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A Macroscopic Model for Multi-Modal Traffic Flow in Urban Networks

Agatha Joumaa1,2, Paola Goatin2, Giovanni De Nunzio1

Abstract— This paper presents a macroscopic multi-class
traffic flow model on road networks that accounts for an
arbitrary number of vehicle classes with different free flow
speeds. A comparison of the Eulerian and Lagrangian formu-
lations is proposed, with the introduction of a new Courant-
Friedrichs-Lewy condition. In particular, the L1-error and the
computational times are used to compare the performance of
the two formulations and show that the Eulerian formulation
outperforms the Lagrangian. The paper then extends the
Eulerian formulation to traffic networks, providing a general
implementation of the dynamics at junctions. We finally sim-
ulate the effect of traffic measures and policies, such as route
guidance and modal shift, on total travel time and network
throughput, which shows that the proposed multi-class model
correctly depicts the interactions among classes and it can be
used to model such behaviors in complex networks.

Index Terms— Multi-class macroscopic traffic flow models,
Hyperbolic systems of conservation laws, Eulerian and La-
grangian formulations, Finite volume schemes.

I. INTRODUCTION

The rapid evolution of people mobility, driven by tech-
nological advancements and changing employment patterns,
combined with the increasing use of shared and soft modes
of transportation, has made the modeling of traffic flow
on roads and networks a complex and challenging task.
Traditional approaches based on static demand data are
unable to capture the complex interactions between vehicles
of different types, and do not reflect the evolving mobility
landscape. To address this issue, a macroscopic dynamical
model for multi-class traffic flow is proposed in this paper.

In recent years, there has been a significant amount of
research conducted with the primary objective of describing
the interactions that occur between various types of vehi-
cles on the road using macroscopic multi-class traffic flow
models. This includes cars and trucks (e.g. [1], [2]), cars
and motorcycles (e.g. [3], [4]), and even the coexistence of
human-driven and autonomous vehicles on shared roads (e.g.
[5], [6]). The multi-class Lighthill-Whitham-Richards (LWR)
model is one of the simplest continuum traffic flow models in
the literature. It has been widely used in traffic engineering,
transportation planning, and operations research, in either its
Eulerian or Lagrangian formulations. The Eulerian descrip-
tion has been used for example to capture overtaking and
creeping effects as shown by [3], mixed traffic and varying
number of lanes [7] and passenger cars and buses in an
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urban area for a bus-rapid transit system [8]. The Lagrangian
formulation has been extensively used in modeling mixed
bicycle-car traffic as in [9], mixed traffic that includes trucks
[10], and powered two-wheelers [11]. While the difference
between the two formulations has been addressed by [12],
a clear comparison of the two approaches in terms of the
trade-off between accuracy and computational time has not
been discussed yet to our knowledge. In this paper, we give
a detailed analysis of the two descriptions and we show
that the Eulerian formulation is better adapted for fast and
accurate simulations of generic multi-class traffic flows on
road networks. Therefore, the Eulerian formulation appears
more suitable for use in large-scale networks and for solving
optimal multi-modal traffic management problems. To this
aim, we also introduce a generic description of multi-class
traffic dynamics at road junctions in Eulerian coordinates.
The extension to network has been addressed in the literature
both in the Eulerian framework as in [13], [14], [15] and in
Lagrangian coordinates (see [12], [16]), the latter leading to
cumbersome manipulations.

Aiming at testing the model capabilities to capture multi-
class traffic dynamics, we run simulations on a simple toy
network of thirteen roads with both urban and peri-urban
characteristics, showing the interaction between three classes
of vehicles representing small and fast vehicles such as cars,
big and slow vehicles such as trucks, and small and slow
vehicles such as bikes. We note that, in this study, classes
are characterized by their different free-flow speeds.

The contributions of this work are therefore threefold.
First, we give a detailed analysis of the well-posedness of
finite volume approximations for the multi-class LWR model
both in Eulerian and Lagrangian coordinates, providing a
refined Courant-Friedrichs-Lewy (CFL) stability condition
for the Lagrangian formulation ensuring positivity of solu-
tions (the usual CFL condition assumes only one vehicle
class). Second, we compare the Eulerian and Lagrangian
formulations of the multi-class LWR model in terms of
the trade-off between accuracy and computational time. Our
results show that the Eulerian formulation outperforms the
Lagrangian one. Finally, we present a network generalization
in Eulerian coordinates, including inflow and outflow bound-
ary conditions at origin and destination nodes, respectively.
We also provide a numerical study involving three different
types of vehicles, where we investigate the sensitivity of
the proposed model to two application scenarios: vehicles
rerouting and modal shift.

