
HAL Id: hal-04206281
https://hal.science/hal-04206281

Submitted on 13 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

System-Optimal Dynamic Traffic Assignment with
partial users control: an analysis of different strategies

Enrico Siri, Paola Goatin

To cite this version:
Enrico Siri, Paola Goatin. System-Optimal Dynamic Traffic Assignment with partial users control:
an analysis of different strategies. ITSC 2023 - 26th IEEE International Conference on Intelligent
Transportation Systems, Sep 2023, Bilbao, Spain. �hal-04206281�

https://hal.science/hal-04206281
https://hal.archives-ouvertes.fr


System-Optimal Dynamic Traffic Assignment with partial users control:
an analysis of different strategies

Enrico Siri and Paola Goatin

Abstract— In the present work, we consider a System Op-
timum Dynamic Traffic Assignment optimization problem on
road networks employing time-varying partial traffic flow con-
trol. Depending on the network performance, trajectory control
between the relative origin and destination nodes is applied
to a variable fraction (“compliant”) of the demand. Network
dynamics is derived by applying a Godunov discretization
of the well-known Lightwill-Williams-Richards model, where
the fundamental flow-density diagram is of the triangular
form. At each node, a multi-class priority-based solver handles
flow routing according to an aggregate class-density weighted
distribution matrix coupled with a priority vector associated
to incoming links. The selfish response of the uncontrolled
fraction of flows (“non-compliant”) is addressed by updating the
class-specific distribution matrices according to changing traffic
conditions and consistently with a multinomial Logit random
choice model. The goal of the the partial control optimization
problem is to globally improve the network congestion level by
rerouting a variable fraction of flows over a set of pre-computed
routes. The fraction of controlled users varies according to the
trade-off between the rerouting effort and the network status
improvement. Results on a synthetic network are then presented
and discussed.

I. INTRODUCTION

The problem of traffic assignment (TA), either in static
(STA) or dynamic (DTA) settings, has been extensively stud-
ied over the last decades by researchers and practitioners with
the aim of estimating the traffic patterns emerging from the
interaction between the will of individuals grappling with a
scarce resource. Scarcity takes the form of congestion. If we
assume that users act selfishly, classical STA models provide
an estimation of the resulting user equilibrium (UE) state [1],
which generally leads to inefficient network utilization [2].
On the contrary, if we assume rather that users adopt strate-
gies aiming at a global optimisation, the same model leads to
a system optimal (SO) allocation prediction. Of course, it is
difficult to reach an SO in practice, since users tend to pursue
a personal advantage (i.e. minimising their travel time/cost)
rather than a common goal. It is therefore interesting to study
optimisation and control strategies designed to exogenously
induce an efficient state for the network. To this end, a
number of Dynamic Traffic Assignment (DTA) models have
been proposed [3], [4], which, by integrating an explicit flow
propagation model, enable the network dynamics to be repre-
sented beyond merely equilibrium states and therefore they
are particularly suitable for developing SO-DTA strategies
[5], [6], [7]. A viable approach is exploiting some incentive
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mechanism in order to induce a fraction of drivers, referred
to as compliant, to adopt globally efficient strategies, while
assuming that non-compliant users maintain their original
strategy [6] or adapt to the new condition, thus leading to
a Stackelberg game [8], [9] assuming their reaction been
predictable. These problems are usually tackled in a static
framework for analytical convenience but at the cost of
strongly simplifying assumptions. Yet, practical implemen-
tation especially when dealing with a fast evolution, for
example in the case of temporary network disruption, often
requires a dynamic setting [6], [10].

This paper aims to provide a methodology to tackle
a SO-DTA problem with dynamic partial control on the
flows incorporating the reaction of non-compliant users in a
macroscopic and non-stationary framework. In recent years,
macroscopic multi-population models have been developed
to represent the interaction between different classes of
vehicles such as cars and trucks [11], cars and motorbikes
[12], [13] or drivers and autonomous vehicles [14]. Such
approaches have then been generalised to road networks [15]
with populations identified based on their origin-destination
pair [16], a predefined set of paths [6] or class-specific utility
functions [17].

