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Abstract—The numerous and huge operations involved in
homomorphic encryption applications require fast arithmetic.
RNS arithmetic is popular in their software implementations. In
this context, we proposed a hierarchical approach for RNS base
extension. It leads to 50–60 % reduction of both computation
time and constant storage requirements for large homomorphic
parameters in our experimental setup. When state-of-the-art
parameters are not suitable for our approach, we propose to
use equivalent parameters leading to similar reductions.

Index Terms—residue number system; base extension; homo-
morphic encryption

I. INTRODUCTION

In homomorphic encryption (HE), computations are directly
performed over encrypted operands [1]. They can be delegated
to cloud servers without compromising privacy of sensitive
data. HE is an emerging solution in privacy-concerned appli-
cations such as medicine [2] and machine learning [3].

Among efficient HE schemes based on the ring learning
with error problem [4], BFV [5], the Fan-Vercauteren variant
of the Brakeski’s scheme [6], is popular. It requires numerous
arithmetic operations on huge polynomials with thousands
of large coefficients. Typical coefficients are integers with
hundreds to thousands bits.

Recent HE implementations use the residue number system
(RNS) to speed up internal computations: OpenFHE [7], PAL-
ISADE [8], SEAL [9]. RNS relies on the Chinese remainder
theorem (CRT) to split large computations into parallel smaller
ones. In RNS-based HE implementations, the base extension
(BE) is the key operation on coefficients [10].

A hierarchical BE algorithm has been proposed in [11] for
elliptic curve cryptography (ECC) in hardware. This algorithm
uses RNS bases with k = r × c moduli to reduce the BE
complexity from O(k2) operations to only O(r2 × c).

Below, we propose a similar hierarchical approach to speed-
up BE in BFV context. Background is recalled in Sec. II. Our
approach is presented in Sec. III. Sec. IV reports preliminary
software implementation results and comparisons to state-of-
the-art solutions. Sec. V discusses ongoing works.

II. NOTATIONS AND STATE OF THE ART

RNS for homomorphic encryption has been introduced
in [12] with an adaptation of BFV [5]. Our notations are:

• |x|m = x mod m;
• Q = (q1, . . . , qk) an RNS base with k prime moduli;
• Q =

∏k
i=1 qi the product of all moduli in the base;

• w the width of all moduli expressed in bits, in practice
w fits into a machine word.

We represent an operand x ∈ ZQ by its vector of residues
(xq1 , . . . , xqk) = (|x|q1 , . . . , |x|qk) in the RNS base Q.
Thanks to the CRT, RNS addition, subtraction and multipli-
cation are very efficient operations which can be performed
in parallel over each residue. But RNS is non positional thus
comparison, division and rounding are costly. They require
BEs. A BE converts x represented in the RNS base Q into
another base P, with Q and P coprime. Similar notations
apply for base P, for instance P =

∏k
i=1 pi.

In [12], the BFV scheme from [5] is adapted to RNS.
The polynomials coefficients, which are ZQ elements with
log2(Q) ∈ [90, 1600] bits, are represented in RNS. In [12],
RNS divides the computation time by 4 to 20 depending on
the application. To perform operations such as rounding, a fast
base extension (FBE) algorithm is introduced. It computes:

FBE(x,Q,P) =

∣∣∣∣∣
k∑

i=1

∣∣∣xqi ×
qi
Q

∣∣∣
qi
× Q

qi

∣∣∣∣∣
pj


j∈[1,k]

FBE is efficient because it removes one costly modular
reduction by Q from the CRT formula. It only uses integer
computations and costs k2 + k modular multiplications on w
bits. But its result is approximated: FBE returns x′ = x +
αq with α ∈ [0, k − 1] instead of x in base P. In practice
for the RNS implementation of BFV proposed in [12], the
approximation factor α is managed thanks to some correction
steps outside of FBE during other computations.

Paper [13] proposes to include a new correction step for α
inside the BE algorithm using floating-point approximations.
Comparisons of this BE solution to the previous one can be



found in [14], [15]. In practice, they lead to quite similar
performances in HE. Today, both solutions are implemented
in HE libraries [7], [8], [9].

