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Abstract. This study aims to understand human embryonic develop-
ment and cell fate determination, specifically in relation to trophecto-
derm (TE) maturation. We utilize single-cell transcriptomics (scRNAseq)
data to develop a framework for inferring computational models that dis-
tinguish between two developmental stages. Our method selects pseudo-
perturbations from scRNAseq data since actual perturbations are im-
practical due to ethical and legal constraints. These pseudo-perturbations
consist of input-output discretized expressions, for a limited set of genes
and cells. By combining these pseudo-perturbations with prior-regulatory
networks, we can infer Boolean networks that accurately align with scR-
NAseq data for each developmental stage. Our publicly available method
was tested with several benchmarks, proving the feasibility of our ap-
proach. Applied to the real dataset, we infer Boolean network families,
corresponding to the medium and late TE developmental stages. Their
structures reveal contrasting regulatory pathways, offering valuable bio-
logical insights and hypotheses within this domain.

Keywords: Boolean networks · Answer Set Programming · Human
preimplantation development · scRNAseq modeling.

1 Introduction

One of the outstanding questions of the field of in vitro fertilization is to un-
derstand the chain of events regulating human preimplantation development
leading to an implantation-competent embryo. To address this question, in [9],
we analyzed single-cell transcriptomic data (scRNAseq) from preimplantation
human embryos. Our analysis proposed some hierarchy of transcription factors
in epiblast, trophectoderm and primitive endoderm lineages. Individual cell fate
within heterogeneous samples, such as human embryos, can be followed from
scRNAseq data but presents multiple computational challenges with normaliza-
tion and “zero-inflation”, complicating network models [7]. The state-of-the-art
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tools used to propose a temporal distribution of such data are based on sta-
tistical approaches, such as manifolds (UMAP [8]) or graphs theory (pseudo-
time [11]). In [3], the authors used such pseudo-time distributions along with
scRNAseq expression data to infer Boolean networks for modeling gene regula-
tion in cancer progression. They focus, however, on the hypothesis of an averaged
cell expression at each stage defined by pseudo-time analysis, allowing to model
the dynamics of the cell fate decision. In the context of embryo development,
Dunn et al. [4] proposed computational models on transcriptional networks from
knockout data on mouse stem cells. This data type is ideal since the proposed
perturbations add crucial information to the inferring process.

In this work, we propose a framework to discover a family of Boolean networks
(BNs) of human preimplantation development that capture the progression from
one developmental stage to the next. This framework uses prior-knowledge net-
works (PKN) as a base on which the scRNAseq data is mapped. Then, it iden-
tifies pseudo-perturbations specific for two developmental stages. These pseudo-
perturbations are used in the last step to infer stage-specific BNs models. Since
perturbation data is rarely available due to practical and legal concerns, our
main contribution was to extract pseudo-perturbation data from scRNAseq data,
considering its high redundancy and sparsity. We used the Pathway Commons
database [12] to build a PKN and discovered 20 pseudo-perturbations (across
10 genes) characterizing medium and late stages of trophectoderm (TE) mat-
uration. They correspond to the gene expression of 20 cells in each stage; rep-
resentative on average of 82% of the total cells. Pseudo-perturbations referring
to 10 (entry) genes expression were connected (PKN information) to 14 genes
(output) expression. The 20 entry-output gene expression configurations allowed
us to infer 2 families of BNs (composed of 8 and 15 logical gates) characterizing
medium and late TE developmental stages.

2 Method

2.1 Pipeline overview

Our pipeline is based on background notions stated in Appendix and its main
steps, illustrated in supplementary material3, are: (i) PKN reconstruction, (ii)
experimental design construction, and (iii) BNs inference.

PKN reconstruction is achieved by querying the Pathway Commons
database, using pyBRAvo [6], with an initial gene list. Briefly, given a list of genes
relevant to the case study, pyBRAvo explores recursively predecessors genes and
outputs a signed-directed graph. The reconstructed PKN is then reduced to only
include genes and their interactions measured in the scRNAseq data, as well as
protein complexes associated with the genes to maintain their connectivity. The
resulting PKN comprises nodes selected as input, intermediate, and readout.