In this paper, following [18], [19], we propose a multi-
population traffic flow model on networks, where the flow
of each population is determined based on a corresponding
mass conservation equation on road segments (the stan-
dard Lighthill-Williams-Richards (LWR) model [20]). Each
population is characterised by specific distribution matrices
at junctions that can be predetermined by a controller for
compliant users or adjust to traffic conditions according to
a multinomial Logit random choice model [21] for non-
compliant ones, thus resulting in possibly time-varying split
ratios.

Our model allows assessing the effectiveness of system-
optimal routing control strategies according to the estimated
cost of the control action and under different assumptions
regarding the individual behaviour of users. The rest of the
paper is organized as follows. In Section II, we present
the multi-population traffic flow model. In Section III, we
formally define user classes as well as the associated routing
strategies, while in Section IV we suggest an implementation
on a test network and some numerical results are reported
and discussed.



II. A MULTI-POPULATION TRAFFIC FLOW
MODEL ON NETWORKS

The road network is represented by an oriented graph
consisting of a set of links I := {Iℓ}ℓ∈L, each one param-
eterized by segments Iℓ = πℓ(]0, Lℓ[). Let J = {Jk}k∈K

be a set of nodes. We denote by Inc(Jk) := {i ∈ L : Jk ∈
Ii, πi(Li) = Jk} the set of incoming links for node Jk, and
by Out(Jk) := {j ∈ L : Jk ∈ Ij , πj(0) = Jk} the set of
outgoing links. Lastly, let us denote by O, D ⊂ J the set
of origin and destination nodes respectively.

For each link, a set of conservation equations are defined
which, together with suitable transmission conditions at
junctions, constitute the macroscopic framework to represent
multi-classes flow propagation on the network. More in
details, each class density ρc, c = 1, . . . , Nc is characterized
by specific, possibly time-dependent, distribution coefficients
at junctions, computed accordingly to the class specific
routing strategy as outlined in Section III.

A. Traffic dynamics on links

The traffic dynamics is modelled by a discretized LWR-
type model [22], with flow functions of the form ρcvℓ(r),
where r =

∑Nc

c=1 ∈ [0, Rℓ] is the total traffic density, and the
velocity vℓ : [0, Rℓ] → [0, Vℓ] is a non-increasing function
such that vℓ(0) = Vℓ and vℓ(Rℓ) = 0. Furthermore, we
assume that exist an unique point r̂ℓ ∈ ]0, Rℓ[ such that the
flow function ρ 7→ ρvℓ(ρ) is increasing for ρ ∈ [0, r̂ℓ[ and
decreasing for ρ ∈ ]r̂ℓ, Rℓ].

Each link Iℓ is therefore uniformly divided in Nℓ cells of
length ∆xℓ = Lℓ/Nℓ. Be ρc,0ℓ,h, h = 1, . . . , Nℓ, c = 1, . . . , Nc

the initial density distribution then, at each time step tν =
ν∆t, ν ∈ N, we update the class-specific traffic density using
the conservative scheme

ρc,ν+1
ℓ,h = ρc,νℓ,h − ∆t

∆xℓ

(
ρc,νℓ,h

rνℓ,h
F ν
ℓ,h −

ρc,νℓ,h−1

rνℓ,h−1

F ν
ℓ,h−1

)
, (1)

for h = 2, . . . , Nℓ − 1, where F ν
ℓ,h is the Godunov flow [23]

corresponding to fℓ(r) = rvℓ(r) and defined by

F ν
ℓ,h = Fℓ(r

ν
ℓ,h, r

ν
ℓ,h+1) := min

{
Dℓ(r

ν
ℓ,h), Sℓ(r

ν
ℓ,h+1)

}
(2)

where Dℓ(r) = fℓ(min{r, r̂ℓ}) and Sℓ(r) = fℓ(max{r, r̂ℓ})
are respectively the (total) demand and supply functions.