The remainder of the paper is organized as follows. In
Section II, we present the multi-class LWR model in both
Eulerian and Lagrangian coordinates, and compare them. In



Section III, we extend the Eulerian formulation to networks,
and construct solutions for general merge and diverge junc-
tions. We also include the rigorous treatment of inflow and
outflow boundary conditions at origin and destination nodes.
In Section IV, we provide numerical results for a simple
network, where we compute total travel time (TTT) and
network throughput (NT) of the whole population. Finally,
we conclude the paper in Section V.

II. METHODOLOGY

In this section, we describe and compare the Eulerian
and Lagrangian formulations of the macroscopic multi-class
traffic flow model we consider in this work.

A. Eulerian formulation

We consider the N ×N system of conservation laws [1]

ρt + F(ρ)x = 0, (1)

where ρ = (ρ1, . . . , ρN )T is the multi-class density of
vehicles with c = 1, 2, . . . , N , denoting the vehicle class,
and F(ρ) = ψ(r)(V1ρ

1, . . . , VNρ
N )T is the flux function.

Above, the overall density is denoted as r =
∑N

c=1 ρ
c, the

class specific free-flow speeds verify V1 > . . . > VN , and ψ
is a decreasing function such that ψ(0) = 1 and ψ(1) = 0,
meaning that we set the maximal density to 1 without loss
of generality. We also set the class specific speed function
vc(r) := Vc ψ(r). System (1) is then defined on the simplex

SE =

{
ρ ∈ RN : ρc ≥ 0 and

N∑
c=1

ρc ≤ 1

}
.

Following [17], [18], [5], we approximate system (1) by finite
volume schemes of the form

ρc,k+1
j = ρc,kj − ∆t

∆x

[
F c,k
j+1/2 − F c,k

j−1/2

]
, (2)

where j ∈ Z is the space index, k ∈ N is the time index,
and

F c,k
j+1/2 :=

ρc,kj

rkj
min

{
Dc(rkj ), S

c(rkj+1)
}

(3)

is the Godunov numerical flux in its supply-demand formula-
tion (see [5, Eq. (4)]). Above, Dc and Sc are respectively the
demand and supply functions of the total density relatively
to the c-th class speed defined by setting Qc(r) := rvc(r),
rccr := argmaxr Q

c(r) and

Dc(r) := Qc(min{r, rccr}), (4)
Sc(r) := Qc(max{r, rccr}). (5)

The scheme (2)-(5) satisfies the following L∞ estimates
(see [6, Lemma 2.3] for a similar result.).

Lemma 1: (Domain invariance) Under the CFL condition

V1 (∥ψ∥∞ +N∥ψ′∥∞)∆t ≤ ∆x, (6)

for any initial data ρ0 ∈ SE the approximate solutions
computed by the Godunov scheme (3), satisfy the following
uniform bounds:

ρk
j ∈ SE ∀j ∈ Z, k ∈ N.

Proof: Assuming that ρc,kj ≥ 0 for c = 1, . . . , N and∑N
c=1 ρ

c,k
j ≤ 1 for all j ∈ Z, we show that the same holds

for ρk+1
j . For positivity:

ρc,k+1
j ≥ ρcj −

∆t

∆x

ρcj
rj

min {Dc(rj), S
c(rj+1)}

≥ ρcj −
∆t

∆x

ρcj
rj
Qc(min{rj , rj,cr})

≥ ρcj −
∆t

∆x

ρcj
rj
rjvc(min{rj , rj,cr})

= ρcj

(
1− ∆t

∆x
vc(min{rj , rj,cr})

)
≥ 0

under the CFL condition (6). On the other side
N∑
c=1

ρc,k+1
j ≤

N∑
c=1

ρcj +
∆t

∆x

N∑
c=1

ρcj−1

rj−1
min {Dc(rj−1), S

c(rj)}

≤
N∑
c=1

ρcj +
∆t

∆x

N∑
c=1

ρcj−1

rj−1
Sc(rj).

Setting ϕ(ρ) :=

N∑
c=1

ρc +
∆t

∆x

N∑
c=1

ρcj−1

rj−1
Sc(r), we get

ϕ(ρ) = 1 if
∑N

c=1 ρ
c = 1 and

∂ϕ

∂ρℓ
(ρ) ≥ 1− ∆t

∆x

N∑
c=1

||(Sc)′||∞ ≥ 0,

where we used that 0 ≤ ρc
j−1

rj−1
≤ 1 and (6). Hence ϕ(ρ) ≤ 1

for all ρ ∈ SE .

