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Rational solutions to the KdV are constructed from the finite gap solutions of the KdV equation given in terms of abelian functions. For this we use a previous result giving the connection between Riemann theta functions and Fredholm determinants and also wronskians. By choosing the parameters of these solutions according to a number intended to move towards zero, we obtain rational solutions when this number tends towards zero. So, we construct a hierarchy of rational solutions depending on multi real parameters and we give explicitly expressions for the first orders.

Introduction

Korteweg and de Vries [START_REF] Korteweg | On the change of form of long wawes adwancing in a rectangular canal, and on a new type of long stationary waves[END_REF] introduced the following equation

u t = 6uu x -u xxx , (1) 
where the subscripts x and t denote partial derivatives, for the first time in 1895 to describe the propagation of waves with weak dispersion. A lot of studies have been realized for this equation. A method of resolution was proposed by Gardner et al. [START_REF] Gardner | Method for solving the Korteweg-de Vries equation[END_REF] in 1967. Solutions were constructed with the bilinear method [START_REF] Hirota | Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons[END_REF] by Hirota in 1971; Its and Matveev constructed solutions in terms of Riemann theta functions [START_REF] Its | Hill's operator with finitely many gaps[END_REF] in 1975. Other works can be quoted: for example Airault et al. in 1977 [START_REF] Airault | Rational and elliptic solutions of the KdV equation and a related many-body problem[END_REF], Freeman and Nimmo in 1984 [START_REF] Freeman | Nimmo Rational solutions of the KdV equation in wronskian form[END_REF], Ma in 2004 [START_REF] Ma | Solving the KdV equation by its bilinear form wronskian solutions[END_REF].

We use a recent paper [START_REF] Gaillard | Degenerate Riemann theta functions, Fredholm and wronskian representations of the solutions to the KdV equation and the degenerate rational case[END_REF], in which we have degenerated the solutions to this KdV equation given in terms of Riemann theta functions. We have constructed solutions in terms of Fredholm determinants and wronskians. From this representations we construct rational solutions to the KdV equation by degenerating these solutions when parameters are chosen to tend to 0.

2 Solutions to the KdV equation in terms of Fredholm determinants and wronskians

Solutions to the KdV equation in terms of Fredholm determinants

We briefly recall the approach in terms of Riemann theta functions given in [START_REF] Its | Hill's operator with finitely many gaps[END_REF] in 1975. We consider the Riemann surface Γ of the algebraic curve defined by

ω 2 = 2g+1 j=1 (z -E j ), with E j = E k , j = k.
Let D be some divisor D = g j=1 P j , P j ∈ Γ, then the finite gap solution of the KdV equation

u t = 6uu x -u xxx (2) 
can be written in the form [START_REF] Its | Hill's operator with finitely many gaps[END_REF] u

(x, t) = -2∂ 2 x [ln θ(xg + tv + l)] + C. (3) 
In (3), θ is the Riemann function defined by

θ(z) = k∈Z g exp{πi(Bk|k) + 2πi(k|z)}, (4) 
constructed from the matrix of the B-periods of the surface Γ.

In [START_REF] Gaillard | Degenerate Riemann theta functions, Fredholm and wronskian representations of the solutions to the KdV equation and the degenerate rational case[END_REF], we have realized the degeneracy of these solutions following the ideas exposed for example in [START_REF] Belokolos | Algebro-geometric approach to nonlinear integrable equations[END_REF]). For E j reals such that E m < E j if m < j, we have evaluated the limits of all objects in formula (3) when E 2m , E 2m+1 tends to -α m , -α m = -κ 2 m , κ m > 0, for 1 ≤ m ≤ g, and E 1 tends to 0. All the details of the degeneracy of the components of the solution can be found in [START_REF] Gaillard | Degenerate Riemann theta functions, Fredholm and wronskian representations of the solutions to the KdV equation and the degenerate rational case[END_REF]. Different representations in terms of Fredhholm determinants have been given, in particular, we got the following representation of the solutions to the KdV equation Theorem 2.1 The function u defined by

u(x, t) = -2∂ 2 x ln(det(I + D)), (5) 
with D the matrix defined by D = (d jk ) 1≤j,k≤m

d jk = (-1) j exp 2(κ j x -4κ 3 j t + κ j k j ) l =j κ l + κ k κ l -κ j , (6) 
and κ j , k j arbitrary real parameters, is a solution to the KdV equation (1).

