
HAL Id: hal-04206328
https://hal.science/hal-04206328v1

Submitted on 13 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Assessing the impact of non-compliant users response to
System-Optimal Dynamic Traffic Assignment

Enrico Siri, Paola Goatin

To cite this version:
Enrico Siri, Paola Goatin. Assessing the impact of non-compliant users response to System-Optimal
Dynamic Traffic Assignment. CDC 2023 - 62nd IEEE Conference on Decision and Control, Dec 2023,
Singapore, Singapore. pp.7785-7790, �10.1109/CDC49753.2023.10383488�. �hal-04206328�

https://hal.science/hal-04206328v1
https://hal.archives-ouvertes.fr


Assessing the impact of non-compliant users response to
System-Optimal Dynamic Traffic Assignment

Enrico Siri and Paola Goatin

Abstract— In the present work, we address a pseudo - System
Optimum Dynamic Traffic Assignment optimization problem on
road networks relying on trajectory control over a portion of the
flows and limited knowledge on user response. The fractions of
controlled flow moving between each origin-destination couple
are defined as “compliant”, while the remaining portions,
consisting of users free to make their own individual choices,
are defined as “non-compliant”. The objective is to globally
improve the state of the network by controlling a varying sub-
set of compliant traffic flows. A Godunov discretization of the
Lighthill-Williams-Richards model coupled with a triangular
fundamental diagram is employed as the flow dynamics model.
At junctions, a multi-class solver is applied which requires
a class-density-weighted aggregate distribution matrix and
incoming links priorities. On one hand, the selfish response of
non-compliant users to changing traffic conditions is computed
at each time step by updating the class related turn ratios
accordingly to a discrete-choice multinomial Logit model to
represent users imperfect information. On the other hand, the
control action is actuated by varying the flow rates over a pre-
computed set of routes while the coupled optimization problem
takes into account an a priori fixed distribution of users at
the nodes. We show how the effectiveness of the resulting finite
horizon optimal control problem degrades by not considering
the dynamic response of non-compliant users and how it varies
according to the fraction of compliant ones.

I. INTRODUCTION

The problem of Dynamic Traffic Assignement (DTA),
consisting in optimally allocating origin-destination routes
depending of traffic demand in order to alleviate congestion
on a given road network, has been widely studied over
the last decades [1], [2]. In particular, we can distinguish
between user equilibrium (UE) strategies [3], in which users
seek to minimize their individual travel times, often leading
to inefficient network utilization [4], and system optimal
(SO) allocations, where users are routed based on the output
of a global optimization algorithm which minimizes the
total travel time, leading to efficient network use [5], [6].
Of course, SO-DTA efficacy is hard to obtain in practice,
since users tend to target the selfish individual travel time
minimization and may not be willing to comply with external
rules in the common interest. Yet, partial SO-DTA can be
implemented by controlling a fraction of drivers (for example
through some incentives) referred to as compliant, either
assuming that non-compliant users keep their original routing
scheme [6] or react to the changes adapting their strategy,
thus leading to a Stackelberg games [7], [8] if the controller
is able to anticipate the reaction. These problems are usually
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considered in a static framework under strongly simplifying
assumptions. Yet, practical implementation often requires a
dynamic setting, for example in the case of temporary net-
work disruptions [9], [6]. Moreover, the recent deployment
of navigation devices (e.g. Google Maps or Waze) gives non-
compliant users the possibility to react to traffic conditions
almost in real time.

This paper aims to provide the tools to address the SO-
DTA with partial control and reacting non-compliant users in
a macroscopic and non-stationary framework. Macroscopic
multi-population traffic flow models have been developed
in recent years to describe the interactions among different
classes of vehicles such as cars and trucks [10], cars and
motorcycles [11], [12] or even among human driven and
autonomous vehicles [13]. The approach has also been ex-
tended to road networks [14]. In particular, in [15] each pop-
ulation is identified by its origin and destination, while [16]
and [6] describe populations moving on predefined paths.
In this work, following [17], [4], we include the case of
drivers adapting their route dynamically to minimize their
travel times based on information about the current state of
the network.

