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A B S T R A C T

The Extreme Universe Space Observatory on a Super Pressure Balloon 1 (EUSO-SPB1) was launched in 2017
April from Wanaka, New Zealand. The plan of this mission of opportunity on a NASA super pressure balloon test
flight was to circle the southern hemisphere. The primary scientific goal was to make the first observations
of ultra-high-energy cosmic-ray extensive air showers (EASs) by looking down on the atmosphere with an
ultraviolet (UV) fluorescence telescope from suborbital altitude (33 km). After 12 days and 4 h aloft, the flight
was terminated prematurely in the Pacific Ocean. Before the flight, the instrument was tested extensively in
the West Desert of Utah, USA, with UV point sources and lasers. The test results indicated that the instrument
had sensitivity to EASs of ⪆ 3 EeV. Simulations of the telescope system, telescope on time, and realized flight
trajectory predicted an observation of about 1 event assuming clear sky conditions. The effects of high clouds
were estimated to reduce this value by approximately a factor of 2. A manual search and a machine-learning-
based search did not find any EAS signals in these data. Here we review the EUSO-SPB1 instrument and flight
and the EAS search.
1. Introduction

The sources and acceleration mechanisms that produce the highest
energy particles ever observed remain unknown. With measured en-
ergies that can exceed 100 EeV [1,2], ultra-high-energy cosmic rays
(UHECRs1) occupy a tantalizing position in the multi-messenger view
of the cosmos. The 100 EeV scale is six orders of magnitude above the
highest energy gamma rays [3] and five orders of magnitude above the
highest energy neutrinos [4,5] observed to date. Because UHECRs are
charged, they are the only known high energy multi-messengers that
can be accelerated directly by the sources of interest. The low flux of
UHECRs requires indirect measurement techniques that use the atmo-
sphere as a giant calorimeter. UHECRs that reach Earth’s atmosphere
convert their kinetic energy into extensive air showers (EASs), which
generate fluorescence light via excitation of atmospheric nitrogen.
The atmospheric fluorescence technique has been developed and used

1 By convention, UHECRs are cosmic-rays with energies above 1 EeV
1018 eV).
3

successfully by Fly’s Eye [6], the High-Resolution Fly’s Eye (HiRes) [7],
the Pierre Auger Observatory [8], and Telescope Array [9] to measure
EASs in 3D from the ground. The atmosphere is, by definition, the
largest-volume calorimeter on Earth.

The Extreme Universe Space Observatory on a Super Pressure Bal-
loon 1 (EUSO-SPB1) was the Joint Experiment Missions for Extreme
Universe Space Observatory (JEM-EUSO) collaboration’s first mission
targeting UHECR EASs by looking down on the atmosphere from subor-
bital space. This mission represents an important step toward establish-
ing a UHECR detector in space [10–14] that would view a much larger
(≈100×) atmospheric footprint, map the entire sky at extreme energies,
and discover the sources of UHECRs. The Probe of Extreme Multi-
Messenger Astrophysics (POEMMA) [15] would also have sensitivity
to ultra-high-energy photons, monopoles and super heavy forms of
dark matter, and, via interactions in Earth’s limb, very high energy
neutrinos [16].

EUSO-SPB1 flew as a NASA mission of opportunity. It was sus-
pended below a NASA super pressure balloon that was launched as
a test flight on 2017 April 24 23:51 UT from Wanaka, New Zealand
(Fig. 1). The EUSO-SPB1 science goals included the following:

1. making the first observations of UHECR EASs by looking down

from suborbital space with an air fluorescence detector,
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Fig. 1. EUSO-SPB1 shortly before its 2017 launch from Wanaka, New Zealand. The instrument hangs below the crane on the far left.
Fig. 2. Trajectories of the NASA super pressure balloon test flights launched from Wanaka, New Zealand through 2017. The green portion of a trajectory denotes a completed
circumnavigation.
2. measuring background UV light at night over ocean and clouds,
and

3. searching for fast UV pulse-like signatures from other objects.