A hierarchical base extension (HBE) approach has been
introduced in [11] for ECC in FPGA implementations. The k
moduli are seen as a matrix of r rows and c columns (i.e.,
k = r × c). HBE consists in computing c intermediate CRTs
over the residues, creating r super-residues. The BE is then
performed over the r super-residues, leading to a reduction
of the BE complexity. The correction step for α presented
in [11] (derived from [16]) has been managed directly in
the HBE algorithm but it requires pseudo-Mersenne moduli.
Paper [11] only provides algorithms and results for c = 2.

III. FAST HIERARCHICAL BASE EXTENSION

Below, we propose a new BE algorithm with a reduced
computation cost by adapting FBE from [12] with the hi-
erarchical organization idea from [11] for a HE software
context. The following notations are introduced to support the
decomposition of RNS bases into matrices of moduli (instead
of vectors):

• Q: an RNS base of k = r × c moduli with

Q =

q1,1 · · · q1,c
... · · ·

...
qr,1 · · · qr,c

;
• Qi =

∏c
j=1 qi,j : product of moduli in the i-th row;

• Q =
∏r

i=1 Qi =
∏r

i=1

∏c
j=1 qi,j : product of all moduli;

• Qi = Q/Qi: product of all moduli except the i-th row;
• qi,j = Qi/qi,j : product of all moduli in the i-th row

expect the j-th one;
• Tqi,j =

∣∣∣ qi,jQ

∣∣∣
qi,j

: constant used in BEs;

• P = (p1,1, . . . , pr,c): another RNS base coprime with Q.
Our algorithm, denoted fast hierarchical BE (FHBE), is

presented in Alg. 1. It mostly has the same operations as
in HBE from [11], except that the α approximation is not
calculated using the same trick as the one proposed for
FBE in [12]. Lines 1–3 are strictly identical between FBE and
FHBE. Lines 4–7 compute a partial CRT on each row of
the representation to obtain r super-residues X̂Qi in the base
(Q1, . . . , Qr). The width of Qi is bounded by cw+ ⌈log2(c)⌉
bits. Finally lines 8–12 directly compute the CRT from the
super-residues and reduce it modulo each element of base P.
HBE algorithm has been validated in [11]. Using the

same validation method, one can immediately show that
FHBE leads to the same result than FBE.
FBE algorithm requires k2 + k elementary modular multi-

plications (EMMs) over w bits moduli and k2 + k stored pre-
computations of w bits. EMM metric is used in [11] to eval-
uate the theoretical cost of RNS algorithms. FHBE requires
k = r× c EMMs at line 3 and r2× c = k2

c EMMs at line 12,
leading to a total of k2

c + k EMMs. However, FHBE also
requires some operations with larger operands than FBE:

• w × (c − 1)w bits multiplications (without reduction) at
line 7;

Algorithm 1: Proposed Fast Hierarchical BE (FHBE)
Input: XQ: X in base Q
Precomp.: Tqi,j , qi,j ∀ i ∈ [1, r] and ∀ j ∈ [1, c],∣∣Qi

∣∣
pl,j
∀ i ∈ [1, r], ∀ l ∈ [1, r] and ∀ j ∈ [1, c]

Output: XP : X + αQ in base P
1 for i from 1 to r parallel do
2 for j from 1 to c parallel do
3 x̂qi,j ←

∣∣xqi,j × Tqi,j

∣∣
qi,j

4 for i from 1 to r parallel do
5 X̂Qi ← 0
6 for j from 1 to c do
7 X̂Qi

← X̂Qi
+ x̂qi,j × qi,j (no reduction)

8 for i from 1 to r do
9 for l from 1 to r parallel do

10 for j from 1 to c parallel do
11 x̂pl,j,i

←
∣∣∣X̂Qi

∣∣∣
pl,j

12 xpl,j
←

∣∣∣xpl,j
+ x̂pl,j,i

×
∣∣Qi

∣∣
pl,j

∣∣∣
pl,j

• modular reductions from cw + ⌈log2(c)⌉ to w bits at
line 11.

Paper [11] does not analyze the size of the pre-computations
storage required in HBE because it always fits into the FPGA
memories for ECC. The pre-computations required for our
FHBE (Alg. 1) are:

• Tqi,j : k residues of w bits;
• qi,j : k integers of (c− 1)w bits;
•

∣∣Qi

∣∣
pl,j

: r × k residues of w bits.

Their total size is therefore k(c+ r)w =
(

k2

c + kc
)
w bits.