We propose a multi-population traffic flow model on
networks, in which the flow of each population is governed
by the corresponding mass conservation equation on road
segments (summing up into the standard Lighthill-Williams-
Richards (LWR) model [18]). The different populations are
characterized by their split ratios at junctions, that can be
either pre-defined and fixed (e.g. for the compliant users)
or adjust to the traffic conditions to minimize travel times to
destination (for non-compliant drivers). In this way, different
routing strategies can be taken into account, resulting in
possibly time-dependent split ratios at road junctions. We
note that, at the moment, we do not consider any forecast
ability for the future states of the system.

The implementation of our model allows investigating the
effectiveness of a system-optimal routing control strategy
at different penetration rates of the compliant class and
under different assumptions regarding non-compliant users’
behaviour. The rest of the paper is organized as follows.
In Section II, we present the multi-population traffic flow
model. In Section III, we describe the assumptions about
user classes and the routing strategies they apply, while in
Section IV the associated optimization problem and some
numerical results are reported.



II. A GENERAL MULTI-POPULATION TRAFFIC
FLOW MODEL ON NETWORKS

We consider a road network modeled by an oriented graph
consisting of a finite set of arcs I := {Iℓ}ℓ∈L, parameterized
by segments Iℓ = πℓ(]0, Lℓ[), connected at nodes Jk ∈ J ,
k = 1, . . . ,K. Given Jk ∈ J , we denote by Inc(Jk) :=
{i ∈ L : Jk ∈ Ii, πi(Li) = Jk} the set of incoming roads at
Jk, and by Out(Jk) := {j ∈ L : Jk ∈ Ij , πj(0) = Jk} the
set of outgoing roads. Moreover we denote by O, D ⊂ J
respectively the origin and destination nodes.

The macroscopic framework used to describe the flow of
different classes of users on a road network is based of a set
of coupled conservation equations on each link, together with
suitable transmission conditions at junctions. In particular,
each class density ρc, c = 1, . . . , Nc, is characterized by
specific, possibly time-dependent, distribution coefficients at
junctions, which will be computed according to the class
specific routing strategy in Section III.

A. Traffic dynamics on arcs

The traffic dynamics on each road is described by a
LWR-type model in its discrete CTM version [19], [4], [6],
corresponding to flow functions of the form ρcvℓ(r), where
r =

∑Nc

c=1 ∈ [0, Rℓ] is the total traffic density, and the speed
function vℓ : [0, Rℓ] → [0, Vℓ] is a non-increasing function
such that vℓ(0) = Vℓ and vℓ(Rℓ) = 0. Moreover, we assume
that there exists a unique point r̂ℓ ∈ ]0, Rℓ[ such that the
flow function ρ 7→ ρvℓ(ρ) is increasing for ρ ∈ [0, r̂ℓ[ and
decreasing for ρ ∈ ]r̂ℓ, Rℓ].
We divide each arc Iℓ uniformly in Nℓ cells of size
∆xℓ = Lℓ/Nℓ. Given an initial density distribution ρ̄cℓ,h,
h = 1, . . . , Nℓ, c = 1, . . . , Nc, at each time step tν = ν∆t,
ν ∈ N, we update the class-specific traffic density using the
conservative scheme

ρc,ν+1
ℓ,h = ρc,νℓ,h − ∆t

∆xℓ

(
ρc,νℓ,h

rνℓ,h
F ν
ℓ,h −

ρc,νℓ,h−1

rνℓ,h−1

F ν
ℓ,h−1

)
, (1)

for h = 2, . . . , Nℓ − 1, where F ν
ℓ,h is the standard Godunov

flow [20] corresponding to fℓ(r) = rvℓ(r), defined by

F ν
ℓ,h = Fℓ(r

ν
ℓ,h, r

ν
ℓ,h+1) := min

{
Dℓ(r

ν
ℓ,h), Sℓ(r

ν
ℓ,h+1)

}
.
(2)

Above, Dℓ(ρ) = fℓ(min{r, r̂ℓ}) and Sℓ(ρ) =
fℓ(max{r, r̂ℓ}) are the (total) demand and supply functions,
respectively [21].

