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Abstract : The graph of dependencies (or relationships) between numerical or
logical variables which can be built from the expert knowledge available in a
given domain (generally expressed under the form of rules) may be extremely
intricate. It is usually far from a tree-like structure and exhibits cycles. In or-
der to make the best out of the expert knowledge in a given situation it may
be dangerous to use the knowledge in a too mqm::_mﬂ way. A procedure for
building an evaluation tree from the expert knowledge .is proposed. It is worth
noticing that this tree is determined by the variables, which are to be evalua-
ted with respect to a user query. Moreover, due to logical or functional de-
pendencies, some variables must be conjointly evaluated by means of subsets
of rules which cannot be processed separately in order to completely take ad-
vantage of the expert knowledge. This method is implemented in the MIRACLE
system which is running on a micro-computer. Besides, it is capable of dea-
ling with uncertainty. The uncertainty is encoded under the form of Shafer be-
lief functions or possibility measures. However the approach is not specific of
a particular treatment of uncertainty.

1 INTRODUCTION

Traditionally, the inference engine of an expert system processes rules in a ri-
gidly oriented manner, by selecting a set of rules enabled by matching their condi-
tion parts with available facts,triggering theserules oneat time so as to produce
new facts (or delete old ones). Results obtained from independent rules must be
combined, especially when uncertainty is present. New facts may be used to trig-
ger other rules and so on. This methodology is rather efficient because rules are
oriented, and because reasoning reduces to a totally distributed process. However
there are cases when no results are found where some should be ; and a totally
distributed technique is not very well adapted to the treatment of uncertainty.

Contrastedly with such local strategies, global approaches have been proposed
which turn inference into a mathematical programming problem (Nilsson, 1986,
Zadeh, 1979), or into a large-scale combination problem in which all pieces of in-
formation are processed once (Chatalic et al, 1986). These methods theoretically
give exact results but are computationally untractable. The idea is then to decom-
pose a knowledge base into several sub-bases where only a global reasoning techni-
que applies. These sub-bases form the nodes of a network where information
flows, computations being locally performed on the nodes. This type of idea has
been developed by Pearl (1986) for Bayesian networks, and Shafer et al (1986)
using belief functions for the modelling of uncertainty.

In this paper we propose a technique which decomposes a knowledge base into
locally independent sub-bases, by analyzing the dependency graph between elemen-
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tary or complex facts. A query-driven reasoning technique is described, which
turns the dependency graph into a rooted evaluation tree of local computations
which proceed from the leaves to the root. The evaluation tree is independent of
the treatment of uncertainty involved in the local computations.

2 FROM A KNOWLEDGE BASE TO A DEPENDENCY GRAPH

One of the advantages of classical logic-based knowledge representation tech-
niques is to model any piece of information in the same format. However classi-
cal logic does not account for the imperfection of expert knowledge. Here we try
ta have a knowledge representation setting which remains in the spirit of proposi-
tional calculus, while providing room for imprecision and uncertainty.

2.1 Knowledge representation conventions

The basic primitive which expresses an elementary fact is of the form of a
list (x A) which means "The value of x is in A", where x is an ill-located object
in some set X and A is a subset of X. X is a referential set which can be a nu-
merical scale (size, temperature, ...) or a finite set of alternatives (e.g. {blue,
yellow, ...} for a color). x is called a variable, and stands for the attribute of a
given object (e.g. the size of John ..., the color of car 1). It can be a Boolean
variable expressing an event which occurs or not (then X = {true, false}). Our
concept of variable is closer to that of a random variable rather than a variable
in predicate calculus. A acts as a constraint limiting the values of x.

The piece of information (x A) is said to be precise if and only if A is a sin-
gleton of X, otherwise it is said to be imprecise (i.e. x is not completely speci-
fied). A negative fact "not (x,A)" is equivalent to (x,A) where A is the complement
of A (in X), and is thus captured by this technique. Hence (x,A) is equivalent to a
literal in propositional logic, A standing for a predicate, and x for a constant.

A composite fact is made up of elementary facts which are related by means
of standard connectives of logic. A composite fact can be expressed under the ge-
neric format (x,A) where x is a composite variable Ax_,.:_xzv and A is a set-theo-
retic combination of elementary constraints A ,---sA_ €xpressing a relation between
the variables xi,...,x,. For instance a noEvomLm fact of the form (x A) and (y B)
is equivalent to ((xy)(AxB)) where x expresses a Cartesian product, while (x A) or
(y B) translates into ((x,y),A+B) with A+B = AxB. A production rule if (x{A}) and
... and (xpAp) then (y B), is interpreted in the tradition of logic as a composite
fact (not (xjA}) or not (x2A2) ... or not (xpAp) or (y B)), which translates into
((x1+.-xpy),A 1 +A+...+A+B). However rules of the form if (x{Ay) and ... and (x,A})
then (yy B) or ... or (y, Bp) are also allowed. Generally, any composite fact can
be put under a disjunctive form ((xq,x2...xp)A 1 +A2+...+Ap) or can be decomposed
into a conjunction of disjunctive facts, which are treated separately. A disjunctive
fact can be viewed as a relation between variables.