2. Ultra-long-duration scientific balloon flights from Wanaka,
New Zealand

Located at 45◦S latitude, Wanaka lies below a fast stratospheric air
circulation that develops twice a year about 33 km (7 mbar) above the
Southern Ocean. This circulation flows easterly in the southern autumn
and westerly in the southern spring. Super pressure balloons (SPBs) are
designed to float at a constant displacement volume and consequently
at a constant altitude, even at night. Thus a payload launched from
Wanaka under a specially prepared SPB could ride this stratospheric cir-
culation for months, completing multiple suborbital circumnavigations
followed by controlled termination over land. Like conventional zero-
pressure stratospheric balloons, SPBs also drift with the balloon-altitude
wind currents. NASA’s first engineering SPB mission launched from
Wanaka [17] flew for 32 days in 2015 and landed in Australia. The first
scientific payload, the Compton Spectrometer and Imager (COSI) [18],
flew the following year for 46 days, circled the Southern Ocean, and
landed in Peru. The 2017 flight was the third SPB test flight from
Wanaka, with a nominal duration target of 100 days. The paths of these
three flights are shown in Fig. 2.

Unfortunately, the 2017 balloon developed a helium leak that ne-
cessitated an early controlled termination of the mission (Fig. 3). The
entire flight train was ‘‘valved down’’ about 300 km southeast of Easter
Island 12 days after launch. It currently rests on the deep ocean floor.

Despite the setbacks, the EUSO-SPB1 instrument (Fig. 4) operated
successfully while aloft and returned about 60 GB of data. Here we
4

describe the instrument, preflight testing in the laboratory and desert,
the mission, the data, and the search for EASs. Preparations for the
EUSO-SPB2 mission (Section 7) are underway.

3. EUSO-SPB1 instrument

3.1. 2014 Instrument and mission

The 2017 EUSO-SPB1 mission succeeded the 2014 EUSO-Balloon
overnight mission sponsored by the French Space Agency and launched
from Timmins, Ontario, Canada, by the Canadian Space Agency on a
zero-pressure balloon. The fluorescence telescope (FT) camera was trig-
gered externally by an onboard 20 Hz clock. The instrument recorded
UV terrestrial emission levels [19] and sampled UV flashes and UV
laser tracks generated by light sources flown below the balloon on a
helicopter. This mission yielded the first observation of UV tracks by
a fluorescence telescope looking down on the atmosphere [20]. The
entire flight train splashed down in a small lake and the instrument
was recovered intact.

3.2. 2017 instrument

The 2014 instrument was upgraded extensively for the 2017 launch.
Specifications of the 2017 instrument [21] are listed in Table 1. The
upgrades featured a trigger to identify EAS candidates, a new set
of Fresnel lenses, a new UV camera (Fig. 5) with higher quantum
efficiency multi-anode photomultiplier tubes (MAPMTs), an integrated
high voltage (HV) system, a new flight CPU, interfaces to the NASA
Support Integration Package (SIP) and telemetry, new control software,
thermal sensors interfaced to the SIP, a solar power system, and a
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Fig. 3. Altitude profile of the 2017 mission as a function of UT date. The instrument was operated at night when the moon was below the horizon. The altitude fluctuations that
started after 2 days aloft were caused by a leak that prevented the balloon from maintaining a fully inflated super-pressure state at night.
Fig. 4. EUSO-SPB1 instrument in flight-ready configuration. See text for description of subsystems.
gondola exoskeleton frame on which all equipment was mounted,
including an antenna boom. The solar power system was designed to
support the mission through the southern winter including a trajectory
excursion to about 60◦S.

EUSO-SPB1 was designed to operate at stratospheric altitude during
nights with little or no moon to detect UV tracks from EASs. The
subsystem architecture is diagrammed in Fig. 6. Two 1 m2 polymethyl
methacrylate (PMMA) Fresnel lenses focus light from below onto a
UV-sensitive, custom high-speed camera. The focal surface of the EUSO-
SPB1 telescope features a photodetector module (PDM) that counts
single photoelectrons (SPEs). For assembly purposes, 4 MAPMTs, of
64 channels each, are covered by a square BG-3 UV-transmitting optical
filter to form an elementary cell (EC). Nine ECs in a 3 × 3 arrangement
make up one PDM. Located in the PDM behind the ECs are six circuit
boards that count the numbers of photoelectrons. These boards plug
into a central control buffer board that hosts the VHDL trigger logic.
5

The PDM is operated with −1100 V applied to the photocathodes.
The nominal gain of the MAPMTs is 106. A Cockcroft-Walton cir-
cuit [22] generates the HV. This circuit is implemented in a board
potted into each EC subassembly. The MAPMT anodes are held at
ground and coupled directly to the digitization electronics. This DC
coupling permits photometric calibrations using pulsed or DC light
sources and also permits direct measurements of background light
levels. The digitization electronics identify the small current pulses that
are initiated by the emission of single photoelectrons from the photo-
cathodes. The double pulse resolution of the digitization electronics is
about 6 ns. The number of SPE counts in each MAPMT channel is tallied
in 2.5 μs time bins. One time bin is referred to as a gate time unit (GTU)
in this paper.