Regarding the first and last cells of a link, the density
is updated according to the incoming γ̄c,ν

ℓ,1 and outgoing
¯γc,ν
ℓ,Nℓ

flows, which in turns depend on the upstream and
downstream node dynamics, see Section II-B, consequently
we define

ρc,ν+1
ℓ,1 = ρc,νℓ,1 − ∆t

∆xℓ

(
ρc,νℓ,1

rνℓ,1
F ν
ℓ,1 − γ̄c,ν

ℓ,1

)
, (3)

ρc,ν+1
ℓ,Nℓ

= ρc,νℓ,Nℓ
− ∆t

∆xℓ

(
γ̄c,ν
ℓ,Nℓ

−
ρc,νℓ,Nℓ−1

rνℓ,Nℓ−1

F ν
ℓ,Nℓ−1

)
. (4)

In order to guarantee the stability of the scheme (1)-(4),
the standard Courant-Fredrichs-Lewy (CFL) conditions [24]

must be satisfied, therefore

∆t ≤ ∆xℓ

maxℓ ∥f ′
ℓ∥L∞([0,Rℓ])

. (5)

B. Node dynamics

At each junction Jk, let the (possibly time dependent)
distribution matrices relative to each class ρc, c = 1, . . . , Nc

be defined as follows

Ac,ν
k =

{
ac,νk,ji

}
i,j

, i ∈ Inc(Jk), j ∈ Out(Jk).

To ensure flow conservation the following must hold

ac,νk,ji ≥ 0 for any i, j (6)∑
j∈Out(Jk)

ac,νk,ji = 1 for all i ∈ Inc(Jk). (7)

Based on the class-specific matrices, it is now possible to
define the total traffic distribution matrix as

Aν
k := {aνk,ji}, aνk,ji :=

Nc∑
c=1

ac,νk,ji

ρc,νi,Ni

rνi,Ni

(8)

where ρc,νi,Ni
/rνi,Ni

is the class density ratio in the last cells
of incoming link i ∈ Inc(Jk).

By adopting any junction rules [25] exploiting the matrices
Aν

k, it is then possible to compute the total traffic flows
exiting an incoming link

γ̄ν
i,Ni

, i ∈ Inc(Jk), (9)

and redistribute them over the individual classes

γ̄c,ν
j,1 =

∑
i∈Inc(Jk)

ac,νk,ji γ̄
c,ν
i,Ni

, j ∈ Out(Jk), (10)

γ̄c,ν
i,Ni

=
ρc,νi,Ni

rνi,Ni

γ̄ν
i,Ni

, i ∈ Inc(Jk), (11)

providing the boundary flows necessary in (3) and (4)
respectively. In this paper, we make use of the Priority based
Riemann Solver introduced in [26] maximizing the through
flow and capable of handling an arbitrary configuration of
incoming and outgoing links while accounting for priorities
defined for the incoming ones.

C. Network boundary conditions

In order to obtain a complete traffic flow model, it is
necessary to establish boundary conditions at the origin and
destination nodes.

Let Finνo =
∑Nc

c=1 fin
c,ν
o be the total amount of incoming

flows willing to enter the network at origin node Jo at time
t = tν which depend on class-specific incoming flows finc,νo .

In any given time the residual capacity of the first cells
of a link ℓ ∈ Out(Jo) might be insufficient to accommodate
all the Finνo . To guarantee flow conservation in case of a
saturated network, it is sufficient to add a buffer associated
to each origin node, modelled as a cell of infinite capacity.
While solving the flow conservation issue, this approach
may cause a consistent violation of the FIFO condition,
commonly required in such models. This is because, once



into a cell, it is assumed that the vehicles are uniformly
distributed regardless of the arrival order. One way to al-
leviate this problem is to replace the single buffer with
a series of buffers with limited capacity whose number
is dynamically controlled in order to accommodate all the
necessary incoming flows. A buffer sequence is then treated
like any other incoming link and the entering flow out of the
upstream first buffer

γ̄ν
o , Jo ∈ O (12)

is managed by a solver and redistributed over the classes on
each outgoing links

γ̄c,ν
o =

lc,νo,1

lνo,1
γ̄ν
o γ̄c,ν

j,1 = ac,νo,j1 γ̄
c,ν
o , (13)

where lco,1 and lc,νo,1 are total and c class number of vehicles
in the first buffer, respectively. In [6], the algorithm applied
to handle the load of the demand into the buffers, their
allocation and the no-lag inter-buffer flow propagation is
presented and discussed in details.