Similarly, the densities in the first and last cells are
computed according to the incoming and outgoing fluxes,
respectively γ̄c,ν

ℓ,1 and γ̄c,ν
ℓ,Nℓ

, which depend on the upstream
and downstream node dynamics, see Section II-B. We set:

ρc,ν+1
ℓ,1 = ρc,νℓ,1 − ∆t

∆xℓ

(
ρc,νℓ,1

rνℓ,1
F ν
ℓ,1 − γ̄c,ν

ℓ,1

)
, (3)

ρc,ν+1
ℓ,Nℓ

= ρc,νℓ,Nℓ
− ∆t

∆xℓ

(
γ̄c,ν
ℓ,Nℓ

−
ρc,νℓ,Nℓ−1

rνℓ,Nℓ−1

F ν
ℓ,Nℓ−1

)
. (4)

To guarantee the stability of the scheme (1)-(4), we impose
the usual Courant-Fredrichs-Lewy (CFL) condition [22]

∆t ≤ ∆xℓ

maxℓ ∥f ′
ℓ∥L∞([0,Rℓ])

. (5)

B. Coupling conditions at junctions

Let the (possibly time dependent) distribution matrices at
any junction Jk be given for each class ρc, c = 1, . . . , Nc

Ac,ν
k =

{
ac,νk,ji

}
i,j

, i ∈ Inc(Jk), j ∈ Out(Jk),

such that
ac,νk,ji ≥ 0 for any i, j (6)

and ∑
j∈Out(Jk)

ac,νk,ji = 1 for all i ∈ Inc(Jk), (7)

which ensure the flow conservation at junctions.
We construct the total traffic distribution matrix as

Aν
k := {aνk,ji}, where aνk,ji :=

Nc∑
c=1

ac,νk,ji

ρc,νi,Ni

rνi,Ni

(8)

defines the weighted distribution coefficients depending on
the density ratios in the last cells of the incoming roads.

Using any prescribed junction rules applied to the matrices
Aν

k (see e.g. [23] for an overview on Riemann Solvers at
junctions), one can compute the total fluxes exiting the
incoming roads

γ̄ν
i,Ni

, i ∈ Inc(Jk),

which are then redistributed among the various classes c =
1, . . . , Nc: g

γ̄c,ν
i,Ni

=
ρc,νi,Ni

rνi,Ni

γ̄ν
i,Ni

, i ∈ Inc(Jk), (9)

γ̄c,ν
j,1 =

∑
i∈Inc(Jk)

ac,νk,ji γ̄
c,ν
i,Ni

, j ∈ Out(Jk), (10)

providing the boundary flows to be used in (4) and (3),
respectively.

In this work, we will apply the Priority Riemann Solver
introduced in [24], which can handle an arbitrary number
of incoming and outgoing roads, accounting for priorities
among the incoming roads and maximizing the through flow.

C. Inflow and outflow boundary conditions

We denote by Finνo =
∑Nc

c=1 fin
c,ν
o the total amount of

incoming flows about to enter the network from an origin
node Jo at time t = tν which depends on the class-specific
incoming flows finc,νo .