B. Lagrangian formulation

To rewrite equation (1) in Lagrangian coordinates, we
introduce the class-specific spacing as

sc =
1

ρc
, c = 1, . . . , N, (7)

Replacing (7) and the Lagrangian time derivative defined as
D
Dt = ∂

∂t + v ∂
∂x in (1), we get the Lagrangian formulation

of the multi-class LWR model:
Dsc

Dt
+
∂ṽc
∂n

= 0, (8)

where ṽc = ṽc(s) := vc

(∑N
ℓ=1 1/s

ℓ
)

.
System (8) is then defined on the set

SL =

{
s = (s1, . . . , sN ) ∈ RN : sc ≥ 0 and

N∑
c=1

1

sc
≤ 1

}
.

Following [16], we can approximate (8) using an upwind
discretization method. The spacing sc is approximated by
constant values between nc and nc + ∆n and it is updated
at every time step ∆tk. Since ṽc is increasing in sc, the
characteristic speed is always nonnegative, reflecting the
anisotropic behavior:

sc,k+1
j = sc,kj +

∆tk

∆n
(vkc,j+1 − vkc,j), (9)



where vkc,j = ṽc(s
k
j ) := vc

(∑N
ℓ=1 1/s

ℓ,k(xc,kj )
)

and

xc,kj = xc,k−1
j +∆tk−1 vk−1

c,j

are the position of the cell interfaces at time tk. Notice that,
unlike (2), it is not possible to take a uniform time dis-
cretization step, but ∆tk is updated at each iteration. Indeed,
∇ṽc(s) = −v′c

(∑N
ℓ=1 1/s

ℓ
) (

1/(s1)2, . . . , 1/(sN )2
)T

and
therefore

∥∇ṽc(s)∥∞ ≤
N ∥v′c∥∞

minc=1,...,N ∥sc∥2∞
.

The following Lemma provides a necessary CFL condition
for the Lagrangian scheme (9).

Lemma 2: (Positivity) Under the CFL condition

∆tkN∥v′c∥∞
maxc,j

∣∣∣sc,kj

∣∣∣
minc,j

∣∣∣sc,kj

∣∣∣3 ≤ ∆n, (10)

for any initial data s0 ∈ SL the approximate solutions
computed by the scheme (9) satisfy skj ≥ 0 ∀j ∈ Z, k ∈ N.

Proof: We proceed by induction: assuming that sc,kj ≥
0 for c = 1, . . . , N for all j ∈ Z, we show that the same
holds for sk+1

j . We focus on one sc component, the procedure
being similar for others. We compute

sc,k+1
j = sc,kj +

∆t

∆n
(vkc,j+1 − vkc,j)

= sc,kj +
∆t

∆n
∇ṽc(ξkj+1/2) ·

(
skj+1 − skj

)
≥ sc,kj − sc,kj

∆tk

∆n
∇ṽc(ξkj+1/2) · s

k
j

1

sc,kj

≥ sc,kj

(
1− ∆tk

∆n
∥∇ṽc∥∞

∥∥skj∥∥∞ 1

sc,kj

)

≥ sc,kj

1− ∆tk

∆n
N∥v′c∥∞

maxc,j

∣∣∣sc,kj

∣∣∣
minc,j

∣∣∣sc,kj

∣∣∣3
 ≥ 0

by (10). Above, ξkj+1/2 = θskj + (1− θ)skj+1, ∃θ ∈ [0, 1].

C. Comparison between Eulerian and Lagrangian

For the purpose of our work, we compare the computa-
tional efficiency of the Eulerian and Lagrangian formula-
tions. To this end, we consider a Riemann problem for two
classes of vehicles, with initial densities

ρ1(0, x) =

{
0.5, x < 0,

0, x > 0,
ρ2(0, x) =

{
0, x < 0,

0.5, x > 0,

and with maximal speeds V1 = 1 and V2 = 0.6, respectively
for class 1 and 2. For each formulation, we compute the L1-
error of approximate solutions with respect to a numerical
reference solution, which is given by

Err(∆xm) := ∆x
∑
j

∣∣ρ̄j − ρℓj
∣∣

Fig. 1: Computational time Vs L1 error

where ρ̄j , j ∈ Z, is the reference solution computed by
Godunov method on a fine mesh with ∆x = 10−5 and ρℓ,
ℓ ∈ Z, is the approximate solution computed on a coarser
grid ∆xm = m∆x, m ∈ N.
We note that, to compute the error for the Lagrangian
approximations, one has to transform the computed spacing
back to the corresponding density and to match the moving
Lagrangian space grid with the fixed Eulerian mesh.