An uncertain fact is of the form (F U) where F, called the content, is an ele-
mentary or a disjunctive fact, and U is a list which expresses the uncertainty of
the fact. It can be a degree of prohability, or a pair (belief, plausibility) in the
sense of Shafer (1976) or a pair (necessity, possibility) as in possibility theory (Za-
deh (1978), Dubois-Prade (1985)). Note that F cannot involve conjunctions of more
elementary facts because, under uncertainty, the decomposition of conjunctions is
no longer allowed. Uncertain facts must be viewed as conjectures on particular ob-
jects rather than general default rules about classes of objects, as in default logic
(Reiter, 1980).

2.2 The dependency graph

These knowledge representation principles require a set of variables to be ex-
hibited, together with constraints restricting their ranges (elementary facts) and
relations linking them (disjunctive facts). Hence the knowledge base can be viewed
as a network whose vertices are the facts and the variables and edges link the
variables to the facts involving them. More formally let V - ﬁx_ xsw be the
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set of variables, E = {E; ... Ep} be the set of elementary facts (involving only
one variable, and P = {Dj ... aw be the set of disjunctive facts Amxvqmmm._:m ru-
les). The dependency graph is 6 = (N,A), a non-directed graph whose vertices form
the set N = VUEUD, and edges are of the form (x;,E;) if and only if E; = (xj,A;j)
(xj,D;j) if and only if x; appears
in Dj.

An example of dependency graph is given below (without the elementary facts)

o Pl @)
Figure 1 ‘

It is important to notice that the non-directedness of the graph enables pieces
of information to be propagated in various directions, contrary to imcm_ production
systems ., which cannot deal with modus tollens-like inferences. This type of graph
is a particular case of relational graphs studied by Shafer et al (1986) and Kong

{1986), but where relations can be decomposed as a disjunction of elementary cons-
traints on single variables.

3 REASONING ON THE DEPENDENCY GRAPH .

Querying a knowledge base is viewed as asking for the value of a variable X,
or checking for a given value of this variable. It always comes down to .m<m_c.m::m
the value of the concerned variable. This evaluation is obtained by a conjunctive
combination of all constraints acting on the variable. These constraints are of two
kinds :
Elementary facts pertaining to x, i.e. facts of the form (x,A) ; it is called a
direct justification of x. ; o
Indirect constraints induced from other variables which relate to x via a._m_c:ol
tions, provided that these variables have been evaluated in turn. Any disjunc-
tion D where x is involved is thus called an indirect justification of x. The
influence of D on x is computed by projecting the relation, obtained by combi-
ning D and the justifications of the other variables, on the reference set of x.
3.1 Problems in evaluating

Direct justifications clearly act on variables independently of one another.
However indirect justifications are often mutually dependent, as soon as Em corres-
ponding disjunctive facts involve common variables. In that case, indirect justifica-
tions cannot be processed separately. Let us consider two examples :
Ist example : Consider the two rules and the following fact :
D; : if (x,A) then (y,B) °
Dy : if (x,C) then (y,D)

E{ : (x,AuC) (where U expresses union) Elv _u_ DN
Combining E{ and D separately clearly produces no informa-
tion about y nor combining E{ with Dp. In terms of produc- e

tion systems, no rule can be triggered by E;. Oo:?mﬁma.;: '
combining the three items leads to the expected conclusion o Eiga 2
(y BuD) since BuD = muwo_.<AA>+mv3AO+Dv3A>:Qv where n expresses intersection and

ﬁﬂof\ a projection on Y. The necessary fusion of D_ and UN is symbolized by the
transformation of the dependency graph in fig. 2.
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2nd example : It is dual of the first one, namely (=) @
D; : if (x,A) and (y,B) then (z,C)

D : if (x,A) and (y,B) then (t,D) E [04]
Ej 2 (zC) Ey 2 (x,A). e
Suppose we wish to evaluate t. We must evaluate x and °

y due to Dj. But evaluating x requires y and z be eva- :

luated and evaluating y requires x and z be evaluated. H 7]

The way out of this tricky situation is to conjointly

evaluate x and y from the knowledge of z, and then use ©,

conjointly this information to compute t using Dj. The Eig. 3

reader can check that from E; and E; we can come up with the conclusion (t,D).
Such an inference is generally not possible with usual production systems. Note
that the dependency graph is modified to express that x and y must be conjointly
evaluated when the query is about t. The directedness of the new graph expresses
an ordering on the reasoning steps (from z to t).