The onboard trigger system [23,24] operates at the MAPMT level
and scans buffered pixel count lists for locally persistent signals above
background as averaged over a specified time, within 3 × 3 pixel
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Fig. 5. Left: The photodetector module (PDM) of the EUSO-SPB1 instrument. Right: as installed at the focal plane. The SiECA prototype is positioned to the right of the PDM.
Fig. 6. EUSO-SPB1 data readout system and its connections to the various subsystems.
Table 1
Specifications of EUSO-SPB1 and 2017 mission.
Item Specification Notes

Energy threshold ≈3 EeV 50% trigger threshold
Trigger aperture ≈20 km2 sr (5 EeV)

≈200 km2 sr (10 EeV) At 33 km altitude
Telescope optics 2 × 1 m2 Fresnel lenses PMMA
Field of view 11.1◦ × 11.1◦ From stars, lasers
Pixel field of view 0.2◦ × 0.2◦ For active area
Pixel ground footprint 120 m × 120 m As projected from 33 km
Number of pixels 2304 (48 × 48) 36 MAPMTs × 64 pixels each
MAPMT R11265-113-M64-MOD2 Hamamatsu
UV transmitting filter BG-3, 2 mm thick 1 per MAPMT
Readout DC coupled 100 MHz double-pulse resolution
Time-bin duration 2.5 μs integration Event packet = 128 bins (320 μs)

Balloon 18 × 106 ft3 (0.5 × 106 m3) Helium
Nominal float height 33.5 km (110 000 ft)
Telemetry (data) 2 × ≈75 kbits s−1 2 Iridium OpenPort
Telemetry (comms) ≈1.2 kbits s−1 (255 bit bursts) 2 Iridium Pilots
Power consumption 40 W (day), 70 W (night) Includes 20 W heater
Batteries 10, each 42 A h Odyssey PC1200 12 V lead acid
Solar panels 3 × 100 W on all 4 sides SunCat Solar
Detector weight 1223 kg (2250 lb) Without SIP, antennas, and ballast
Releasable ballast 545 kg (1200 lb) ≤50 lb remaining at termination
Total weight 2500 kg (5500 lb) Everything below balloon

Flight start 2017 April 24 23:51 UT 44.7218◦ S 169.2540◦ E
Flight end 2017 May 6 3:40 UT 29.3778◦ S 106.5037◦ W
Flight duration 12 days 4 h
6
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Fig. 7. Left: SiECA 256-channel SiPM array of four 64-channel Hamamatsu S13361-3050AS-08 sensors was flown as a test on the EUSO-SPB1 mission. Right: laboratory data
recorded from an uncollimated DC light spot source.
cells. Persistence settings of 1, 2, and 5 GTUs were used during the
flight. A persistence setting of 2 GTUs, for example, corresponds to
5 μs. The local background threshold level is adjusted dynamically
to significantly reduce the number of fake triggers caused by slowly
moving objects such as airplanes, and electrical storms. On receipt of
a trigger, the data processing (DP) system [25] copies 128 consecutive
data frames (40 before and 88 after the trigger for a total of 320 μs)
from a system buffer to an onboard 1 TB raid array. A single data
frame contains a list of the number of photoelectrons recorded in each
of the 2304 individual pixels over the same 2.5 μs interval. The DP
system is also interfaced to ancillary systems, as diagrammed in Fig. 6.
The flight computer hosts a comprehensive modular control software
package [26] that can be readily configured for testing and flight. Field
tests of the trigger system are described in Section 4.

As a technology test of silicon photomultipliers (SiPMs) in near
space, the EUSO-SPB1 focal surface also includes a 256-channel silicon
photomultiplier elementary cell array (SiECA) [27,28] mounted next to
the MAPMTs of the PDM (Figs. 5 and 7). This add-on system was flown
in a stand-alone sampling mode.