To evaluate the efficiency of the two approaches, we
compare the computational times needed for both methods
to attain the same L1-error range, by varying the parame-
ters ∆n (for the Lagrangian) and ∆xm (for the Eulerian).
Figure 1 illustrates the computational time vs the L1 error
for both methods, showing that the Eulerian approximation
outperforms the Lagrangian approach. The parameters used
in the simulations are ∆n = {0.001, 0.005, 0.01, 0.05, 0.1}
and ∆xm = {0.0025, 0.005, 0.0125, 0.025, 0.1} pairwise,
with higher values leading to larger error.

It is therefore clear that the Eulerian setting offers several
advantages, such as a much lower computational time for
a prescribed accuracy goal, as well as the possibility to
fix a-priori the time step ∆t and to avoid dealing with
moving space grids, which complicate the Lagrangian model
extension to road networks. In the sequel of the paper, we
will then work in the Eulerian framework.

III. EXTENSION TO NETWORKS

We consider road networks represented by graphs of
directed arcs connected at nodes [19]. While traffic flow
on edges can be described by the model introduced in the
previous section, modeling traffic dynamics at junctions is
the major element of the network extension. In the CTM
initial study [20], junctions that were taken into consideration
were only simple merges and diverges. In the present work,
we detail the procedure for the 1 × 1 (one incoming and
one outgoing road), M × 1 (M > 1 incoming roads and
one outgoing road) and 1 ×M (one incoming road and M
outgoing roads) types of junctions. Junctions with additional
incoming and outgoing links can typically be reduced to a
mixture of the last two fundamental junction types. We will
explain how the flux over the node can be calculated in a
multi-class kinematic wave model, given the traffic status at
the incoming and outgoing roads.

In Eulerian formulation, junction models rely on the



minimum supply-demand method. More precisely, the flux
through the junction results from the demand of the incoming
link(s) and the supply of the outgoing link(s).

A. Solutions at junctions for N classes of vehicles

In the following, we give the solutions of the Riemann
Problem for simple junctions [19], i.e. for the cases 1 × 1,
M × 1, 1 ×M for N classes of vehicles. The demand and
supply are given by equations (4) and (5), but they may be
different on each road, thus depending on the index i =
1, . . . ,M + 1.

1) Solution to 1× 1 junction: For the 1× 1 junction, we
adapt (3) by setting:

γ̂c1 = γ̂c2 =
ρc1
r1

min {Dc
1(r1), S

c
2(r2)} , c = 1, . . . , N.

2) Solution to M × 1 (merge) junction: A class specific
priority vector P c = (pc1, . . . , p

c
M ) ∈ RM , pci ≥ 0,∑M

i=1 p
c
i = 1 is required, so that γ̂ci = pci γ̂

c
M+1 for i =

1, . . . ,M . The corresponding fluxes are:

γ̂ci =
ρci
ri

min
{
Dc

i (ri),max
{
pciS

c
M+1(rM+1),

Sc
M+1(rM+1)−

∑
j ̸=i

Dc
j(rj)

}}
, (11)

γ̂cM+1 =

M∑
i=1

γ̂ci ,

for c = 1, . . . , N.
3) Solution for 1 × M (diverge) junction: The class

specific distribution matrix Ac takes the form

Ac =
(
αc
2, . . . , α

c
M+1

)T
,

where αc
i ≥ 0,

∑M+1
i=2 αc

i = 1, indicate the percentage of
vehicles of class c going from road 1 to road i. Then, the
fluxes at the junction are computed as:

γ̂ci = αc
i γ̂

c
1, i = 2, . . . ,M + 1,

where

γ̂c1 =
ρc1
r1

min

{
Dc

1(r1),
Sc
2(r2)

αc
2

, . . . ,
Sc
M+1(rM+1)

αc
M+1

}
,

for c = 1, . . . , N .
Note that, if traffic does not get fully congested, the above
FIFO rule gives similar results as a non-FIFO formulation.