Since the inflow to the network is limited by the residual
capacity of the first cells on each arc ℓ ∈ Out(Jo), the
full demand Finνo might not be accommodated. To keep
track of the potential loss of demand in case of a saturated
network, the most straightforward solution is relying on a
buffer associated with each source node, defined as a cell
of infinite capacity. This solves the flow conservation issue
at the boundary but it may result in the repeated violation



of the FIFO condition commonly required in modelling flow
propagation because we assume that the vehicles, once in a
cell, are uniformly distributed no matter the arrival order. To
alleviate this, one can cap the maximum capacity of a single
buffer and adjust dynamically their number if necessary. A
buffers sequence is then treated like a regular incoming link
and each origin node like any other network junction. Thus,
the total flow coming from the upstream first buffer passing
trough an origin node, defined by

γ̄ν
o , Jo ∈ O (11)

can be managed by a solver and redistributed among each
class c

γ̄c,ν
o =

lc,νo,1

lνo,1
γ̄ν
o γ̄c,ν

j,1 = ac,νo,j1 γ̄
c,ν
o .

where lc,νo,1 and lνo,1 are the total and class-specific number
of vehicles in the first buffer, respectively. This provides the
boundary conditions at each origin node Jo, for each class c.
See [6] for a in-depth explanation of the algorithm applied
to manage the no-lag inter-buffer flow propagation.

Regarding the outflow boundary conditions, it is sufficient
to associate to each destination node Jd ∈ D a sink, intended
as a cell able to accommodate an infinite amount of vehicles
over time. However, we may want to set a limit on the
amount of vehicles it can accept per unit of time. Thus, we
denote by Foutνd the total outflow boundary conditions for
destination node Jd at time t = tν , i.e. the maximum allowed
outflow.

A destination node can thus be modelled as a junction
between the incoming arcs ℓ ∈ Inc(Jd) and a downstream
sink. It is then possible to apply a solver in order to compute
the total flow leaving each incoming arc

γ̄ν
i,Ni

, i ∈ Inc(Jd),

and then redistribute it among each class c

γ̄c,ν
i,Ni

=
ρc,νi,Ni

rνi,Ni

γ̄ν
i,Ni

, γ̄c,ν
d =

∑
i∈Inc(Jd)

αc,ν
d,1i γ̄

c,ν
i,Ni

where, as a reminder, ρc,νi,Ni
and rνi,Ni

are the class-specific
and the total vehicle densities on the last cell Ni of the
incoming link i ∈ Inc(Jd).

III. CLASS ROUTING STRATEGIES

We can define each class c = 1, . . . , Nc as a tuple
(Joc , Jdc ,Ac) where Joc ⊆ O, Jdc ⊆ D and Ac = {Ac,ν

k }.
Each set Ac, consisting of all distribution matrices at each
node Jk and for each discrete time instant tν , implicitly
represents the routing strategy adopted by class c throughout
the entire time horizon which, coupled with an origin-
destination pair, characterize the class itself.

Let us define a strategy Ac as an admissible strategy for
the class c if at each time tν and in any node Jk it ensures
flow conservation and prevents the flow of the class c to
be routed on any arc Il ∈ Out(Jk) from which it is no
longer possible to reach destination Jdc . For any class c and

at each node Jk, let pcks = [Jk, . . . , Jdc ] be a path linking
nodes Jk to Jdc defined as an ordered sequence of nodes
without repetition, in a way that for any consecutive Jv, Ju ∈
pcks, ∃ ℓ ∈ L such that πℓ(0) = Jv and πℓ(Lℓ) = Ju. Pc

k =
{pcks}. Therefore, let Pc

k = {pcks} be the set of all paths that
from node Jk lead to Jdc , with s = 1, . . . , P c

k and where P c
k

is the number of available paths for the class c.
For a strategy Ac to be admissible, at every node Jk where

Pc
k ̸= ∅, besides (6) and (7), we require that

ac,νk,ji ≤
P c

k∑
s=1

δk,js (12)

where

δck,js =

{
1 if πj(Lj) ∈ pcks
0 otherwise.

(13)

Conditions (12) coupled with (13) binds the routing of a
class’s flow only over arcs belonging to paths leading to the
respective destination, assuming for each origin-destination
pair that at least one such path exists. It should then be noted
how (6)-(7) and (12)-(13) also apply to an origin node. It
follows that, if an admissible strategy is applied, the flow
of a class generated at an origin can only move along paths
connecting its origin to its destination.

