breather, Commun. Theor. Phys, V. 65, N. 2, 136-144, 2016
[41] P. Gaillard, Rational solutions to the KPI equation and multi rogue waves, Annals Of Physics, V. 367, 1-5, 2016
[42] P. Gaillard, M. Gastineau Twenty two parameters deformations of the twelfth Peregrine breather solutions to the NLS equation, Adv. Res., V. 10, 83-89, 2016
[43] P. Gaillard, Fredholm and Wronskian representations of solutions to the KPI equation and multi-rogue waves, Jour. of Math. Phys., V. 57, 063505-1-13, doi: 10.1063/1.4953383, 2016
[44] P. Gaillard, M. Gastineau Families of deformations of the thirteenth Peregrine breather solutions to the NLS equation depending on twenty four parameters, Jour. Of Bas. And Appl. Res. Int., V. 21, N. 3, 130-139, 2017
[45] P. Gaillard, From Fredholm and Wronskian representations to rational solutions to the KPI equation depending on $2 N 2$ parameters, Int. Jour. of Appl. Sci. And Math., V. 4, N. 3, 60-70, 2017
[46] P. Gaillard, Families of rational solutions of order 5 to the KPI equation depending on 8 parameters, New Hor. in Math. Phys., V. 1, N. 1, 26-31, 2017
[47] P. Gaillard, 6-th order rational solutions to the KPI Equation depending on 10 parameters, Jour. Of Bas. And Appl. Res. Int., V. 21, N. 2, 92-98, 2017
[48] P. Gaillard, N-Order rational solutions to the Johnson equation depending on $2 N-2$ parameters, Int. Jour. of Adv. Res. in Phys. Sci., V. 4, N. 9, 19-37, 2017
[49] P. Gaillard, Families of rational solutions to the KPI equation of order 7 depending on 12 parameters, Int. Jour. of Adv. Res. in Phys. Sci., V. 4, N. 11, 24-30, 2017
[50] P. Gaillard, Rational solutions to the Johnson equation and rogue waves, Int. Jour. of Inn. In Sci. and Math., V. 6, N. 1, 14-19, 2018
[51] P. Gaillard, Multiparametric families of solutions of the KPI equation, the structure of their rational representations and multi-rogue waves, Theo. And Mat. Phys., V. 196, N. 2, 1174-1199, 2018
[52] P. Gaillard, The Johnson equation, Fredholm and wronskian representations of solutions and the case of order three, Adv. In Math. Phys., V. 2018, 1-18, 2018
[53] P. Gaillard, Families of Solutions of Order 5 to the Johnson Equation Depending on 8 Parameters, NHIMP, V. 2, N. 4, 53-61, 2018
[54] P. Gaillard, Multiparametric families of solutions to the Johnson equation, J. Phys. : Conf. Series, V. 1141, 012102-1-10, 2018
[55] P. Gaillard, Rational solutions to the Boussinesq equation, Fund. Jour. Of Math. And Appl., V., 109-112, 2019
[56] P. Gaillard, Differential relations for the solutions to the NLS equation and their different representations, Comm. In Adv. Math. Sci., V. 2, N. 4, 1-4, 2019
[57] P. Gaillard, Multi-parametric families of solutions of order N to the Boussinesq and KP equations and the degenerate rational case, UJMA, V. 3, N. 2, 44-52, 2020
[58] P. Gaillard, The mKdV equation and multi-parameters rational solutions, Wave Motion, V. 100, 102667-1-9, 2021
[59] P. Gaillard, 2N parameter solutions to the Burgers equation, Jour. Of Appl. Nonlin. Dyn., V. 1, N. 1, 1-6, 2021
[60] P. Gaillard, Multi-Parametric rational Solutions to the KdV equation, Asi. Jour. Of Res. and Rev. In Phys., V. 3, N. 3, 14-21, 2021
[61] P. Gaillard, Multiparametric solutions to the Gardner equation and the degenerate rational case, Jour. Of Appl. Ana. And Appl., V. 11, N. 4, 2102-2113, 2021
[62] P. Gaillard, Other families of rational solutions to the KPI equation, Asi. Res. Jour Of Math., V. 17, N. 6, 27-34, 2021
[63] P. Gaillard, Rational solutions to the mKdV equation associated to particular polynomials, Wave Motion, V. 107, 102824-1-11, 2021
[64] P. Gaillard, Multiparametric Rational Solutions of Order N to the KPI Equation and the Explicit Case of Order 3, Arch. Of cur. Res. Int., V. 21, N. 6, 58-71, 2021
[65] P. Gaillard, Rational solutions to the KPI equation from particular polynomials, Wave Motion, V. 108, 102828-1-9, 2022
[66] P. Gaillard, Rogue Waves of the Lakshmanan Porsezian Daniel Equation Depending on Multi-parameters, As. Jour. Of Adv. Res. And Rep., V 16, N. 3, 32-40, 2022
[67] P. Gaillard, Quasi-rational and rational solutions to the defocusing NLS equation, Jour. Of Math. Sci. And Mod. Res. And Rep., V 5, N. 1, 24-34, 2022
[68] P. Gaillard, Rational solutions to the KdV equation in terms of particular polynomials, Jour. Of Nonlin. Mod. and Ana., V. 4, N. 4, 615-626, 2022
[69] P. Gaillard, Rational solutions to the Painlev II equation from particular polynomials, Int. J. Of Appl. Nonlin. Sci., V. 3, N. 3, 189-196, 2022
[70] P. Gaillard, Multi-lump solutions to the KPI equation with a zero degree of derivation, Jour. Of Theor. And Appl. Phys., V. 16, N. 4, 1-8, 2022
[71] P. Gaillard, Families of solutions to the KPI equation given by an extended Darboux transformation, Part. Diff. Equ. And Appl., V. 3, N. 80, 1-14, 2022
[72] P. Gaillard, Rogue waves of the Hirota equation in terms of quasi-rational solutions depending on multi-parameters, WSEAS Trans. On Math., DOI: 10.37394/23206.2023.22.24, V. 22, 190-203, 2023
[73] P. Gaillard, Different representations of the solutions to the cylindrical nonlinear schrödinger equation, Dis. Nonlin. And Compl., V. 12, N. 3, 539-553, 2023
[74] G.B. Whitham, Comments on periodic waves and solitons, Jour. Of Appl. Math., V. 32, 353-366, 1984