FHBE leads to a smaller pre-computations storage. For a fixed
k, the minimum is reached when c =

√
k. In the ideal case

k = c2, FHBE divides by
√
k
2 the pre-computation storage

compared to FBE.
Regarding the reduction of the computation cost, a high

level comparison of the two algorithms is not straightforward.
The iteration in the deepest nested loops of FBE just computes
line 12 (with another w bits constant instead of

∣∣Qi

∣∣
pl,j

). The
cost of these nested loops is k2 operations on w bits values. In
FHBE, there are only r2 × c = k2

c such iterations, but there
is a new operation in the iteration at line 11. FHBE also
requires a preliminary loop at lines 4–7, but it only contains
r × c iterations. Most of new operations perform on larger
data, line 7 computes values of size up to cw+⌈log2(c)⌉ bits.
To conclude, the optimal computation cost depends on several
implementation parameters.

One can observe that Alg. 1 requires k to have divisors. The
next section evaluates the impact of k integer factorization on
performances.

IV. IMPLEMENTATION AND COMPARISONS

We implemented our FHBE algorithm, as well as the
FBE algorithm from [12], in C/C++ language using the
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GMP multiple-precision arithmetic library version 6.2.0, GCC
compiler version 9.4.0 and Linux kernel 5.15 from Ubuntu
distribution. We used the same optimization efforts in the
codes and during the compilation process. All the performance
and memory cost evaluations have been performed on an
Intel Core i7-9850H processor at 2.60GHz. We will study
the impact of other processor architectures in the future.
We plan to distribute our codes as an open source library
when polynomial and HE operations will be implemented,
parallelized and optimized (see Sec. V).

We analyzed and compared two performance/cost aspects
of our BE algorithm and the state-of-the-art one:

• the computation cost evaluated using the execution time
on a single thread (as in [14]);

• the pre-computations storage requirements measured by
carefully monitoring all values allocated in GMP.

Regarding the computation time evaluation, we performed
numerous BEs on random independent operands (like the 211

to 215 coefficients of polynomials used in HE applications).
The same operands were applied to both BE algorithms to
compare them with the same memory mapping and similar
cache behavior for the operands (but each BE algorithm
requires different pre-computations).

We used the two largest ZQ from [12] (780 and 1590 bits)
and the corresponding k and w values. In the future, we will
perform more extensive evaluations for other sizes.

In FHBE, k the number of moduli in the RNS bases must
be divisible (k = r × c). This leads to two cases:

• k from state-of-the-art values is divisible, then we use it
for both FBE and FHBE;

• or k from state-of-the-art values is not divisible, then we
use it for FBE but we choose a close k for FHBE and
we adapt w to provide the same size log2(Q) (we do not
want to impact the security level).

Our evaluation results when k is divisible are reported in
Tab. I for 3 pairs (k,w) from [12]. As c must divide k, some
cells of the table are empty (denoted by a dash).

FHBE leads to 28 % to 58 % faster BEs except in the case
c = 2. This confirms that the reduction of the computation
cost from O(k2) to O(r2 × c) offered by FHBE is effective
in practice. When c > 2, a speed-up is always observed and

TABLE I
COMPUTATION TIME AND PRE-COMPUTATION STORAGE SIZE

COMPARISONS BETWEEN FBE [12] AND FHBE WITH VARIOUS BASE
DECOMPOSITIONS FOR STATE OF THE ART k × w VALUES.

k × w FBE
FHBE with c on line below best

2 3 4 5 6 13 gain

time
[µs]

12× 62 2.74 3.47 2.72 2.35 - 1.96 - 28%

26× 30 10.21 12.67 - - - - 4.26 58%

25× 62 9.53 - - - 6.61 - - 30%

size
[kb]

12× 62 9.53 5.86 5.14 5.15 - 5.92 46%

26× 30 20.32 11.38 - - - - 11.6 43%

25× 62 39.65 - - - 15.33 - - 61%
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Fig. 1. Computation time and size of pre-computations storage comparisons
of FBE [12] and FHBE with several k × w decompositions and c values.

the largest c leads to the fastest BE. This suggest that the
reduction in the number of iterations for line 12 of Alg. 1
is more important than the penalty of dealing with larger
operations and values at lines 4–7 and 11. On the contrary,
when c = 2, this penalty is more important than the reductions
of the number of EMMs and FHBE is slower than FBE.