An infrared (IR) camera system was developed and flown to record
IR images of the scene below the balloon to identify clouds and estimate
the heights of the cloud tops. Measuring clouds is important because
high clouds reduce the instantaneous aperture to detect EASs by the
EUSO-SPB1 instrument [29]. The University of Chicago Infrared Cam-
era (UCIRC) [30] featured two identical IR cameras that pointed down
toward the same region. The field of view was 24◦ ×30◦. Each camera
had an IR filter. One filter transmitted IR light between wavelengths
of 11.5 and 12.9 μm. The other filter transmitted IR light between
wavelengths of 9.6 and 11.6 μm. These values were selected because
they fall near the typical blackbody peak for clouds. The method for
measuring cloud color temperature from which the cloud top height
can be derived is described elsewhere [31].

The mechanical upgrades to the payload complied with NASA re-
quirements for balloon gondolas, with the added requirement that
the overall height, including antennas, be lower than the door of
the aircraft hangar from which the mission is staged. The NASA SIP
and antennas were mounted on top of the gondola frame, and two
ballast hoppers were mounted on opposite sides of the frame to allow
the UV fluorescence telescope and IR camera system an unobstructed
downward field of view. The fluorescence telescope module could be
rolled into the gondola structure and attached in about 30 minutes. A
four-sided solar array and a light baffle were connected to the payload
outside the hangar.

4. Desert field tests

The EUSO-SPB1 fluorescence telescope system was tested in the
laboratory and in the West Desert of Utah, USA [32], at the Telescope
Array site. Measurements of a 365 nm calibrated point source on a mast
yielded an estimate of end-to-end absolute photometric calibration as
0.10 ± 0.01 SPE counts per incident photon. This value is comparable
7

Fig. 8. Example of a 1.3 mJ 355 nm laser track recorded during desert field tests of
EUSO-SPB1. The laser steering optics were aimed at an elevation angle 45◦ away from
the telescope position. The top of the track corresponds to a height of 9.3 km and
viewing distance of 35 km. The pixels displayed are a sum over ten 2.5 μs frames of
the trigger signal. A single 2.5 μs frame that captures the moving light spot from the
laser is shown in the inset.

to a laboratory piecewise calibration. A pulsed UV laser system [33]
having a 10 ns pulse width was placed 24 km from EUSO-SPB1 and
used to measure the trigger efficiency to speed-of-light tracks in the
atmosphere. Like an EAS, the pulsed laser produces a moving spot
of UV light traveling at the speed of light. Laser measurements with
the beam tilted 45◦ away from the telescope position were recorded
(Fig. 8) to approximate geometrically the expected distance from EUSO-
SPB1 at float altitude to an EAS of a typical inclination traversing the
telescope field of view below. A comparison of these configurations is
diagrammed in Fig. 9. The geometrical equivalence means that the rate
of travel of the light spot crossing the camera is equivalent in the two
orientations, as is the 1/r effect for a line source where r is the distance
between the telescope and the laser pulse. The trigger efficiency was
found to be 50% for a laser energy of 0.94 ± 0.02 mJ and approached
100% efficiency at 1.5 mJ (Fig. 10). The data were collected in two
energy sweeps over about 3 h. A change in the atmospheric clarity
during this period across the 24 km separating the laser and detector
is the most likely reason that the points in the threshold range are
separated beyond the error bars which are statistical. The data points
to the left and right of the fitted curve in the region below 50% trigger
efficiency are separated by about two hours in time.

The inclined 0.8 mJ laser track, as viewed from the side in the desert
field test, was estimated to appear about as bright as an inclined EAS
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Fig. 9. Arrangement the EUSO-SPB1 fluorescence telescope and a laser during field tests is shown on the left. The diagram on the right shows this arrangement after rotation by
90◦, so that the telescope optical axis is pointing down, as it did under the balloon. The laser and EAS axes are in the same geometrical position relative to the telescope optical
axis. Both diagrams are side views.
Fig. 10. Trigger efficiency of the fluorescence telescope vs. laser energy as measured
y sweeping the energy of a distant UV laser. A total of 100 shots were fired at each
nergy setting. See text for details.

f 3 EeV would appear when the fluorescence telescope was looking
own from the balloon float altitude. This estimate assumed a nominal
erosol optical depth for the desert laser measurement.

Noise trigger rates were typically at the level of 1 Hz over the
ull camera during the field tests. These trigger rates increased slightly
hen bright stars or meteors crossed the field of view, or when there
as lightning outside the field of view.