Solutions to the KdV equation in terms of wronskians

In [START_REF] Gaillard | Degenerate Riemann theta functions, Fredholm and wronskian representations of the solutions to the KdV equation and the degenerate rational case[END_REF], we have given a connection between Fredholm determinants and wronskians. We use here these results. We consider the following functions

φ a j (x) = sinh(κ j x -4κ 3 j t + κ j k j + 1 2 ln( z + iκ j z -iκ j )) = sinh(θ a j ), φ b j (x) = sinh(κ j x -4κ 3 j t + κ j k j ) = sinh(θ b j ), (7) 
with k j , K j arbitrary parameters.

W = W (φ j , . . . , φ N )(x, t) is the classical wronskian W = det[(∂ j-1 x φ i ) i, j∈[1,...,N ]
]. We consider the matrix D = (d jk ) j, k∈[1,...,N ] defined in ( 6)

d jk = (-1) j exp 2(κ j x -4κ 3 j t + κ j k j ) l =j κ l + κ k κ l -κ j .
Then we recall the result proven in [START_REF] Gaillard | Degenerate Riemann theta functions, Fredholm and wronskian representations of the solutions to the KdV equation and the degenerate rational case[END_REF] Theorem 2.2 Example 2.2 Solution of order 2: the function u defined by

det(I + D) = 2 N (-1) N (N +1) 2 exp( N j=1 θ b j ) N j=2 j-1 i=1 (κ j -κ i ) W (φ b 1 , . . . , φ b N )(x, t) (8) 

Some examples

u(x, t) = n u (x, t) d u (x, t) n u (x, t) = 16 e 2 K1x-8 K1 3 t+2 K1k1+2 K2x-8 K2 3 t+2 K2k2 K 1 4 -8 e -2 K1(4 tK1 2 -x-k1) K 1 4 - 8 K 1 4 e 2 K1x-8 K1 3 t+2 K1k1+4 K2x-16 K2 3 t+4 K2k2 + 8 e -2 K2(4 tK2 2 -x-k2) K 2 2 K 1 2 + 8 K 1 2 e -16 K1 3 t+4 K1x+4 K1k1+2 K2x-8 K2 3 t+2 K2k2 K 2 2 -32 K 1 2 e 2 K1x-8 K1 3 t+2 K1k1+2 K2x-8 K2 3 t+2 K2k2 K 2 2 +8 K 1 2 e 2 K1x-8 K1 3 t+2 K1k1+4 K2x-16 K2 3 t+4 K2k2 K 2 2 +8 e -2 K1(4 tK1 2 -x-k1) K 1 2 K 2 2 + 16 e 2 K1x-8 K1 3 t+2 K1k1+2 K2x-8 K2 3 t+2 K2k2 K 2 4 -8 e -2 K2(4 tK2 2 -x-k2) K 2 4 -8 e -16 K1 3 t+4 K1x+4 K1k1+2 K2x-8 K2 3 t+2 K2k2 K 2 4 and d u (x, t) = (-e -2 K2(4 tK2 2 -x-k2) K 1 + K 1 + e -2 K1(4 tK1 2 -x-k1) K 1 -K 1 e 2 K1x-8 K1 3 t+2 K1k1+2 K2x-8 K2 3 t+2 K2k2 +e 2 K1x-8 K1 3 t+2 K1k1+2 K2x-8 K2 3 t+2 K2k2 K 2 - K 2 -e -2 K2(4 tK2 2 -x-k2) K 2 + e -2 K1(4 tK1 2 -x-k1) K 2 ) 2 is a solution to the KdV equation (1)
Figure 2. Solution of order 1 to KdV, on the left for K 1 = 0, 5, K 2 = 0, k 1 = 0, 5, k 2 = 0; in the center for K 1 = 0, K 2 = 0, 5, k 1 = 0, k 2 = 0, 5; on the right for

K 1 = 1, K 2 = 0, k 1 = 1, k 2 = 0.
We could go on for greater orders, but even in the simple case of order 3, the explicit expression of the solution to the KdV equation takes more than 5 pages.

For this reason, we cannot give it here.

Rational solutions to the KdV equation

Using Riemanns theta functions, the solutions to the KdV equation were constructed in terms of Fredholm and wronskiens determinants. By degenerating these solutions, we obtain rational solutions that are simpler and more suitable for use in physics. The simplest possible solutions for small orders have been built.

To obtain rational solutions to the KdV equation, we choose K(j) and k j as functions of e for each integer j and we perform a limit when the parameter e tends to 0.