Regarding the cost of the pre-computations storage in the
bottom part of Tab. I, FHBE always leads to smaller memory
requirements. The best storage reduction ranges from 46 to
61 %. We think this is a nice property for HE applications
where data are huge. FHBE should help to reduce problems
related to cache impact (but we need more experiments to
analyze details). As one can guess from our analysis in Sec. III,
the smaller memory usage is obtained for c close to

√
k. As an

example, with k = 12 the smallest total of pre-computations
are for c = 3 and c = 4.

In Fig. 1, we report results when k is not divisible. We
used k = 53 and w = 30 from [12] for FBE. For FHBE, we
used similar RNS base decompositions (leading to very close
log2(Q)) to evaluate the impact of many choices for c:

• k = 54 = 2× 33 and w = 30;
• k = 56 = 23 × 7 and w = 29;

The top curves in Fig. 1 are the computation times for both
BE algorithms (with two (k,w) pairs for FHBE). Except for
small c values, FHBE is faster than FBE. For the largest c,
up to 80 % time reduction is achieved using FHBE instead
of FBE. For small values of c, especially c = 2, FHBE is
slower than FBE (as in Tab. I).

The bottom curves in Fig. 1 clearly show smaller pre-
computations storage requirements for FHBE with up to 73 %
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reduction when c is close to
√
k (experimentally in our setup,

for k = 56 the best c is 7 which is the close to
√
56 ≈ 7.48).

The orange lines highlight a good trade-off between both
metrics where FHBE (with k = 54, c = 9 and w = 30)
is 53 % faster and requires 71 % smaller pre-computations
storage than FBE (with k = 53 and w = 30).

The computation time and pre-computations storage reduc-
tions are more important in Fig. 1 than the ones from Tab. I.
One reason is that using k with many divisors, there are more
RNS base decomposition choices. Another reason is that when
k increases, FHBE asymptotic computation cost is the one of
FBE divided by c, thus FHBE is faster for higher k.

To summarize, FHBE significantly reduces the computation
cost and the pre-computations storage over FBE when c > 2.

V. DISCUSSION

Even if FHBE leads to faster operations and smaller pre-
computations for BE, this is a work in progress. We now have
to adapt, implement and optimize solutions for polynomial
arithmetic and HE operations (e.g., addition, multiplication,
relinearization) using FHBE. We also have to select good pa-
rameters for all computations layers in complete applications.

Our current implementation of FHBE is a single-thread
one to demonstrate the reductions in computation time and
pre-computations storage. We now also have to parallelize it
on multi-core processors. But this is a complex task since
parallelism is available, at least, inside each coefficient in
ZQ represented in RNS (over the residues) and inside each
polynomial (over its independent coefficients).

RNS provides natural parallelism over the residues. For
instance, [13] reports a 2.5× BE speed-up when the number
of threads is k. FHBE iterations at lines 1, 2, 4, 9 and 10
are parallel loops over the rows and the columns of the RNS
base, this allows many parallelization solutions. Furthermore,
the smaller pre-computations in FHBE should help parallel
optimizations with fewer cache misses over shared storage in
multi-core processors.

HE ciphertexts are polynomials with large degrees (e.g., 211

to 215). As their coefficients are independent, multiple BEs
can be performed in parallel. For instance in [13], this leads
to 6× speed-up for homomorphic multiplications on a 32-core
processor compared to single-thread one.

Finally, mixing parallelism at both levels, RNS and poly-
nomials, simultaneously is also possible. Then, the explo-
ration space is huge. We want to evaluate many solutions
for operations algorithms, RNS parameters, compiler level
optimizations and processor architectures. We are very excited
to work on these different aspects.

VI. CONCLUSION

We proposed FHBE a hierarchical variant of the FBE al-
gorithm for software RNS implementations of HE. FHBE re-
duces about 50–60 % both the computation cost and the pre-
computations storage for most (k,w) pairs compared to state-
of-the-art solutions.

In future works, we will implement BFV operations in RNS
using FHBE. We will also evaluate various parallelization
strategies (parallelism in RNS operations and/or in polynomial
operations) on multi-core processors. Finally, we will inves-
tigate the impact of parameters such as c, k and w on the
performances of homomorphic operations.
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