3 https://github.com/mathieubolteau/scRNA2BoNI/tree/master/ISBRA 2023 Supp

https://github.com/mathieubolteau/scRNA2BoNI/tree/master/ISBRA_2023_Supp
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Experimental design construction This step constructs an experimental
design from the reduced PKN and the scRNAseq data of the two studied cell
classes (see an example in supplementary material). The experimental design is
composed of: (i) pseudo-perturbations, which are binarized expression values for
input and intermediate genes in chosen cells whose value is identical in both cell
classes, and (ii) readout observations, which are normalized expression values for
readout genes in the chosen cells of both cell classes. To capture the diversity of
genes expression in scRNAseq data for each class, we implement a logic program
to maximize the number of different pseudo-perturbations for k genes, given a
set of input and intermediate genes (see Section 2.3). The resulting experimental
design is based on the inputs, intermediates, and readouts of the PKN obtained
in the previous step.

BN inference We infer BNs for each class using Caspo [13]. Given a PKN
and an experimental design, Caspo learns a family of BNs compatible with the
network’s topology and the experimental design data. Caspo learns minimal (in
size) BNs which minimize the error between their readouts predictions and ex-
perimental measures. In our framework, Caspo proposes specific BNs for each
class. This is obtained thanks to the experimental design identified in the previ-
ous step, where a maximal number of entry-output associations is proposed with
common entry gene values in both classes (pseudo-perturbations), and (maxi-
mally) different output gene values.

2.2 Experimental data preprocessing

We used single-cell data from [10], which measures the expression of ∼ 20, 000
genes across 1529 cells. Since we focused on genes in the PKN, our dataset com-
prised 125 genes (111 input and intermediates, and 14 readouts). We considered
only cells at medium and late TE stage; therefore we had a total of 680 cells.

First, we discretize raw gene expression data of input and intermediate PKN
nodes (see Section 2.1, PKN reconstruction) by considering a gene expressed if
at least 2 reads are identified in the raw data. Here, we denote by eij (resp.
rij) is the binarized (resp. raw) expression of the gene j for the cell i. We have
eij = 0 if rij < 2, and eij = 1 otherwise.

Second, we normalize the raw expression of genes related to PKN readouts
(see Section 2.1). We denote by nij the normalized expression of the gene i for
the cell j. We have nij = (rij −min)/(max −min) where min (resp. max) is
the minimum (resp. maximum) expression value of all readout genes across all
cells.

2.3 Experimental design construction - algorithm

This algorithm receives an integer k, as a parameter, limiting the number of
genes to be selected. Its input data is the preprocessed scRNAseq matrix for
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input, intermediate, and readout PKN genes. The algorithm retrieves (i) a max-
imal number of pseudo-perturbations, which identify cells associations between
two classes holding identical expression values for a set of k genes, and (ii)
cell associations which maximize the readout difference across (redundant) cells
associations. The details of this algorithm are presented below.

Maximizing the number of pseudo-perturbations The input of this
method is a binary matrix, E, where eij represents the presence (or activity
level) of gene j for cell i (see Section 2.2). The output is a subset of genes and
cells that adhere to various constraints, ensuring their pseudo-perturbations are
balanced between the different classes (see supplementary material, experimen-
tal design example). Let us denote by C, the complete set of cells; and by G, the
complete set of genes in our experimental data. Each cell is uniquely associated
with one class (either A or B); C = A ] B. We use the binary matrix, E, to
define the relation IG, IG(ci) = {gj ∈ G|eij = 1}. IG(ci) thus represents the
active genes, belonging to G, for cell ci. If G′ ⊂ G, then the restriction of IG to
G′ is defined by IG

′
(ci) = IG(ci) ∩G′.