. EUSO-SPB1 campaign and instrument monitoring

After the EUSO-SPB1 components reached New Zealand in late
anuary 2017, the payload was reassembled. To obtain a final flat-
ield calibration, the payload was suspended from a crane above an
lluminated Tyvek screen at night and rotated in azimuth while the
T collected a data set of full-camera triggers. The instrument was
eclared flight-ready on 2017 March 25. Following seven aborted
ttempts, the payload was launched successfully on April 24 23:30 UT,
day before the new moon. On reaching the New Zealand coast, the

alloon drifted northward, passing about 30 km east of Christchurch
efore heading out over the Pacific Ocean. Instrument monitoring and
perations were handled through centers in Europe, Japan, and the
SA. To facilitate downloading, telescope data files were limited to a
uration of 2 min. A shorter (30 s) file was recorded at the start of
ach hour and downloaded with highest priority to provide telescope
onitoring information.

Examples of thermal monitoring measurements recorded during the
light are compared with predictions of the instrument preflight thermal
8

model in Fig. 11. This model was developed to predict the hottest
and coldest cases for a long-duration flight at 33 km altitude. The hot
case assumed a 45◦S latitude flight and a March 1 launch, whereas
the cold case assumed a 65◦S latitude with a June 22 launch. The
largest excursions of the data below the warm case prediction started
on April 30, when the balloon did not maintain a super-pressure state at
night and the payload descended at night to 18 km, reaching the colder
air of the tropopause. The excursions of the front lens temperature
above the warm case may be due the model underestimating the heat
transfer effect of direct sunlight on the telescope walls and/or from
indirect sunlight reflecting from the ocean and clouds onto the front
lens.

To monitor the PDM camera and readout function, a UV ‘‘health’’
LED was fired twice every 16 s during flight (Fig. 12). The sample of
the LED measurements downloaded over the flight demonstrates the
stability of the camera system response to the LED (Fig. 13). Most of the
data points fall within ±5% of the mean, despite nighttime temperature
swings of 30◦C outside the telescope.

The functionality of the IR camera and the telescope point-spread
function were tested (through serendipity) as the balloon drifted over
the eastern coast of the South Island of New Zealand about 8 hr
after launch. An image from the IR camera shows the Pacific coastline
and the edge of Lake Ellesmere in detail. The fluorescence telescope
happened to be triggered by a light source on the ground (Fig. 14)
and recorded a pixel pattern consistent with the expected point-spread
function of the optics. To analyze the variability of the light source,
we created a Lomb–Scargle [34,35] periodogram consisting of 3000
consecutive measurements of the brightest pixel (after this time, the
source moved to other pixels). The most prominent peak was at the
period of 0.01 s. The corresponding 100 Hz frequency is consistent
with the zero-volt crossing flicker of a fluorescent light bulb with an
older magnetic ballast driven at 50 Hz, which is the frequency of
the New Zealand electrical grid. https://www.overleaf.com/project/
6487340c1579dcd88bac5c80 Using 100 Hz we were able to create a
smooth phased light curve of the source. This analysis provided an in
situ sanity check of the camera system’s internal timing.

Information about the presence of clouds in the PDM field of view
can also be obtained from the PDM data. Variations in the average
background rate can show clouds passing under the balloon, as demon-
strated in Fig. 15. Clouds tend to be more reflective than the ground or
ocean. At night they scatter light from airglow, stars and other sources,
and appear in the FT as regions of higher average background rate.

The telemetry bandwidth for data downloads was reduced when one
of the two Iridium Pilot data links failed. Thirty of the 40 hr of data
recorded on board were downloaded. The downloaded data included
175,000 recorded triggers. To optimize bandwidth prioritization, most

of the data from the last 3 nights were not downloaded because the

https://www.overleaf.com/project/6487340c1579dcd88bac5c80
https://www.overleaf.com/project/6487340c1579dcd88bac5c80
https://www.overleaf.com/project/6487340c1579dcd88bac5c80
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Fig. 11. Examples of temperature data (top panel: outside the Fresnel lens at the telescope optics aperture; bottom panel: batteries) recorded during the flight compared with
predictions of the preflight thermal model (see text).
Fig. 12. Left: A double light pulse generated by the onboard health LED system as recorded by EUSO-SPB1. The response shown here gives the SPE counts/pixel averaged over
all pixels as a function of (2.5 μs) GTU number. The error bars represent the corresponding standard deviation about each average divided by the square root of the number of
pixels in the camera. Right: The health LED was mounted in the middle of the Fresnel lens in front of the UV camera.
instrument was over high-cloud weather systems with poor viewing
conditions. The flight was extended by controlled ballast releases.
Unfortunately, the combination of the balloon leak and the emptied
ballast hoppers led to an early controlled termination into the Pacific
Ocean on May 6. Preparations had been underway to fly a Cessna 421C
aircraft instrumented with UV LEDs and a UV laser under the balloon
after one circumnavigation [37], but this did not happen.