The only remaining issue in the flow routing at junctions
may come from the initial conditions, if initial densities of
a class c are positive on arcs from which Jdc cannot be
reached. To overcome this problem and without any loss of
generality, let us define as admissibile initial conditions any
density pattern on arcs at t0 = 0 such that:

ρc,0ℓ,h =

{
0 if Pc

k = ∅, Jk = πℓ(Lℓ),

ρ̄cℓ,h ≥ 0 otherwise.
(14)

As long as an admissible strategy with admissible initial
conditions is applied, specifying a routing strategy for a class
c at a node Jk with P c

k = ∅ is superfluous. This is because,
whatever values the matrices Ac,ν

k may assume, they have
no effect on Aν

k defined in (8).
We now distinguish between two class sets: compliant and

non-compliant users. The former describes users traveling
along a unique pre-defined path while the latter representing
users adopting a selfish, time varying, routing strategy.

A. Compliant users

A compliant class is characterized by a set Ac of time-
invariant distribution matrices prefiguring a routing along a
unique path connecting Joc to Jdc . Le us name such path
p̄c ∈ Pc

oc . Therefore, the coefficients of the distribution
matrices for a compliant class must satisfy (6)-(7) and the
following condition for each Jk ∈ p̄c:

ac,νk,ji =

{
1 if πj(Lj) ∈ p̄c,

0 otherwise.
(15)

For every compliant class c we then assume that:

ρc,0ℓ,h = 0, h = 1, . . . , Nℓ, ℓ ∈ L. (16)



The distribution coefficients defined in (15) represent an
admissible strategy that coupled with (16) binds compliant
users to move exclusively along p̄c.

B. Non-compliant users

A non-compliant class is characterized by a set Ac of
distribution matrices that depend on some function of the
network state. Within the scope of the present work, users
of a non-compliant class adopt a stochastic wardropian
equilibrium behaviour, in order to minimize their perceived
travel time based on a multinomial Logit distribution [25] at
each junction. We defined as zc,νk,s the probability associated
with choosing path pck,s at junction Jk for the users of class
c at time step ν, which is computed according to

zc,νk,s =
1

1 +
∑

y ̸=s e
−θ(dν

k,s−dν
k,y)

, (17)

where dνk,s is the actual travel time between node Jk and
node Jc

d while θc can be seen as the class-specific user
sensitivity coefficient to marginal variation of travel time
due to choosing one route over another. It is then possible
to obtain the distribution coefficients for the non-compliant
class c associated with all nodes Jk whereby Pc

k ̸= ∅ as
follows:

αc,ν
k,ji =

P c
k∑

s=1

zc,νk,s · δk,js (18)

where δk,js is the link-path incidence coefficient defined
in (13). Clearly (18) represents an admissible strategy. We
then apply a smoothing function that adjusts the updating of
the distribution matrices as follows

Ac,ν
k = ωcÂc,ν

k + (1− ωc)Ac,ν−1
k (19)

where Âc,ν
k is the distribution matrix for the class c obtained

applying (18) and ωc ∈ [0, 1]. It follows that if Âc,ν
k and

Ac,ν−1
k are admissible, then necessarily Ac,ν

k is admissible.

IV. NUMERICAL RESULTS

The traffic flow model presented in this paper is imple-
mented in Python 3.11 making use of the following main
libraries: networkx [26], numpy [27] and pandas [28]
while for the optimization problem, the scipy library’s
implementation of the differential evolution algorithm is used
[29].

A. Optimization Problem

The control action aimed at improving the overall network
performance is actuated by converting at the origin nodes a
fraction λ ∈ [0, 1] of non-compliant inflows into compliant
ones and then routing them on the associated paths. The
control vector is computed as a result of a finite horizon
optimization problem. We assume λ as fixed during each
simulation and known a priori. The paths available to each
non-compliant class are computed during the initialization
phase and the associated path-related compliant classes are
then initialized accordingly.