Problem formulation. Given an association matrix E, associating a set G of
genes to a set C of cells, where C is composed of cells belonging to 2 disjoint
sets (classes) A and B; and given a parameter k limiting the number of selected
genes, find a subset G′ of genes and the largest subset C ′ (C ′ = A′ ] B′ ⊂ C,
where A′ ⊂ A and B′ ⊂ B) satisfying the three following constraints:

1. The size of G′ is fixed to k (parameter). For large instances k << |G|.
2. ∀c1, c2 ∈ A′ (resp. B′), c1 6= c2, we verify that IG

′
(c1) 6= IG

′
(c2).

3. ∀c1 ∈ A′ (resp. B′), ∃c2 ∈ B′ (resp. A′), such that we verify
IG

′
(c1) = IG

′
(c2).

From this result, for each ci ∈ C ′ we define a binary vector bi, such that
for j ∈ {1, · · · , k}, bij = 1 (resp. bij = 0) if gene gj ∈ IG

′
(ci) (resp. 6∈ IG′

(ci)).

bi is called a pseudo-perturbation. Notice that since the sets G′ and C ′ are not
unique, there may exist several pseudo-perturbations vectors.

Constraints justification. The imposed constraints are crucial in light of the en-
tire framework, which handles Boolean network inference and single-cell data.
Constraint 1 reduces the search space, improves computational efficiency, and
simplifies the subsequent step of learning Boolean networks. Constraint 2 pre-
vents redundancy in gene selection from different cells within the same class. This
is essential due to the abundance of zero values and redundancy in single-cell
data. Constraint 3 promotes similarity in gene expression values between the
two distinct classes. This alignment enables meaningful comparative analysis
during the subsequent step of Boolean network inference. Despite the inherent
evolutionary differences between cells belonging to different classes, selecting
genes with similar expression values allows us to impose comparable entry con-
ditions on the system, facilitating accurate modeling of the distinct regulatory
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mechanisms at play. Finally, selecting a larger number of pseudo-perturbations
provides more information, enriching the Boolean network inference step and
allowing for exploring various regulatory mechanisms.

Maximizing readout difference Pseudo-perturbations identified by the pre-
vious algorithm relate cells in A′ to those in B′. However, different cell relations
may exist for the same pseudo-perturbation vector.

Problem formulation. Given a set of pseudo-perturbation binary vectors, O, and
given the matrix of preprocessed scRNAseq data of normalized readout values,
find the sets of cells A′∗ and B′∗, associated by all pseudo-perturbation vectors
in O, that maximize the difference of readout vectors, rA

′∗ (for readouts of cells
in A′∗) and rB

′∗ (for readouts of cells in B′∗).

Algorithm. For each vector b in the set of optimal pseudo-perturbations, relating
cells c1 (in A′) and c2 (in B′):

1. Compute a set of redundant cells for each class. This involves identifying
cells in class A with an identical binarized vector b, denoted as set RA

b , and
likewise for class B denoted as RB

b . Both sets, RA
b and RB

b , include cells c1
and c2 respectively.

2. Iterate across all pairs of cells in RA
b × RB

b , and calculate the difference of
readout genes values while keeping the maximal difference.

We retrieve an association of each optimal pseudo-perturbation to a vector
of normalized readouts expression that maximizes the difference between the
two classes. Additionally, we calculate the representativity score for the optimal
pseudo-perturbations by considering the number of redundant cells. Let nA be
the number of cells in class A, and let O be the set of Boolean vectors in all
optimal pseudo-perturbations for class A. The representativity score SA for class
A is defined as follows:

SA =

∑
b∈O |RA

b |
nA

× 100. (1)