B. Boundary conditions

Let Fin = (F 1
in, . . . , F

N
in )

T and Fout = (F 1
out, . . . , F

N
out)

T

be respectively the inflow boundary conditions at an origin
node and the outflow boundary condition at a destination
node (where we assume F c

in, F
c
out ≥ 0 for all c = 1, . . . , N ).

From (3), (11), we can define

γ̂cin = min

F c
in,max

 1

N
Sc(r1), S

c(r1)−
∑
g ̸=c

F g
in


 ,

γ̂cout =
ρcJ
rJ

min {Dc(rJ), F
c
out} ,

Fig. 2: Schematic representation of the considered network

where r1 and rJ are the density values respectively in the
first and last cell of the concerned roads.

IV. SIMULATION RESULTS

In the following tests, we consider an elementary network
of 13 roads and 6 junctions, consisting of a main road and
two additional routes available as secondary itineraries in
case of heavy traffic, see Fig. 2. We assume the presence of
three classes of vehicles: cars, trucks and bikes, with Vcars >
Vtrucks > Vbikes, in consistency with our hypothesis. Cars
can circulate on the whole network with a speed of 70 km/h
on the main path (roads 1-2-3) and 50 km/h on the secondary
paths (roads 4-5-6 and roads 7-8-9). On the contrary, trucks
are only allowed on the main path (roads 1-2-3) with a speed
of 50 km/h. Finally, bikes can only travel on roads 12-5-10
and 13-8-11 with a speed of 15 Km/h. Road 1 measures
100m, roads 2, 5 and 8 have a length of 1000m, 300m for
roads 4 and 6 and finally 200m for roads 3, 7, 9, 10, 11, 12
and 13. We consider a uniform grid with step size ∆x = 5m
and the time is sampled with steps ∆t = 0.25 s. At the merge
junction J2, we take q1 = q3 = 0.2 and consequently q2 =
0.6 for all classes, meaning that vehicles coming from the
main road have priority over those coming from the lateral
ones. At the merge junctions J3 and J5, we give priority to
the bikes i.e. roads 12 and 13 with q4 = q6 = 0.8. On the
diverge junctions J1, J4 and J6, the distribution coefficients
for trucks are αtrucks

2 = 1 and 0 everywhere else, since trucks
are only allowed to circulate on the main road. Similarly for
bikes, since those that enter from road 12 can only leave
from road 10 and those that enter from road 13 go to road
11, we set αbikes

4 = αbikes
6 = 1 and 0 everywhere else. As for

cars, we set αcars
4 , αcars

5 , αcars
6 , αcars

7 equal to 0.5, meaning that
cars do not have a preference at the diverge junctions J4 and
J6. Finally, the simulated inflow at the network boundaries is
set as the maximal possible inflow on the time interval [0, T ],
ensuring that all vehicles can enter in free flow, and it is set
equal to 0 on (T, Tf ], where Tf > T > 0 are prescribed
time horizons.

In order to assess the proposed model sensitivity to com-
plex interactions among the different classes of vehicles,
we propose to evaluate the overall traffic performance by
means of two metrics: total travel time (TTT) and network



throughput (NT). The TTT of a given class c, i.e. the space
and time integral of the corresponding density, is defined as:

TTT(ρc) = ∆t∆x

Tf∑
k=0

∑
i

Ni∑
j=0

ρc,ki,j

where Ni is the number of cells in the road segment i, i ∈
[1, 13] the road index, and Tf the final simulation time. The
NT of class c, i.e the total number of vehicles of that class
leaving the network (time integral of the total outflow of the
network), is defined as:

NT(ρc) =
Tf∑
k=0

∑
i

γ̂c,kout,i

where i ∈ {3, 10, 11} is the road index. By linearity, the
global TTT and NT are given by the sum of the correspond-
ing class specific quantities:

TTT(r) =
N∑
c=1

TTT (ρc), NT(r) =
N∑
c=1

NT (ρc).

In the following experiments, NT is calculated for Tf =
T = 500 s to be able to capture the number of vehicles
leaving the network when the inflow is stopped, while TTT is
calculated for Tf = 1100 s so that Tf is large enough for all
the vehicles to leave the network. The boundary outflow γ̂cout
on roads 10 and 11 is set to maximal flow to allow vehicles
to leave the network undisturbed, while it is set to half the
maximal flow at the end of road 3 to induce congestion on
the network, as though a traffic light was regulating outgoing
traffic. Finally, in order to have a meaningful comparison, we
normalize both metrics by dividing them by the maximum
value they achieved for each class during the experiment.