6. Searching for extensive air showers

The average background rates and trigger rates recorded during the
mission are displayed in Fig. 16. The higher trigger rates during the
9

first 3 nights occurred while the PDM was operating with a 1 GTU
persistence trigger setting. When the persistence setting was changed
to 2 GTU, the typical trigger rate dropped below 2 Hz for the first 2
nights after the change, and then fell below 1 Hz for the rest of the
mission.

The instantaneous aperture was estimated as a function of air
shower energy for four balloon altitudes (Fig. 17) that represent the
periods when data were collected and analyzed. These altitudes ranged
from the nominal 33 km float altitude, when the balloon envelope
was in a super-pressure state, to 17 km, when the leaking balloon was
descending over a cold storm system. The effect of the lower altitude
was twofold. It reduced the highest energy aperture by about a factor
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Fig. 13. Response of the central cell of the EUSO-SPB1 PDM to flashes from the health LED (dots). The dashed lines indicate ±5% about the mean. The lower curves show the
temperature measured at the outside of the Fresnel lens at the telescope optics aperture. Dates and times are in UT. Some gaps in the data occurred because the LED was turned
off to avoid RF pickup from an onboard radio beacon that was enabled when the balloon descended below 21.3 km (70,000 ft).
Fig. 14. At 8:32 UT, April 25, the balloon drifted over the New Zealand coast at an altitude of 33 km. Left: the X in the center of the satellite reference image [36] denotes the
coordinates of the balloon: 43.86◦S, 172.35◦E. Center: the shape of the coast is reproduced in the overlaid image recorded by the IR camera. Its projected field of view on the
ground as shown here is 14 × 17 km. Right: An unidentified ground light that the fluorescence telescope happened to observe (inset) provided additional in situ checks (see text).
Fig. 15. Sequence of time-averaged FT camera images that show clouds drifting across the field of view of the instrument. The four images in the figure are each separated by 30
s and each represents the average of about 1000 2.5 μs images. Darker colors represent more SPE counts (light) recorded. The dark regions are clouds, and the observed average
SPE counts from these regions are about 2 photoelectrons/pixel/2.5 μs. The average count rates in the light-colored regions are about half this amount. These data were recorded
on 2017 April 28.
of 3. It also lowered the energy threshold by about a factor of 2 because
the telescope was closer to the troposphere, where nearly all EAS light
production occurs.

A simulated energy distribution, based on the duration and night-
time altitudes of the SPB trajectory and the cosmic ray spectrum
from [38], is shown in Fig. 18. The distribution yields expected an event
rate of 0.76 ± 0.03 event/25.1 hr when scaled to the duration of the
mission flown, and assuming a clear atmosphere and low background
conditions. (A total of 25.1 hr of FT data were downloaded and an-
alyzed.) The uncertainty in the event rate is statistical, driven by the
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number of events in the simulation. For part of the mission, the balloon
flew over high clouds that obscured the field of view. This effect [39–
41] was estimated to reduce the event rate by about a factor of 2 for
an expected rate of 0.4 event/25 hr.

Two independent searches for EAS events were performed on this
data set. One search [42] involved scanning the data for triggers of
potential interest, which were then classified into seven types. Of these
triggers, 4128 were identified as having a duration between 3 and 50
GTUs and were visually scanned in detail. None showed a signature of
a small or elongated cluster of pixels moving in a nearly straight line
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Fig. 16. Top panel: The trigger rate measured during the mission. The trigger persistence setting is listed above. Bottom panel: The nighttime background light levels recorded
during the mission. The units are SPE counts/pixel/2.5 μs.
Fig. 17. Estimated aperture of the EUSO-SPB1 fluorescence telescope as a function of primary particle energy (proton) for four altitudes that are representative of those encountered
at night during data collection. The margin of statistical uncertainty of these estimates is ≤35%.
in the PDM at a speed consistent with that of an EAS, which moves
through the atmosphere infinitesimally close to the speed of light.
The second search for EAS events involved using a feature extraction
method to form a simpler representation of an event, after which data
were classified as EAS or noise using established machine learning
techniques [43]. A training data set combined simulated EAS samples
and noise samples from EUSO-SPB1 data. The efficiency of the method
was tested on laser tracks from the field campaign as a function of laser
energy and on simulated EAS events as a function of primary particle
energy. This search also did not yield any obvious EAS candidates.