2.4 Implementation and software availability

The complete framework was implemented in an open-source system scRNA2BoNI

available at: https://github.com/mathieubolteau/scRNA2BoNI. scRNA2BoNI

uses Answer Set Programming (ASP) [1] as logical modeling and constraint
solving paradigm to identify the maximal number of pseudo-perturbations and
Python for the maximization of readout difference. ASP is used to model prob-
lems from NP and provides state-of-the-art solvers that propose exact solutions
for optimization problems and allow enumeration of all optimal or pseudo-
optimal solutions. For our study, we used clasp [5]. On a computer cluster
comprising 160 CPUs and 1.5 To of RAM, given an association matrix compris-
ing expression of 111 genes for 680 cells, our pipeline allows us to generate 20

https://github.com/mathieubolteau/scRNA2BoNI
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pseudo-perturbations in 65h. This corresponds to a pseudo-optimal solution for
this problem that is not unique. The ASP program of this algorithm is provided
in the supplementary material. The complexity of our program can be analyzed
considering two factors that create the search space: (i) the selection of k genes
from a total set of G genes, and (ii) the choice of pairs of cells. That is, for each
possible selection of k genes, an amount of c associations between cells in classes
A and B (where the values of the k genes coincide) has to be tested to discard re-
dundancies within the same class. The maximum value for c is |A| × |B|; which
represents associating all cells in both classes. clasp performs backjump and
conflict-driven learning, optimizing the search space; thus, our estimate mea-
sures a worse case. The estimated complexity for the worst-case (see Equation
2) implies that our algorithm is exponential on the number of considered genes
and cells from our scRNAseq dataset.

O(

(
|G|
k

)
× 2|A|×|B|) (2)

3 Results

Our data and results are available as supplementary material at:
https://github.com/mathieubolteau/scRNA2BoNI/tree/master/ISBRA 2023 Supp.

3.1 Pseudo-perturbations identification - different size benchmarks

We tested our algorithm on 4 toy datasets (see specifications in Table 1, datasets
A −D). We also applied our program on 2 entire datasets: phosphoproteomics
data, measuring averaged cell population protein expression (dataset P ) from [2]
and scRNAseq data (dataset SC) from [9]. Our results are shown in Table 1. We
can see that using dataset B we identified 5 optimal pseudo-perturbations with
identical input and intermediate genes expression for both classes. These 5 differ-
ent Boolean vectors of pseudo-perturbations represent the expression behavior
of 83% (resp. 100%) of the cells in class early TE (resp. medium TE ) for the
k = 5 selected genes (see Equation 1). On datasets A−B, we found an optimal
solution, whereas on datasets C − SC, suboptimal ones. Our results enable us
to advise potential users on expected computation times based on their dataset
sizes. For datasets P and SC, we found up to 23 and 20 pseudo-perturbations,
respectively. The representativity of selected patients in the phosphoproteomics
data (21% and 45%) is vastly lower than the representativity of selected cells
in the scRNAseq case study (75% and 89%), suggesting more redundancies in
scRNAseq data. Our method is thus applicable for selecting optimal pseudo-
perturbations from scRNAseq data.

3.2 Discrimination of the medium and late trophectoderm stages

PKN reconstruction We used 438 transcription factor (TF) genes involved
in human embryonic development as input for pyBRAvo to build the PKN (see

https://github.com/mathieubolteau/scRNA2BoNI/tree/master/ISBRA_2023_Supp
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Table 1: Maximizing number of pseudo-perturbations applied to 6 case studies.

Dataset Source
Classes
(C1;C2)

m
Cells or
patients
(C1;C2)

k
Execution
time1

Different
Boolean
vectors

Representative
score S2

(C1;C2)

A artificial C1 ; C2 10 10 (5;5) 3 0.105s 3 50;60

B
subset of
single-cell data

early TE ;
medium TE

30 24 (12;12) 5 11.379s 5 83;100

C
subset of
single-cell data

early TE ;
medium TE

100 50 (25;25) 10 5h* 11 76;80

D
subset of
single-cell data

early TE ;
medium TE

120
200
(100;100)

15 5h* 18 40;37

P
phosphoproteomics
data from [2]

CR ; PR 79
191
(136;55)

10 96h* 23 21;45

SC single-cell data
medium TE ;
late TE

111
680
(348;332)

10 65h* 20 75;89

m refers to the number of input and intermediate genes or proteins. CR = Complete Remission ;

PR = Primary Resistant (cf. to [2]). 1 Tests were performed on a computer cluster comprising 160

CPUs and 1.5 To of RAM. 2 see Equation 1. * Execution time corresponds to the fixed timeout.

supplementary data for further details). The PKN is composed of 327 nodes and
475 edges, with only 28 of the 438 initial TFs found in Pathway Commons [12].
We then reduced the network to 191 nodes (84 input, 27 intermediate, 14 readout
genes, and 66 complexes) and 285 edges, limited to genes measured in scRNAseq
data and complexes linked to these genes (see supplementary material).