Such situations will be found with a higher level of complexity in general de-
pendency graphs, depending on the number of paths relating the variables. Especial-
ly any cycle in the dependency graph creates evaluation problems and prevents a
completely distributed procedure for evaluation. Contrastedly, if the dependency
graph is a tree then computing justifications in a separate way is allowed. This
result becomes clear by formalizing a concept of logical dependency.

3.2 Notion of logical dependency

Clearly, if two variables x and y belong to two disjoint parts of the dependen-
cy graph then constraining x does not influence the value of y and conversely. Si-
milarly two disjunctive facts belonging to disjoint parts of (N,A) influence distinct
sets of variables. More generally two vertices N € N and N' € N will be called
independent 'if and only if there is no path between N and N'.

A weaker notion is that of conditional independence, namely N and N' will be
said to be independent given N" if and only if all paths between N and N' contain
N". In other words deleting N" breaks the dependency graph in (at least) two dis-
joint parts. It means that the only dependency between N and N' goes through N'".
Hence, if N" is the very variable to be evaluated, and N and N' are variables, the
influence of N'" on these variables is not considered, and they can be separately
evaluated. Similarly, if N and N' are disjunctions, they need not be fused because
they only relate through variable N". As a consequence if G is a tree, no fusion of
disjunctive facts is necessary, and variables can be separately evaluated. These no-
tions of conditional independence and absolute independence are purely logical and are
very close to the notions developed by Shafer et al (1986) in qualitative Markov
trees ; but they are weaker than probabilistic independence concepts as used by
Pear] (1986).

4 BUILDING AN EVALUATION TREE

As mentioned earlier, evaluating a variable comes down to combining direct
justifications with indirect ones. To do it, we organize the dependency graph in a
directed way, all edges pointing towards the query variable x corresponding to a
vertex Ngo. From NG we reach the disjunctive facts involving x, say DP(x), and from
D € D(x) we reach mdm new variables V(D) distinct from x, but contained in D(x),
and then we start again from each variable y € U V(D), until the whole de-

D € D(x)

pendency graph is scanned. We must take care of not considering a variable or a
disjunction encountered in previous steps. As such this procedure cannot work pro-
perly in all cases.
4.1 Case when G is a tree

When G is a tree, if zy and zp are two newly encountered variables in V(D)
and V(D3) respectively, we are sure that z| # zp. Indeed D| and D, are conditio-
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nally independent with respect to x. Similarly if Dy and Dy are two newly encoun-
tered disjunctions they only share at most one variable, and then it is y such that
{D,D3} © D(y). Hence the dependency graph is naturally arranged in a directed
tree with root x, and the evaluation of x can be achieved by locally propagating
the constraints from the leaves to the root. Namely if y; ... yx are leaves neigh-
boring D, D is combined with direct justifications of y{ ... yx and the result is
projected to the universe of its (unique) father y. This correspondsto triggering a
rule in a production system. This process is repeated until the query variable is
reached, and evaluated by combination of so obtained indirect justifications and
the direct justification of the query variable. Note that the leaves of the evalua-
tion tree only contain variables such that D(y) = § .

4.2 Case when G is not a tree

There are two reasons why the above procedure will not work

- One is when V(D{)nV(Dp) £ P . It means that Dy and Dy are not logically
independent and should be simultaneously used. They are then put into the same
sub-base. If Dy € D(y;), D € D(yp), y; £ yp, the dependency between Dy and D;
is carried over to y| and yp that must be simultaneously evaluated and are thus
kept in the same group. The consequences of the detected dependency are thus
propagated backwards, up to the common father in the tree under construction.

- the other reason is dual. It is when y{ and yp are such that 3 D €
D(y()nD(yp). It implies that the two variables y; and yp are dependent and must
be simultaneously evaluated. The consequences of the detected dependency are si-
milarly propagated backwards.