Regarding the outflow boundary conditions, it is sufficient
to define for each destination node a sink as a cell of infinite
capacity with, possibly, a limit on the amount of flow it can
accommodate per unit of time. Therefore, let Foutνd be the
boundary condition for destination node Jd at time instant
t = tν . Therefore, a solver can be applied to compute the
total outflows leaving the network

γ̄ν
i,Ni

, i ∈ Inc(Jd), (14)

and redistribute it among the classes

γ̄c,ν
i,Ni

=
ρc,νi,Ni

rνi,Ni

γ̄ν
i,Ni

, γ̄c,ν
d =

∑
i∈Inc(Jd)

αc,ν
d,1i γ̄

c,ν
i,Ni

. (15)

III. ADMISSIBLE CLASS ROUTING STRATEGIES

Each class c = 1, . . . , Nc is represented by a tuple
(Joc , Jdc ,Ac) with Joc ⊆ O, Jdc ⊆ D and where the class-
specific set of distribution matrices Ac = {Ac,ν

k } represent
implicitly the routing strategy adopted by the class.

A routing strategy Ac is defined as an admissible strategy
for the class c if it guarantee flow conservation while
preventing flow dispersion on paths that do not lead to
destination node Jdc . Thus, let us define for each class c and
each node Jk the sets pcks = [Jk, . . . , Jdc ] and Pc

k = {pcks},
where s = 1, . . . , P c

k while pcks is a path connecting node
Jk to Jdc defined as a ordered sequence of nodes such that
for any adjacent pair Jv, Ju ∈ pcks, ∃ℓ ∈ L : πℓ(0) =
Jv and πℓ(Lℓ) = Ju. Consequently Pc

k is the set of all
available paths connecting Jk to Jdc .

Therefore, a routing strategy Ac is admissible if at each
node Jk such that Pc

k ̸= ∅ the following holds

ac,νk,ji ≤
P c

k∑
s=1

δk,js (16)

together with (6) and (7), where

δck,js =

{
1 if πj(Lj) ∈ pcks
0 otherwise.

(17)

The above conditions binds the flow of a class c to be
routed only along paths leading to its destination, assuming
at least one such a path exists for each origin-destination pair.
Therefore, since conditions (6)-(7) and (16)-(17) must holds
also in origin nodes, it follows that as long as an admissible
strategy is applied, flows of a class generated at the respective
origin node Joc can only move along paths connecting Joc

to Jdc .
The only remaining issue may come from the initial

conditions if the initial densities of a class c are positive on a
link from which Jdc cannot be reached. Without any loss of
generality, let us define as admissible initial conditions any
initial density pattern on links at time instant t0 = 0 such
that

ρc,0ℓ,h =

{
0 if Pc

k = ∅, Jk = πℓ(Lℓ),

ρ̄cℓ,h ≥ 0 otherwise.
(18)

Let us now distinguish between two class sets: compliant
and non-compliant users where the former includes those
classes of users whose routing strategies consist in following
unique pre-determined paths while the latter user classes
relying on a selfish, possibly time-varying, routing strategy.

A. Compliant users

For a compliant class, the associated strategy Ac is char-
acterized by a time-invariant set of distribution matrices
satisfying (6)-(7) and (16)-(17) which prefigures a routing
along a unique path p̄c ∈ Pc

oc , thus for each Jk ∈ p̄c

ac,νk,ji =

{
1 if πj(Lj) ∈ p̄c,

0 otherwise.
(19)

We then assume that for each compliant class c

ρc,0ℓ,h = 0, h = 1, . . . , Nℓ, ℓ ∈ L. (20)

The strategy defined in (19) is admissible and coupled with
admissible initial conditions (20) binds compliant flows to
travel only along p̄c.

B. Non-compliant users

A non-compliant class is characterized by a set Ac of,
possibly time-varying, distribution matrices that depend on
some function of the network state (typically travel times).
Within the scope of the present paper, non-compliant users
adopt a stochastic wardropian behaviour in an attempt to
minimize their perceived travel times based on a multinomial
Logit distribution [21]. Let zc,νk,s be the choice probability
associated with path pck,s computed from

zc,νk,s =
1

1 +
∑

y ̸=s e
−θc(dν

k,s−dν
k,y)

. (21)

where dνk,s is the actual travel time between node Jk and
destination node Jc

d and θc can be interpreted as the c-
class specific user sensitivity coefficient to marginal gains



(or losses) of travel time. Thus, the associated non-compliant
class-specific distribution coefficient at each node such that
Pk ̸= ∅ can be derived

αc,ν
k,ji =

P c
k∑

s=1

zc,νk,s · δk,js , (22)

where δk,js is the link-path incidence coefficient defined
in (17). The strategy given in (22) is admissible. We then
smooth out the distribution matrices update as follows

Ac,ν
k = ωcÂc,ν

k + (1− ωc)Ac,ν−1
k , (23)

where Âc,ν
k is the distribution matrix associated to class c at

note Jk computed applying (22) and ωc ∈ [0, 1]. Clearly, if
both Âc,ν

k and Ac,ν−1
k are admissible, then necessarily Ac,ν

k

is admissible too.