A. Experiment 1 (Rerouting)

The first experiment consists in evaluating the effect of
progressively rerouting cars at J1 from the main path to
the secondary paths. The idea is that rerouting the cars will
alleviate congestion on the main road, thus improving travel
time for trucks. However, rerouted cars will have to take
a longer path at lower speed and to share the secondary
roads with bikes, which may have a negative impact on the
overall network performance. In this experiment, the network
is initially empty and the boundary conditions at the entry
and exit roads are given by III-B with an inflow of cars,
trucks and bikes equal to their maximal flow, that is Vc/4,
and F c

out is the maximum supply obtained for a total density
r = 0. We let the distribution coefficient of the cars at J1 be
variable, i.e. αcars

1 = αcars
3 = α ∈ [0, 0.5] towards the lateral

roads 4 and 7, which implies αcars
2 = 1− 2α on road 2.

Figure 3 shows that with the increase of α (thus the per-
centage of cars taking the secondary paths), the global TTT
first decreases, reaching a minimum value around α = 0.4,
but then increases again, due to congestion forming on roads
4 and 7. It is clear that the TTT of trucks decreases when
α increases, since they can move faster on the main road if
cars reroute to the lateral ones. On the contrary, the TTT for

Fig. 3: Experiment 1 - TTT (top) and NT (bottom) on the
whole network for each of the three vehicle classes and
for the total population as a function of the distribution
coefficient α ∈ [0, 0.5] at the diverge junction J1.

bikes increases when cars leave the main road.
Figure 3 (bottom) shows the NT of the three classes and the
total traffic, which attains its maximum for α = 0.4, because
when the network is less congested, more vehicles are able
to leave. Clearly, the NT of the 3 classes has a completely
opposite behavior of their TTT.

B. Experiment 2 (Modal shift)

The second experiment aims to evaluate the impact of
modal shift on the overall network performance. In particular,
we investigate the benefits of progressively shifting cars
flow towards bikes flow, thus simulating the effect of public
policies incentivizing the uptake of soft transportation modes.
In this experiment, we use the exact same initial conditions
and parameters as the first one except for the inflow on roads
1, 12 and 13. The proportion between bikes and cars is given
by a parameter θ ∈ [0, 1], as we set a global inflow

Fin,cb =
Vbikes

2
=

15

3.6× 2
veh/s

and

Fin,cars = (1− θ)Fin,cb, Fin,trucks =
Vtrucks

4
− Fin,cb

on road 1, and Fin,bikes =
θ

2
Fin,cb on roads 12 and 13.

We set αcars
1 = αcars

3 = 0.4, because this was the optimal
value for the overall performance in the previous experiment.
We notice that the global TTT in Figure 4 (top) reaches a



Fig. 4: Experiment 2 - TTT (top) and NT (bottom) on the
whole network for each of the three vehicle classes and
for the total population as a function of the bike vs cars
percentage θ ∈ [0, 1] at inflow boundary conditions.

minimum for θ = 0.6, then increases again for higher values
of θ. It is clear that for θ = 0, i.e when there are no bikes,
the TTT of cars is maximal and conversely when θ = 1, i.e
when there are no cars, the TTT of bikes is maximal. The
TTT of trucks experiences a rapid decrease until θ reaches
0.6, and subsequently, it exhibits a more gradual decrease.
In Figure 4 (bottom), we can see that the total number of
vehicles leaving the network is maximized between θ = 0.5
and θ = 0.6. As expected, this is consistent with the results
of the TTT and it means that if 60% of drivers choose to
use bikes instead of cars, it could reduce congestion in the
network and improve travel times.

V. CONCLUSION

In this paper, we have presented a multi-class macroscopic
traffic flow model that is able to deal with an arbitrary
number of vehicle classes. We showed by comparison that,
for our purposes, working in Eulerian coordinates is more
convenient than the Lagrangian setting, especially in terms
of computational time. Additionally, the presented model has
been extended to networks, and solutions for different types
of junctions have been provided. The numerical experiments
conducted in this study reveal that the model is able to
capture the complex interactions among different classes of
vehicles. The total travel time and the network throughput
can be affected by various factors such as the distribution
coefficient of cars (α) at diverge junctions and the rate of cars
and bikes entering the network (θ). The results show that, for

specific values of α and θ within the variation intervals, the
total travel time and the network throughput are optimized.
This is very promising because it shows that the model does
not lead to trivial solutions, and it can be used in closed-loop
optimization frameworks.
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