Rational solutions as a limit case

We get the following result :

Theorem 3.1 Let D be the matrix defined by djk = (-1) j exp 2(-4κ 3 j t + κj kj )

l =j κl + κk κl -κj , ( 9 
)
then the function u defined by

u(x, t) = -2 lim e→0 ∂ 2 x ln(det(I + D)), ( 10 
)
is a rational solution to the KdV equation (1)

u t = 6uu x -u xxx (11) 
So a hierarchy of rational solutions to the KdV equation depending on the integer N is obtained.

In the following we give some examples of rational solutions.

First order rational solutions

We replace K 1 by K 1 e and choose k 1 independent of e. We have the following result at order N = 1: Proposition 3.1 The function u defined by u(x) = 2

x 2 + 2k 1 x + k 1 2 ( 12 
)
is a solution to the KdV equation [START_REF] Airault | Rational and elliptic solutions of the KdV equation and a related many-body problem[END_REF]. 

Second order rational solutions

Here we replace K j by K j e and k j by k j e 2 . Then we get:

Proposition 3.2
The function u defined by

u(x) = n u (x, t) d u (x, t) (13 
)

with n u (x, t) = -6 x(24 K 1 4 t-6 K 1 2 k 1 -48 K 2 2 K 1 2 t+ 6 K 2 2 k 1 + 24 K 2 4 t-6 K 2 2 k 2 + 6 K 1 2 k 2 -K 1 4 x 3 + 2 K 2 2 K 1 2 x 3 -K 2 4 x 3 ) and d u (x, t) = 72 K 1 2 tk 2 -48 K 2 2 K 1 2 tx 3 -6 K 1 2 k 1 x 3 +72 K 2 2 k 1 t-18 k 1 k 2 +6 K 2 2 k 1 x 3 + 6 K 1 2 x 3 k 2 -72 K 2 2 tk 2 + 24 K 2 4 tx 3 -6 K 2 2 k 2 x 3 -72 K 1 2 tk 1 + 24 K 1 4 tx 3 - 288 K 2 2 K 1 2 t 2 + 144 K 1 4 t 2 + 9 k 1 2 + K 1 4 x 6 -2 K 2 2 K 1 2 x 6 + 144 K 2 4 t 2 + 9 k 2 2 + K 2 4
x 6 is a solution to the KdV equation [START_REF] Airault | Rational and elliptic solutions of the KdV equation and a related many-body problem[END_REF].

The structure of the solutions being very insensitive to the coefficients K, we choose to take K j = j in all the following figures. 

Rational solutions of order three

We replace K j by K j e and k j by k j e. Then we get the following rational solutions given by : Proposition 3.3 The function u defined by

u(x) = n u (x, t) d u (x, t) , with n u (x, t) = -6 x(24 K 1 4 t-6 K 1 2 k 1 -48 K 2 2 K 1 2 t+ 6 K 2 2 k 1 + 24 K 2 4 t-6 K 2 2 k 2 + 6 K 1 2 k 2 -K 1 4 x 3 + 2 K 2 2 K 1 2 x 3 -K 2 4 x 3 ) and d u (x, t) = 72 K 1 2 tk 2 -48 K 2 2 K 1 2 tx 3 -6 K 1 2 k 1 x 3 +72 K 2 2 k 1 t-18 k 1 k 2 +6 K 2 2 k 1 x 3 + 6 K 1 2 x 3 k 2 -72 K 2 2 tk 2 + 24 K 2 4 tx 3 -6 K 2 2 k 2 x 3 -72 K 1 2 tk 1 + 24 K 1 4 tx 3 - 288 K 2 2 K 1 2 t 2 + 144 K 1 4 t 2 + 9 k 1 2 + K 1 4 x 6 -2 K 2 2 K 1 2 x 6 + 144 K 2 4 t 2 + 9 k 2 2 + K 2 4
x 6 is a solution to the KdV equation [START_REF] Airault | Rational and elliptic solutions of the KdV equation and a related many-body problem[END_REF].

In this case the solution has the following structure: the numerator is polynomial of degree 0 in x, 0 in t; the denominator is polynomial of degree 2 in x, 0 in t.

The shape of the solutions depending very little on the K coefficients, we choose to take K j = j in all these following figures. 