Experimental design construction We generated pseudo-perturbations for
the experimental design using the method described in Section 2.3, which em-
ployed the set of input and intermediate genes from the reduced PKN, comprising
111 genes. Our analysis focused on the expression of these genes across 680 cells,
which were identified to be in medium and late TE developmental stages (see
Table 1, dataset SC).

We tested different values of k, the number of selected genes, similar to those
used in [13]. We observed the number of pseudo-perturbations generated after
30 hours of calculation on a computer cluster and computed the representativity
score for each k value. Based on our results, k = 10 was the best compromise
between a high number of pseudo-perturbations and a high representativity score
(see Fig. 1A). This value was also used in [2], supporting our decision.

Our method produced 20 pseudo-perturbation Boolean vectors, which paired
medium and late TE cells to maximize the expression value difference of 14 read-
out genes. In Fig. 1C, we present the experimental design composed of 24 genes:
7 inputs genes (in green), 3 intermediate genes (in red), and 14 readouts (in
blue). Each row represents a pseudo-perturbation (on the left, ordered from
most to least representative) and its readout observations. Note that each vector
is unique. We observe some readout genes with minimal variations (mean of ex-
pression difference between both stages less than 0.06), e.g. DEC1 or SOD1, and
some readout genes where a significant variation (mean of expression difference
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between both stages greater than 0.30) is observed, e.g. CEBPB, CEBPD or
GSR. These last also appear in the learned BNs (see Fig. 1B).

Fig. 1: Medium and late TE discrimination findings. A. Impact of k on the num-
ber of different pseudo-perturbations and their representativity in the dataset.
B. Inferred BNs. C. Visualization of the experimental design.

BN inference We used the generated experimental design combined with the
reduced PKN to infer BNs specific to medium and late TE using the Caspo soft-
ware. Caspo proposes BNs that match the PKN topology and have an optimal
(minimal) mean square error (MSE) between the Boolean prediction of readout
nodes (given the Boolean input states) and their experimental measurement.
The Caspo used parameters are presented in the supplementary material.

Fig. 1B illustrates the union of learned BNs for the medium and late TE
developmental stages, respectively, which are compatible with the fixed fitness
value. The size of the learned BNs is equal to 8 for medium TE and 15 for late TE.
The optimal MSE for the learned BNs equals 0.1421 and 0.1924, respectively. The
medium TE family has 2 BNs, while the late TE one has 4. The execution time for
both classes is comparable. These two families of BNs exhibit distinct differences
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in their gene behaviors within cell types. Interestingly, the late TE BNs connect
more input and readout genes than the medium TE BNs. Both classes of BNs
share two input genes, SMAD3 and E2F1, as well as one intermediate gene,
EGR1, while only one common readout, PSAT1, is present. Notably, most of the
interactions (without considering their sign) of the medium TE BNs are included
in the late TE BNs. While both medium and late TE BNs propose different
regulatory mechanisms for PSAT1, the medium TE BNs suggest an activation
path from SMAD3. In contrast, the late TE BNs propose two inhibition paths
from the same input. Likewise, an inhibition path from E2F1 to PSAT1 is
proposed in medium TE BNs, while an activation path between these genes is
proposed for late TE BNs. This path is, however, subject to the presence or
absence of SMAD3. Seemingly the PSAT1 readout was measured differently in
the same pseudo-perturbation configuration involving genes E2F1 and PSAT1.
Late TE BNs exhibit supplementary readout genes, namely GSR, CEBPB, and
CEBPD, indicating that the readout measurements matched the late TE BNs
prediction, given the selected pseudo-perturbation Boolean vectors. However,
medium TE BNs could not predict the observed measurements with minimal
error on these three genes. Consequently, late TE regulatory mechanisms appear
more complex than medium TE ones.