Both searches did identify background track-like triggers that ap-
pear to have been caused by very low energy cosmic particles, most
likely muons, striking the PDM directly. An example of one of these
events is shown in the sequence of track-like images in Fig. 19. A muon
passing across the front face of the camera within in the optical filter
and/or MaPMT windows could generate cherenkov light Because these
11
tracks cross the PDM within a single GTU time frame, they are readily
distinguishable from an EAS track. An EAS track would require many
GTUs in order to cross the PDM field of view because the fluorescence
light is produced far below the telescope. In addition, an EAS track
would not exhibit the persistence observed in this event (center and left
panels of 19), The reason for this persistence is not well-understood.
It may be due to a lingering ionization effect along the particle’s path
after it skimmed the front of the camera, for example. This persistence
effect was not observed in the distant laser tracks recorded during field
tests.

7. EUSO-SPB2

Preparation and flight were completed recently (May 2023) of an
EUSO-SPB2 [44] mission of opportunity to expand the science goals
beyond those of EUSO-SPB1 in support of a future space-based ob-
servatory for UHECRs and neutrinos, such as POEMMA. EUSO-SPB2
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Fig. 18. Expected event rate distribution shown with the contributions for the four representative altitudes. This simulation assumed a clear atmosphere and low background
conditions for an expected event rate of 0.76 ± 0.03 event over the 25.1 hr of data collected.
Fig. 19. A direct cosmic ray traveling through the 48 × 48 pixel PDM camera. The three panels correspond to three consecutive 2.5 μs time bins. The track structure in the first
frame persists in two following time bins for this event. See text for discussion.
flew two astroparticle optical telescopes that use reflective optics [45]
to improve the optical efficiency relative to EUSO-SPB1. A fluores-
cence telescope [46] with a field of view three times larger than
that of EUSO-SPB1 and a 1 μs GTU pointed down to search for EAS
tracks [47,48] and search for dark matter candidates [49]. A Cherenkov
telescope [50], featuring a SiPM camera with 10 ns time bins, that
could be pointed near Earth’s limb to search for direct Cherenkov light
from lower-energy cosmic rays above the limb [51] and to search
for optical neutrino signatures from tau neutrino interaction a few
degrees below Earth’s limb [52]. The optical backgrounds for such
events are currently unexplored for suborbital altitudes. The balloon
flight train included an azimuth rotator. It could slew the gondola (and
by extension the Cherenkov telescope) in azimuth to enable multi-
messenger target-of-opportunity neutrino searches [53] in follow-up
of selected international alerts from gravitational wave events, tidal
disruption events, and gamma-ray bursts, for example. Although the
EUSO-SPB2 mission was curtailed signficantly by a balloon leak, the
instruments were commissioned and operated successfully. Analysis of
the data collected is in progress.

8. Conclusions

Although the EUSO-SPB1 mission of opportunity did not yield any
cosmic-ray EAS events, most of the valid data were downloaded and
analyzed. The data showed that the instrument performed well. The
monitoring data from the health LED demonstrated the photometric
12
stability of the camera at the ±5% level over the mission. The serendip-
itous observation of a ground light source on the first night of the
mission demonstrated that the telescope, including the optics focusing,
was operating as expected at float altitude. Because the payload was
launched during the dark part of the moon cycle, the instrument
searched for EASs every night of the flight. Although the balloon did
not reach Argentina for a termination over land, the risk of test-flight
anomalies was accepted to realize this target-of-opportunity mission.
The null observation of EAS events was consistent with an expectation
of about 0.4 EAS events for the data downloaded. This expectation
value included an estimated factor-of-two reduction due to obscuration
effects from high clouds.

The mission raised the technical readiness level of the camera
system flown and applied novel methods to test and characterize the
fluorescence telescope in preflight field tests in the desert. Data from
the field tests and the flight have also inspired the instrument design
and mission planning of EUSO-SPB2 and future missions.
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