Quasi rational solutions of order four

We replace K j by K j e and l j by l j e 2 . We get the following rational solutions given by : Proposition 3.4 The function u defined by

u(x) = n u (x, t) d u (x, t) , with n u (x, t) = -6 (K 1 4 K 2 2 k 3 -K 1 4 K 2 2 k 4 -K 1 4 K 3 2 k 2 + K 1 4 K 3 2 k 4 + K 1 4 K 4 2 k 2 - K 1 4 K 4 2 k 3 -K 1 2 K 2 4 k 3 + K 1 2 K 2 4 k 4 + K 1 2 K 3 4 k 2 -K 1 2 K 3 4 k 4 -K 1 2 K 4 4 k 2 + K 1 2 K 4 4 k 3 + K 2 4 K 3 2 k 1 -K 2 4 K 3 2 k 4 -K 2 4 K 4 2 k 1 + K 2 4 K 4 2 k 3 -K 2 2 K 3 4 k 1 + K 2 2 K 3 4 k 4 + K 2 2 K 4 4 k 1 -K 2 2 K 4 4 k 3 + K 3 4 K 4 2 k 1 -K 3 4 K 4 2 k 2 -K 4 4 K 3 2 k 1 + K 4 4 K 3 2 k 2 )x(-x 3 K 1 4 K 2 2 k 3 +x 3 K 1 4 K 2 2 k 4 +x 3 K 1 4 K 3 2 k 2 -x 3 K 1 4 K 3 2 k 4 -x 3 K 1 4 K 4 2 k 2 + x 3 K 1 4 K 4 2 k 3 + x 3 K 1 2 K 2 4 k 3 -x 3 K 1 2 K 2 4 k 4 -x 3 K 1 2 K 3 4 k 2 + x 3 K 1 2 K 3 4 k 4 + x 3 K 1 2 K 4 4 k 2 -x 3 K 1 2 K 4 4 k 3 -x 3 K 2 4 K 3 2 k 1 + x 3 K 2 4 K 3 2 k 4 + x 3 K 2 4 K 4 2 k 1 - x 3 K 2 4 K 4 2 k 3 + x 3 K 2 2 K 3 4 k 1 -x 3 K 2 2 K 3 4 k 4 -x 3 K 2 2 K 4 4 k 1 + x 3 K 2 2 K 4 4 k 3 - x 3 K 4 2 K 3 4 k 1 + x 3 K 4 2 K 3 4 k 2 + x 3 K 4 4 K 3 2 k 1 -x 3 K 4 4 K 3 2 k 2 + 24 tK 1 4 K 2 2 k 3 - 24 tK 1 4 K 2 2 k 4 -24 tK 1 4 K 3 2 k 2 +24 tK 1 4 K 3 2 k 4 +24 tK 1 4 K 4 2 k 2 -24 tK 1 4 K 4 2 k 3 - 24 K 1 2 tK 2 4 k 3 +24 K 1 2 tK 2 4 k 4 +24 K 1 2 tK 3 4 k 2 -24 K 1 2 tK 3 4 k 4 -24 K 1 2 tK 4 4 k 2 + 24 K 1 2 tK 4 4 k 3 +24 K 2 4 tK 3 2 k 1 -24 tK 2 4 K 3 2 k 4 -24 K 2 4 tK 4 2 k 1 +24 tK 2 4 K 4 2 k 3 - 24 tK 2 2 K 3 4 k 1 +24 K 2 2 tK 3 4 k 4 +24 tK 2 2 K 4 4 k 1 -24 K 2 2 tK 4 4 k 3 +24 K 3 4 tK 4 2 k 1 - 24 K 3 4 tK 4 2 k 2 -24 tK 4 4 K 3 2 k 1 +24 tK 4 4 K 3 2 k 2 -6 K 1 2 K 2 2 k 1 k 3 +6 K 1 2 K 2 2 k 1 k 4 + 6 K 1 2 K 2 2 k 3 k 2 -6 K 1 2 K 2 2 k 4 k 2 +6 K 1 2 K 3 2 k 2 k 1 -6 K 1 2 K 3 2 k 1 k 4 -6 K 1 2 K 3 2 k 3 k 2 + 6 K 1 2 K 3 2 k 3 k 4 -6 K 1 2 K 4 2 k 2 k 1 +6 K 1 2 K 4 2 k 1 k 3 +6 K 1 2 K 4 2 k 4 k 2 -6 K 1 2 K 4 2 k 3 k 4 - 6 K 2 2 K 3 2 k 2 k 1 +6 K 2 2 K 3 