IV. NUMERICAL RESULTS

The traffic flow model presented in this paper is imple-
mented in Python 3.11 making use of the following main
libraries: networkx [27], numpy [28], pandas [29] and
scipy [30].

A. Optimization Problem

The control action is implemented by converting a possibly
time varying fraction of non-compliant flows into compliant
ones. We underline how the design of appropriate incentive
mechanisms allying selfish behaviour to a global goal is
beyond the scope of this work. The paths available to each
non-compliant class are computed during the initialization
phase and the associated path-related compliant classes are
then initialized accordingly.

The optimal control vector is the result of a finite horizon
optimization problem where the objective function can be
subdivided into three main components: the total travel time
of all vehicles travelling through the network

H1(ū) =

Nν∑
ν=1

∑
ℓ∈L

Nℓ∑
h=1

rνℓ,h(ū)∆xℓ ∆t, (24)

the total travel time of all vehicles waiting in the buffers

H2(ū) =

Nν∑
ν=1

∑
Jo∈O

Bo∑
b=1

lνo,b(ū)∆t, (25)

and finally a cost associated to the control action

H3(ū) = Φ

Nν∑
ν=1

∑
Jo∈O

Nc∑
c=1

P c
o∑

s=1

uc,ν
o,s fin

c,ν
o ∆t, (26)

where Nν is the number of simulated instant, ū = {uc,µ
o,s} is

the control vector and uc,µ
o,s represents the fraction of class c

non-compliant users having Jo as origin node converted to
the relative compliant ones associated to path pco,s ∈ Pc

o at
time instant t = tν . Then, in (26) coefficient Φ represents a
per-vehicle control cost which makes H3(ū) homogeneous
with (24) and (25). As a reference, in the following we refer
to the sum of H1 and H2 simply as total travel time (TTT ).

Therefore, the resulting finite horizon optimization prob-
lem is defined as follows

minimize
ū

H(ū) = H1(ū) +H2(ū) +H3(ū)

subject to uc,µ
o,s ≥ 0,∑

s∈Pc
oc

uc,µ
o,s ≤ 1.

(27)

It should be noted that the convexity of H(ū) is not guaran-
teed. Therefore, we employed a differential heuristic global
optimization algorithm [31].

B. Synthetic Network

We implemented the model on a Braess-like test network
as illustrated in Fig. 1 where 1 and 8 are the origin and
destination nodes respectively. All the links, with the ex-
ception of 1 → 2 and 7 → 8, have the same functional
characteristics namely r̂ℓ = 82 [veh/km], Rℓ = 100 [veh/km]
and Lℓ = 5 [km], while R(1,2) = R(7,8) = 300 [veh/km]
so as to emphasise any potential congestion. Each link is
discretized into 5 cells with ∆x = 1 [km] leading to ∆t =
0.0125 [h] (≈ 45[sec]). Two hours are simulated for a total
of 160 time steps.

We then define a single non-compliant class whose users
travelling from node 1 to node 8 adopt a routing strategy
as described in Section III with θc = 0.5 and ωc = 0.2.
The associated demand is 5000 [veh/h] up to ν = 45 time
instants (≈ 33[min]) and 0 afterwards. This gives each
user the time to leave the network, thereby emphasising
the effectiveness of a routing strategy over another. The
available routes connecting the origin to the destination
are p1 = [1, 2, 3, 5, 7, 8], p2 = [1, 2, 4, 5, 7, 8] and p3 =
[1, 2, 4, 6, 7, 8].