At the end we come up with a directed tree of variables and disjunctive facts
whose root is x, the query variable, and nodes are groups of disjunctive facts or
groups of dependent variables. Moreover the father of a group of variables is a
group of disjunctive facts whose father is a group of variables. The knowledge ba-
se is thus decomposed into independent sub-bases of dependent disjunctive facts,
arranged in an evaluation tree. The input variables to a sub-base are its sons in
the tree, and the output is the father, i.e. a single group of variables. Leaves of
the evaluation tree are either single variables, or disjunctive facts, each being the
son of a group of several variables.

4.3 Example

Consider the eight following rules :

1. A person with a well-organized mind and who has received a good education,
speaks easily

2. A person with an intricate mind does not speak easily

3. A person with an intricate mind has a weak will

4. A person who behaves roughly has not received any education

5. A rich person who spends his/her time making speeches has a good chance to
become a M.P.

6. A person who is not rich does not smoke cigars

7. A person who spends his/her time making speeches and who has no serious

chances to become a M.P., speaks uneasily
8. A person who spends his/her time making speeches and speaks easily has re-

ceived a good education.
These rules can be expressed as disjunctive facts with the following variables -

variable x scale X

1. mind { well-organized (WO), intricate (I)}
2. education {no (NE),limited (LE), good (GE)}

3. speaks {uneasily (U), easily (E)}

4. will {strong (S), weak (W)}

5. behaviour {rough (RO),correct (CO),nice (N)}
6. wealth {rich (RI), average (A), poor (PO)}
7. makes speeches {yes (Y), no (NS)}
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8. chance of becoming a MP {good (GMP), no (NMP)}

9. smoker {no (NS), cigars (CI), other (OT)}

For instance rule 1 translates into if (x; WO) and (x GE) then (x3 E), i.e.

((x; xp x3) WO v GE v E). The dependency graph corresponding to the 8 rules
is the one of figure 1.

Suppose we want to know if some person has a chance to become a MP. The
evaluation tree is obtained as follows (SB; is short for sub-base i ; GV; for group
of variables no i)

D(xg) = {Ds5,D7} ; V(Ds) = {x3,xg} ; V(D7) = {x3,x7}. Hence D5 and Dy are de-
pendent and grouped. SB1 = {Ds5,D7}. D(x3) {Dg,Dy, D} 3 D(xg) = {Dgl.
D(x7) = {Dg}. D(x3)nD(x7) = {Dg}, hence GV1 = {x3,x7}, GV2 = {xgl.

V(D)) = {xp,x2} 5 V(Dp) = {xy}; V(Dg) = {x2} ; V(Dg) = {x9}. Hence D, and
Dg must belong to the same sub-base as Dj. SB2 = {Dy,Dp,Dg}, son of GVI.
SB3 = {Dg}. D(xy) = {D3}, D(xp) = {Dy}, D(xg) = P, hence {x9} is a leaf.
{x4} and {x5} will be leaves to. So we get the following evaluation tree :

D

o]~ . o] —~C9)
Su H—E—®
- D_
O
Uw/l/AVU -
Fig 4 Las
5 THE EVALUATION PROCESS

Given the evaluation tree, the evaluation of the query variable proceeds as
follows : leaves of the evaluation tree are the first to be evaluated by means of
a combination of their direct justifications with the disjunctive facts they are
sons of. The result is then projected on the universes of the higher level variables
and so on until the query variable is reached. Calculations pertaining to sub-bases
at a given level can be performed independently in a parallel manner.

More precisely let GV be a group of variables whose son is a sub-base SB with
inputs GV ... GVi. If GVj is a leaf then GV; = {x;j}. The following data are
available.

- justifications of variables in groups GV;, j = 1,k obtained from calculations in
lower levels of the tree. If GVj = *x: x_.L then the direct justification is

a relation _W_. on x: Xiidadl X:.

- disjunctive facts linking the input variables to the output variables. They are

DI Bl
- m:“‘mg wcﬂm_::nm:o:m Ep of all variables contained inu O<_..

J

Let X be the space encompassing input and output variables, and X the space
of the variables in GV. The calculation of the justificaticn of GV consists in per-
forming the joint of *W_,: = 1,k}, {Ep|xp € GV;, for all j} and {Dj|i = 1,n} in X,
and projecting the result on Xg. What is obtained is a relation R on Xg. Note that
R is always expressed as a disjunction of elementary facts because N_. and D_. are
too. This remark makes the actual computation simple, since it can be expressed
as a symbolic calculation in the spirit of the resolution principle.

The above scheme must be slightly modified when the leaves of the tree con-
tain disjunctions. In that case a terminal branch of the evaluation tree is of the
form :
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Fig. 5

When justifying GV, Df ... Dy, must be included in the computation and com-
bined with the direct justifications of variables in O<w.