2 k 1 k 3 +6 K 2 2 K 3 2 k 4 k 2 -6 K 2 2 K 3 2 k 3 k 4 +6 K 2 2 K 4 2 k 2 k 1 - 6 K 2 2 K 4 2 k 1 k 4 -6 K 2 2 K 4 2 k 3 k 2 +6 K 2 2 K 4 2 k 3 k 4 -6 K 3 2 K 4 2 k 1 k 3 +6 K 3 2 K 4 2 k 1 k 4 + 6 K 3 2 K 4 2 k 2 k 3 -6 K 3 2 K 4 2 k 2 k 4 ) d u (x, t) = (x 3 K 1 4 K 2 2 k 3 -x 3 K 1 4 K 2 2 k 4 -x 3 K 1 4 K 3 2 k 2 +x 3 K 1 4 K 3 2 k 4 +x 3 K 1 4 K 4 2 k 2 - x 3 K 1 4 K 4 2 k 3 -x 3 K 1 2 K 2 4 k 3 + x 3 K 1 2 K 2 4 k 4 + x 3 K 1 2 K 3 4 k 2 -x 3 K 1 2 K 3 4 k 4 - x 3 K 1 2 K 4 4 k 2 + x 3 K 1 2 K 4 4 k 3 + x 3 K 2 4 K 3 2 k 1 -x 3 K 2 4 K 3 2 k 4 -x 3 K 2 4 K 4 2 k 1 + x 3 K 2 4 K 4 2 k 3 -x 3 K 2 2 K 3 4 k 1 + x 3 K 2 2 K 3 4 k 4 + x 3 K 2 2 K 4 4 k 1 -x 3 K 2 2 K 4 4 k 3 + x 3 K 4 2 K 3 4 k 1 -x 3 K 4 2 K 3 4 k 2 -x 3 K 4 4 K 3 2 k 1 + x 3 K 4 4 K 3 2 k 2 + 12 tK 1 4 K 2 2 k 3 - 12 tK 1 4 K 2 2 k 4 -12 tK 1 4 K 3 2 k 2 +12 tK 1 4 K 3 2 k 4 +12 tK 1 4 K 4 2 k 2 -12 tK 1 4 K 4 2 k 3 - 12 K 1 2 tK 2 4 k 3 +12 K 1 2 tK 2 4 k 4 +12 K 1 2 tK 3 4 k 2 -12 K 1 2 tK 3 4 k 4 -12 K 1 2 tK 4 4 k 2 + 12 K 1 2 tK 4 4 k 3 +12 K 2 4 tK 3 2 k 1 -12 tK 2 4 K 3 2 k 4 -12 K 2 4 tK 4 2 k 1 +12 tK 2 4 K 4 2 k 3 - 12 tK 2 2 K 3 4 k 1 +12 K 2 2 tK 3 4 k 4 +12 tK 2 2 K 4 4 k 1 -12 K 2 2 tK 4 4 k 3 +12 K 3 4 tK 4 2 k 1 - 12 K 3 4 tK 4 2 k 2 -12 tK 4 4 K 3 2 k 1 +12 tK 4 4 K 3 2 k 2 -3 K 1 2 K 2 2 k 1 k 3 +3 K 1 2 K 2 2 k 1 k 4 + 3 K 1 2 K 2 2 k 3 k 2 -3 K 1 2 K 2 2 k 4 k 2 +3 K 1 2 K 3 2 k 2 k 1 -3 K 1 2 K 3 2 k 1 k 4 -3 K 1 2 K 3 2 k 3 k 2 + 3 K 1 2 K 3 2 k 3 k 4 -3 K 1 2 K 4 2 k 2 k 1 +3 K 1 2 K 4 2 k 1 k 3 +3 K 1 2 K 4 2 k 4 k 2 -3 K 1 2 K 4 2 k 3 k 4 - 3 K 2 2 K 3 2 k 2 k 1 +3 K 2 2 K 3 2 k 1 k 3 +3 K 2 2 K 3 2 k 4 k 2 -3 K 2 2 K 3 2 k 3 k 4 +3 K 2 2 K 4 2 k 2 k 1 - 3 K 2 2 K 4 2 k 1 k 4 -3 K 2 2 K 4 2 k 3 k 2 +3 K 2 2 K 4 2 k 3 k 4 -3 K 3 2 K 4 2 k 1 k 3 +3 K 3 2 K 4 2 k 1 k 4 + 3 K 3 2 K 4 2 k 2 k 3 -3 K 3 2 K 4 2 k 2 k 4 )
2 is a solution to the KdV equation [START_REF] Airault | Rational and elliptic solutions of the KdV equation and a related many-body problem[END_REF].