Firstly, the stochastic equilibrium state is computed when
no control is applied and the relative distribution matrices
are shown in Fig. 1. The users are equally distributed over
the three available paths, as they are perfectly equivalent.
We consider then a capacity loss on the fifth cell of link
4 → 5 occurring after 15 time-steps (≈ 11[min]). As shown
in Fig. 2, after a transitory phase of about 30 time-instants
(≈ 22.5[min]) almost all users avoid using path p2 (TTT =
1556.4).

It is now interesting to evaluate the variations of TTT ,
shown in Fig. 3, when one of the two coefficients character-
ising user routing strategy (θ or ω) varies, while the other is

Fig. 1. Braess-like synthetic network. Next to each node are the distribution
matrices at the equilibrium.



Fig. 2. Evolution of non-compliant split ratios at nodes 2 and 4.

kept fixed. As it might be expected, in both cases the TTT
decreases when the responsiveness (ω) or the sensitivity to
variations in travel time of the users (θ) increases. However,
by far the most significant variation occurs when the co-
efficients are very close to zero. In the case of ω = 0 or
θ = 0 users do not adapt their routing strategy to changing
conditions and the three routes still have equal probability
of being chosen, regardless of the amount of congestion.

Let us now consider the opportunity to control a fraction of
users. Thus, 3 compliant classes are defined, each associated
with one of the previously defined paths. The control action
is updated every 15 time steps (≈ 11[min]) until the traffic
demand stops, for a total of 12 control variables. It is
reasonable to assume that the greatest improvement to the
network is achieved when all vehicles are controlled. How-
ever, such a scenario is far from being applicable in a realistic
setting. Here, the parameter Φ represents a hypothetical cost
associated with the control of a single vehicle. Then, it is
interesting to evaluate the effectiveness of the control action
as Φ varies. Controlling only a fraction of the users presents
the challenge to account for the reaction of the non-compliant
ones. Three scenarios are therefore considered: in scenario
1 users continue to use the strategy adopted at equilibrium
even after the disruption while this information is exploited in
the optimization; in scenario 2 users apply a reactive strategy
while the optimization is still based on the information at the
equilibrium; in scenario 3 the optimization is based on the

Fig. 3. Total Travel Time vs ω and Θ

Fig. 4. Total Travel Time vs Φ.

actual adaptive strategy employed by the users. In Fig. 4 the
variation of TTT against Φ in the three scenarios is shown
while in Fig. 5 the total number of controlled vehicles for
each value of Φ is reported as a reference. Firstly, it should be
noted how the effectiveness of the control is the same across
all the scenarios (TTT ≈ 1040) when Φ = 0, i.e. when
almost all vehicles are controlled and the assumptions about
non-compliant drivers are irrelevant. Regarding scenario 1,
as the cost of control increases fewer vehicles are rerouted
(for Φ > 0.3) and as non-compliant drivers apply a non-
adaptive strategy despite the disruption, network conditions
deteriorate rapidly, as expected. The comparison between
scenario 2 and scenario 3, on the other hand, is more
interesting. In Fig. 4 it can be seen that scenario 2 produces a
consistently lower TTT compared to scenario 3. Apparently,
employing incomplete or inaccurate information results in
better network efficiency. This is because in scenario 2 the
responsiveness of users is neglected and the same massive
number of vehicles, like in scenario 1, is controlled as shown
in Fig. 5. However, this results in a significantly higher total
cost of control, i.e. H3, leading to a much higher overall
cost, i.e. H , as shown in Fig. 6. Conversely, providing the
right assumptions enables a balanced rerouting in terms of
network benefit and control effort, leading to a significantly
lower overall cost for scenario 3.

Fig. 5. Number of controlled vehicles vs Φ.



Fig. 6. H(ū) vs Φ.

V. CONCLUSIONS
In the present paper, we proposed a dynamic macro-

scopic multi-population traffic model for road networks. The
model distinguishes between non-compliant users, following
a predetermined path, and compliant users, applying a rout-
ing strategy to minimize their own travel cost. The study
evaluates how network performance depends on the behav-
ior of non-compliant drivers and proposes a finite horizon
optimization problem to mitigate performance degradation
after a disruptive event. The proposed solution involves
converting dynamically a portion of non-compliant flows into
compliant ones. The results indicate that even with limited
information on non-compliant user reactions, the control
strategy is effective, though it may require a disproportionate
effort. Future work aims to test the model on more complex
networks and consider additional scenarios.
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