When the available data is insufficient to justify variables in a group GV, we
get a relation R = X itself, which provides no information. This branch can be
pruned as being sterile.

Example (continued)

Assume we have the following elementary facts about some individual
(xy S) (x2 GE) (x7 Y) i o
. Combine (x4 S) with D3 = I¥W and get (x{.I) = (x; WO)
: Delete branches containing xg, X9, x5, which bring no information
. Combine (x; WO), (x GE) with Dy = WOV GE v U, Dy =1Vv U,
Dg - Y v U Y GE, and get (x3, B} = | e
5 Combine (x3 U), (x7 Y) with D5 = (RIv Y v GMP) and D7 = Y v GMP v U
and get (xg GMP) from which we conclude that the person has a good chance
of becoming a M.P. a
The evaluation tree is not changing when the dependency graph is invariant.
Hence it is interesting to compile this structure and store it. It is compiled in a
recursive manner as a set of independent justifications connected to compiled
sub-trees. The main advantage of this technique is that we take into account the
fact that two evaluation trees pertaining to different queries may have some part
in common. Hence the new evaluation tree must not be built from nothing ; bran-
ches of already existing trees can be used again.

6 DEALING WITH UNCERTAINTY

An uncertain fact of the form ((x A)S) is interpreted according to Shafer (197¢€)
evidence theory as follows (Chatalic et al, 1986) : § is a pair (a,8) € (0,112 where
a < B, a is interpreted as a degree of certainty of A, i.e. a = Bel(A) and
B = PI(A) = 1-Bel(A) is a degree of plausibility of A. Bel and Pl are set-functions
on X deriving from a basic probability assignment. m, such that Bel(A) =
z{m@®) | B = A}, Zm(B) = 1, and m(B) is the probability that the uncertain fact

B
((x A)8) means (x B) exactly. The expert is supposed to provide the numbers o and
B with the following conventions @ = 1 means (x,A) is certain ;j @ = 0, B = 1
means total ignorance ; a@ = B = 0.5 means (x,A) is true 50 % of the time ;
8 = 0 means (x,A) is certain.

The pair (o,B) is translated into a basic probability assignment m according to
the principle of minimum specificity (Dubois, Prade, 1986) which basically says that
the weights m(B) should be allocated to the least specific subsets of X, Namely
{(x2 A) (a 8)) is translated into m(A) = a, m(A) = 1-8, m(X) = B-o. Indeed it means
that a reflects the positive evidence about A, B the negative evidence, and B-a
the amount of ignorance. This representation encompasses the case of possibilistic
information (when max(B,1-a) = 1, the set-function Pl is a possibility measure in
the sense of Zadeh (1978)), as well as probabilistic information (when a = 8, i.e.
there is no imprecision about the degree of uncertainty). In that case, the conjunc-
tive operation performed to combine information in the sub-bases, is Dempster ru-
le of combination (Shafer, 1976 ; Gordon and Shortliffe, 1985). When the uncertain-
ty is purely possibilistic, the minimum rule of fuzzy set theory can be used ins-
tead of Dempster rule, in order to preserve the possibilistic nature of uncertainty
through all the deduction process. In order not to hide conflicts in the knowledge
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base, we do not use the normalized version of Dempster rule. On the contrary,
we maintainan evaluation of the amount of conflict which is the weight m(p) be-
aring on the empty set after the combination process. Indeed, we consider that
when m(f) becomes close to 1, the meaningfulness of the results obtained so far
becomes dubious. More details on the treatment of uncertainty in the actual Sys-
tem, called MIRACLE, is to be found in (Chatalic et al, 1986, Chatalic, 1986).

CONCLUSION

The MIRACLE system (Chatalic, 1986) implementing these ideas fs presently
working on a micro-computer, and has been applied to surveillance problems in-
volving around 50 rules and 25 variables. The inference mechanism it proposes is
seemingly more powerful than standard expert systems inference engines because
it allows for modus tollens-like reasoning, and rules with disjunctions of facts in
their conclusion part. Its basic inference step is similar to the resolution principle
applied to propositional clauses involving unary predicates. However it 1s able to
deal with uncertainty in a rigorous manner, within a general modeling framework
encompassing evidence theory, possibility and probability theories. Moreover, it
automatically turns the knowledge base into a set of precompiled evaluation trees,
so as to carry out the deduction steps in the most parallel fashion, in small inde-
pendent sub-bases. Of course the efficiency of this technique is directly related
to the level of intricacy of the knowledge base. It is especially efficient for spar-
se dependency graphs. The technique of the evaluation tree can be viewed as a
generalization of the backward chaining method.
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