4 Discussion and conclusion

In this paper, we propose an original framework to compute families of Boolean
networks compatible with scRNAseq data and prior regulatory knowledge. Our
method generates Boolean networks comparing two different conditions. We ap-
plied the implemented framework to human embryo development to study the
difference between cell behavior at a medium and late TE developmental stage.
Despite the lack of in vitro perturbation data and the sparsity of single-cell
datasets, our method yields meaningful results.

As significant results, we developed an algorithm to obtain pseudo-
perturbations from scRNAseq data demonstrating scalability and efficiency
through benchmarking with datasets of varying sizes. The worst-case search
complexity for the real case study was of

(
111
10

)
× 2348×332 = 3.26× 1034793, and

our partial results were generated in 65h. We prove that our algorithm allows for
more diverse pseudo-perturbation sets than the state-of-the-art method [2] (see
supplementary material), which studied cell population-averaged measurements.
We can simulate real perturbations by identifying pseudo-perturbations and
proposing more precise (such as Boolean) computational models. Our method
identified 20 pairs of cells with Boolean expressions coinciding with selected
genes, representing of 75% and 89% of the complete set of cells in medium and
late TE developmental stages, respectively.

Using diverse pseudo-perturbations sets, we generate families of Boolean net-
works to distinguish medium and late TE developmental stages in human embry-
onic development. The BNs propose Boolean functions derived from the Pathway
Commons database to model gene regulation mechanisms. Late TE cells exhibit
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a more complex BN structure (size 15 vs. 8) than medium TE cells. These find-
ings are consistent with the fact that late TE requires a gain of biological function
to help the embryo implant in the endometrium. Differently, from methods that
propose a single computational model of averaged cells, our method includes a
subset of 20 cells for each stage and learns optimal families of BNs representing
the diversity of expression mechanisms within this cell subset for each stage.
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Appendix

Boolean network (BN) A Boolean network B, of dimension n is defined as B =
(N,F ) where: N = {v1, . . . , vn} is a finite set of nodes (variables or genes) and
F = {f1, . . . , fn} is a set of Boolean functions fi : Bn → B, with B = {0, 1},
describing the evolution of variable vi.

Influence graph (IG) An IG is denoted by G = (V,E, σ) with V = {v1, . . . , vn}
the set of nodes, E ⊆ V × V the set of directed edges, and σ ⊆ E × {+1,−1}
the signs of the edges.

In the context of gene regulation, j → i means that the change of j in time
influences the level of i. Edges j → i are labeled with a sign, where +1 (resp.
−1) indicates that j tends to increase (decrease) the level of i. The IG derived
from regulatory knowledge bases, is called a Prior-Knowledge Network (PKN).
The PKN serves as the initial base for generating multiple BNs that adhere to
its topology. So that each node in the PKN corresponds to a gene and has an
on/off state determined by the Boolean function defined by the BN. Different
BNs can have the same IG, while a BN can only be assimilated to a single IG.

Within the PKN, we identify three types of genes. An input gene, which is
a gene without any predecessor; an intermediate gene, with predecessor(s) and
successor(s); and a readout gene, without any successor. Input and intermediate
genes refer to the part of the PKN that can be stimulated (externally or inter-
nally), they can also be referred to as system entries. While readouts are the
part of the system that can be observed, they can be referred to as the system
output.

Pseudo-perturbations Usually perturbation data is required to discover Boolean
mechanisms within a system. This data comes in the form of on/off values of
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entries associated with output values. However, in the human embryonic devel-
opment context, perturbing the system is not feasible for obvious reasons. There-
fore, we introduce the notion of pseudo-perturbations, which refers to artificial
perturbations derived from the (unperturbed) gene expression observations.
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