In this case, the solution to the KdV equation has the following structure : the numerator is a polynomial of degree 4 in x, 1 in t; the denominator is a polynomial of degree 6 in x, 2 in t; the solution depends on six arbitrary parameters k j and K j for 1 ≤ j ≤ 3.

The structure of the solutions depending very little on the K coefficients, we choose to take K j = j in all the following figures. These simple solutions could be used in various fields, including in particular physics. These solutions are singular. These solutions are new and different from the previous ones built by the author [START_REF] Gaillard | Degenerate Riemann theta functions, Fredholm and wronskian representations of the solutions to the KdV equation and the degenerate rational case[END_REF][START_REF] Gaillard | Multi-Parametric rational Solutions to the KdV equation[END_REF][START_REF] Gaillard | Rational solutions to the KdV equation in terms of particular polynomials[END_REF]. For example, in this paper, in the case of order 3, the denominator of the solution is a polynomial od degree 6 in x and 2 in t; in [START_REF] Gaillard | Degenerate Riemann theta functions, Fredholm and wronskian representations of the solutions to the KdV equation and the degenerate rational case[END_REF], the denominator of the solution of order 3 is a polynomial of degree 12 in x, 4 in t; in [START_REF] Gaillard | Multi-Parametric rational Solutions to the KdV equation[END_REF], the denominator of the solution of order 3 is a polynomial of degree 12 in x, 4 in t different from this of [START_REF] Gaillard | Degenerate Riemann theta functions, Fredholm and wronskian representations of the solutions to the KdV equation and the degenerate rational case[END_REF]; in [START_REF] Gaillard | Rational solutions to the KdV equation in terms of particular polynomials[END_REF], the denominator of the solution of order 3 is a polynomial of degree 12 in x, 4 in t different from the previous ones. The structure of the solutions obtained for this equation is completely different from that obtained for the NLS equation [START_REF] Gaillard | Rational solutions to the KdV equation in terms of particular polynomials[END_REF]. I must mention the article [START_REF] Whitham | Comments on periodic waves and solitons[END_REF] in connection with my research which deals with equations such as the KdV equation and the representation of solutions as sum of solitons, and also the relationship of these solutions with Riemann's theta functions in particular.

Conclusion

From the degenerate θ solutions to the KdV equation expressed in terms of Fredholm determinants or wronskians, we succeeded to get rational solutions to the KdV equation. So we obtain an infinite hierarchy of multi-parametric families of rational solutions to the KdV equation as a quotient of a polynomials depending on real parameters. The quasi-rational solutions to the KdV equation were obtained by the passage to the limit when one of the parameters tends towards zero. These solutions are not obtained uniformly as in the construction of the solutions for example to the non-linear Schrödinger equation [START_REF] Gaillard | Towards a classification of the quasi rational solutions to the NLS equation[END_REF]. In the quasi-rational solutions constructed, the parameters were chosen in such a way as to obtain quasi-rational solutions of maximum degree in x and in t. It would be relevant to continue this work for higher orders and to study the structure of polynomials defining these solutions.
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 2121 Solution of order 1: the function u defined by u(x, t) = 8 e -2 K1(4 tK1 2 -x-k1) K 1 + e -2 K1(4 tK1 2 -x-k1) 2 .is a solution to the KdV equation (1).

Figure 1 .

 1 Figure 1. Solution of order 1 to KdV, on the left for K 1 = 0, 1, k 1 = 0, 1; in the center for K 1 = 0, 5, k 1 = 0, 5; on the right for K 1 = 1, k 1 = 1.

Figure 3 .

 3 Figure 3. Rational solution of order 1 to KdV, on the left for k 1 = 1; in the center for k 1 = 10; on the right for k 1 = -10.

Figure 4 .

 4 Figure 4. Rational solution of order 1 to KdV, on the left for k 1 = 0, k 2 = 0; in the center for k 1 = 10, k 2 = 10; on the right for k 1 = 100, k 2 = 100.

Figure 5 .

 5 Figure 5. Rational solution of order 1 to KdV, on the left for k 1 = 0, k 2 = 2, k 3 = 3; in the center for k 1 = 1, k 2 = 0, k 3 = 3; on the right for k 1 = 10, k 2 = 20, k 3 = 30.

Figure 6 .

 6 Figure 6. Rational solution of order 1 to KdV, on the left for k 1 = 0, k 2 = 2, k 3 = 3, k 4 = 4; in the center for k 1 = 10, k 2 = 0, k 3 = 0, k 4 = 0; on the right for k 1 = 10, k 2 = 0, k 3 = 30, k 4 = 0.