In this work, we consider as performance function the total
travel time of all vehicles passing through the network, i.e.

H1(ū) =

Nν∑
ν=1

∑
ℓ∈L

Nℓ∑
h=1

rνℓ,h(ū)∆xℓ ∆t (20)

and the total travel time of all vehicles waiting in the buffers,
i.e.

H2(ū) =

Nν∑
ν=1

∑
Jo∈O

Bo∑
b=1

lνo,b(ū)∆t. (21)

Let Nν be the number of simulated instants, ū = {uc,µ
o,s}

the control vector and uc,µ
o,s the fraction of class c non-

compliant users having Jo as origin node which are converted
to the relative compliant one associated to path pco,s ∈ Pc

o

at time instant t = tµ. The index µ is associated with time
steps tµ = µ∆t′, where we assume that the control signal
remains constant within each ∆t′. Therefore, the resulting
finite horizon optimization problem is defined as follows

minimize
ū

H(ū) = H1(ū) +H2(ū)

subject to uc,µ
o,s ≥ 0,∑

s∈Pc
oc

uc,µ
o,s = λ.

(22)

Note how there is no guarantee of convexity for H(ū).
Therefore, we employed the differential evolution heuristic
global optimization algorithm [30].

B. Synthetic Network

We tested the model on the synthetic network shown
in Fig. 1, where 1 and 8 are respectively the origin and
destination nodes. For each arc Lℓ = 5[km], f ′

ℓ(ρ ≤ ρ̂ℓ) =
80[km/h] and |f ′

ℓ(ρ > ρ̂ℓ)| = 30[km/h]. Each arc has
a maximum density Rℓ = 100[veh/km], except for arcs
1 → 2 and 7 → 8, where R(1,2) = R(7,8) = 300[veh/km]
to accentuate any possible congestion phenomena in the
network. The network is discretized with ∆x = 0.5[km],
leading to a grid of 10 cell on each edge and an associated
∆t = 0.00625[h] (≃ 23[sec]) and one hour is simulated for
a total of 160 time steps.

We define a single non-compliant class adopting an adap-
tive strategy as described in Section III with θc = 0.5
and ωc = 0.1. The associated inflow boundary condition
at origin 1 corresponds to 4000[veh/h] up to time instant
ν = 100 (≃ 37[min]) and zero thereafter. The possi-
ble paths connecting the origin node with the destination
are p1 = [1, 2, 3, 5, 7, 8], p2 = [1, 2, 4, 5, 7, 8] and p3 =
[1, 2, 4, 6, 7, 8]. We then define three compliant classes, each
associated with one of the three paths. The control action
is updated every 30 time steps (≃ 11[min]) until the
input demand becomes zero. Then exploiting the equality
constraint in (22) we obtain a total of 6 control variables.

Firstly, we compute the stochastic user equilibrium state
considering only non-compliant users moving on the net-
work. Fig 1 shows how, as expected, users are equally



Fig. 1. Synthetic network. Next to each node are the distribution matrices
at equilibrium.

distributed across all paths experiencing the same initial
travel time of about 0.31[h].

Let us now consider a capacity loss on the last cell on arc
4 → 5 after 30 time-steps (≃ 11[min]). As shown in fig. 2,
after about 50 time steps (≃ 19[min]) almost all users avoid
travelling along path p2 (TTT = 1675.8). Three possible
scenarios are then compared: uncontrolled non adaptive,
uncontrolled adaptive and controlled (λ = 1). Fig. 3 reports
the average densities normalized over the maximum density
for each arc in the three scenarios at time instant ν = 100
(≃ 37[min]), when the transitory phase ends while flow is
still entering from node 1 and the congestion is at its peak. As
expected, the worst-case scenario (TTT = 1675.8) occurs
when no control is applied and with users relying on a non-
adaptive strategy. The average congestion on arc 4 → 5
increases severely meanwhile the queue propagates backward
onto links 2 → 4 and 1 → 2. The overall network condition
improves greatly when users apply an adaptive strategy
(TTT = 1424.1). Nevertheless, there is still significant
congestion on arc 4 → 5 and, more interestingly, on arch
1 → 2, because it is difficult to accommodate the demand
accessing junction 2. Finally, in the third scenario where
all vehicles are controlled (TTT = 1149.7), following the
disruption the average densities on all arcs remain sub-
critical, with the exception of arc 1 → 2 where, however,
there is a decrease in the average saturation from 52%
percent to around 40%, while the congestion on arc 4 → 5
is completely dissipated.

Clearly, controlling all vehicles on the network delivers
the best results. However, this eventuality is far from being

Fig. 2. Evolution over time of split ratios at nodes 2 and 4, uncontrolled
adaptive scenario.

applicable in a real context. Therefore, it may be interesting
to compare the results that can be obtained as the λ percent-
age of compliant users varies. Routing a fraction of users
introduces the crucial challenge of having to account for
the non-compliant users reaction within the control strategy,
foreshadowing a Stackelberg game. We therefore consider
three configurations: in configuration 1, users don’t change
their strategy, replicating the one adopted at the equilibrium
meanwhile this information is known and exploited within
the optimization process; in configuration 2, the optimization
is still based on the user behaviour at the equilibrium, but
non-compliant users adopt an adaptive strategy. Thus, there is
a discrepancy between the behaviour actually adopted by the
uncontrolled fraction of users and the information employed
in the optimal routing computation; in configuration 3 the
non-compliant users adaptive strategy is known and actively
employed in the optimization process.

Each configuration has been tested assuming any λ deci-
mal value ranging from 0 to 1 for a total of 33 scenarios. In
Fig. 4, the associated total travel time evolution is reported
for each configuration. Naturally the result is the same (±1)
when all vehicles are controlled (λ = 1). At the opposite,
when λ = 0, what matters is the behavior adopted by
non-compliant users, since no control is performed. In all
three configurations, increasing the percentage of controlled
users improves the overall network performance, but with
significant differences. In particular, it can be observed that
systematically worse results are obtained in configuration
2 compared to configuration 3 (except, of course, for the
two aforementioned extreme cases). In particular, the largest
performance degradation is obtained in the interval λ ∈
[0.2, 0.5]. This is due to the fact that on the one hand the per-
centage of non-compliant users is still high while on the other
hand a sub-optimal control based on inaccurate assumptions
has the potential to perturb the system rerouting no less than
20% of the total flows. It is a delicate spot to be in, where
the penalty to be paid as a result of inaccurate assumptions
is significant and is likely to be extremely dependent on the
network topology, making it difficult to estimate a priori.
Such issue becomes less critical as the behavior of the non-

Fig. 3. Normalized average densities on arcs at time instant ν = 80.



Fig. 4. Total travel time vs percentage of compliant users

compliant fraction of users gradually loses relevance as λ
increases. Finally, regardless of the information available, the
control action is still able to achieve better overall network
performance than in the uncontrolled case.

V. CONCLUSIONS

In this paper we have presented a dynamic macroscopic
multi-population traffic model on road networks, able to
represent different classes of users, each associated with
a specific routing strategy. In particular, we distinguish
between non-compliant and compliant classes, where the
former represents users applying their individual wardropian
equilibrium type strategy, while the latter consists of users
inclined to follow a given pre-computed path. Therefore, we
studied the impact of a control action while routing different
fractions of users and with different level of information re-
garding the non-compliant users’ autonomous behaviour. The
results suggest how both the non-compliant users’ behaviour
and the assumption about it exploited within the optimization
affect significantly the effectiveness of the control action.
Future work aims to implement the model on a more realistic
network and to investigate the effectiveness of a control
strategy in relation to the user behaviour and the topological
functional characteristics of the network itself.
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