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Abstract—We analyze the performances of a Physics Informed
Neural Network (PINN) strategy applied to traffic state estima-
tion and model parameter identification in realistic situations.
The traffic dynamics is modeled by a first order macroscopic
traffic flow model involving two physical parameters and an
auxiliary one. Besides, observations consist of (averaged) density
and flow synthetic data computed at fixed space locations,
simulating real loop detector measurements. We show that the
proposed approach is able to give a good approximation of the
underlying dynamics even with poorer information. Moreover,
the precision generally improves as the number of measurement
locations increases.

Index Terms—macroscopic traffic flow models, state esti-
mation, model parameter identification, physics-informed deep
learning

I. INTRODUCTION

Physics-informed neural networks (PINNs) have recently
been introduced as an alternative method of solving nonlinear
differential equations [1], [2]. Compared to purely physics- or
purely data-driven models, this approach allows to combine
data and physical constraints in the same computing frame-
work. They can also be seen as surrogate models for solving
differential equations including additional data information, or
inverse problems for parameter identification. This methodol-
ogy has been applied to a variety of fields, ranging from fluid-
dynamics [3] and quantum mechanics [1] to epidemiology [4].

In this paper, inspired by the results obtained in [5] for
macroscopic traffic model discovery and state estimation, we
propose to use PINNs for calibrating the celebrated Lighthill-
Whitham-Richards (LWR) model [6], [7] against synthetic
loop-detector flow measurements, mimicking a real-world
setting. Indeed, previous analysis conducted in [5], [8], [9],
is based on (sparse) traffic density data, which are usually not
directly provided by common traffic measurements, such as
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loop detector average flow, velocity or occupancy observed
at fixed locations, or floating car speed data provided by
GPS devices. In our study, we integrate more realistic flux
measurements at fixed locations along the road, and we
evaluate the performances of PINN approach in reconstructing
the numerical solution that originated the synthetic data and
in calibrating the corresponding model parameters, depending
on the number of loop detectors and the averaging intervals.
Of course, flux data are less informative than density one,
since they are unable to distinguish between free flow and
congested situations (the same flux value can correspond
to two different densities). This results often in a poorer
reconstruction of initial conditions, which can be corrected by
increasing the number of observation points. Nevertheless, the
overall performances are satisfying, and encourage a larger
study, including real data and the comparison with other
calibration techniques, see e.g. [10]–[15].

The article is organized as follows. Section II recalls the ba-
sis of the PINN approach for traffic state estimation and model
parameter calibration. Section III specifies the procedure we
follow for the LWR model. Experimental results are presented
in Section IV and a conclusion is drawn in Section V.

II. PINNS FOR MACROSCOPIC TRAFFIC MODELS

Below, we recall the main principles of the PINN strategy
for traffic state reconstruction.

A. State estimation

We consider a physical model in the form of a nonlinear
differential equation for the evolution of the traffic state u =
u(t, x) on a road segment

∂tu(t, x) +N [u(t, x)] = 0, x ∈ [0, L], t ∈ [0, T ] , (1)

where L, T ∈ R+ and N is a general nonlinear space
differential operator. We aim at reconstructing the solution u,
while matching at best some available measurements.978-1-6654-5530-5/23/$31.00 ©2023 IEEE



We discretize the time-space continuous domain D =
[0, T ] × [0, L] defining a grid of points evenly distributed,
which will be denoted by

G = {(t(r), x(r)) | r = 1, . . . , Ng}.

The PINN algorithm approximates u(t, x) using neural net-
works with time t, location x and a set of data related to the
state u as inputs. We denote this approximation of u(t, x) as
û(t, x). During the learning phase, the algorithm includes the
minimization of the modeling error, given by the following
residual value of the approximation:

f̂(t, x) := ∂tû+N [û(t, x)] , (2)

which expresses the discrepancy with the solution of (1): the
closer û is to u, the closer the residual will be to zero.
In our code, following [1], f̂ is calculated by automatic
differentiation technique, using the function tf.gradient
of Tensorflow1. Note that this approach is very sensitive to
the presence of discontinuities in the solution, as in the case
of traffic models. This limitation needs to be handled with
specific corrections, see e.g. [3], [16], [17]. For simplicity, here
we make the choice of regularizing the modeling equation by
artificial viscosity.

The training data for the PINN algorithm consist of obser-
vation points O, target values P and auxiliary points A given
by

O = {(t(i)o , x
(i)
o ) | i = 1, . . . , No} ⊂ G,

P = {U (i) | i = 1, . . . , No},
A = {(t(j)a , x

(j)
a ) | j = 1, . . . , Na} ⊂ G.

(3)

Note that {O,P} defines the observed data, where P are the
measured traffic states at the observations points, which do not
necessarily coincide with the conserved traffic quantities u, as
in the case of speed or flow measurements.

To train the PINN for the considered traffic model (1), we
define the loss function as follows:

Loss = ωo ·MSEo + ωa ·MSEa

=
ωo

No

No∑
i=1

|φ(û(t(i)o , x(i)
o ))− U (i)|2 + ωa

Na

Na∑
j=1

|f̂(t(j)a , x(j)
a )|2,

where ωo and ωa are weights to be defined for balancing
the contribution to the loss made by the data and physical
discrepancies, respectively. In MSEo, the function φ maps the
traffic conserved quantities in the measured ones.

B. Model parameter calibration

In addition to estimating the traffic state with the known
PDE traffic model, PINN approach can handle traffic models
with unknown parameters, allowing to identify the parameter
values that best describe the observed data.

In the case of unknown parameters λ, (1) can be rewritten
as

∂tu(t, x) +N [u(t, x);λ] = 0, x ∈ [0, L], t ∈ [0, T ] , (4)

1https://www.tensorflow.org/

where N [·;λ] denotes the parameterized nonlinear differential
operator.

The goal is now to find λ∗ and û = û(·, ·;λ∗) that best
describes the observed data while approximating the model
solution u(t, x;λ∗) at points in G. For this, the residual value
of traffic state approximation û(t, x;λ) from PINN takes the
form

f̂(t, x;λ) := ∂tû(t, x) +N [û(t, x);λ] . (5)

Notice that, by the above residual, the PINN reconstruction
û itself depends on λ. The way in which training data are
obtained and distributed remains the same as in the previous
section. Then the loss function for parameter calibration and
state reconstruction is defined as:

Loss(λ) = ωo ·MSEo(λ) + ωa ·MSEa(λ)

=
ωo

No

No∑
i=1

|φ(û(t(i)o , x(i)
o );λ)− U (i)|2

+
ωa

Na

Na∑
j=1

|f̂(t(j)a , x(j)
a ;λ)|2.

Notice that, in general, also the mapping φ, and therefore
MSEo, may depend on the model parameter λ, as will be
the case in Sections IV-C and IV-D.

Given the training data, we apply neural network training
algorithms to solve

λ∗ = argminλLoss(λ).

Then, the λ∗-parameterized traffic flow model (4) is the most
likely physics that generates the observed data.

III. PINN FOR THE LWR MODEL

The LWR model represents the paradigm of first order
macroscopic traffic flow models. It consists in the scalar
conservation law

∂tρ+ ∂xQ(ρ; θ) = 0, (6)

which expresses the conservation of the number of vehicles.
In (6), ρ = ρ(t, x) denotes the traffic density (number of
vehicles per unit length) and the flow rate Q = Q(ρ; θ)
(number of vehicles per unit time) prescribes a functional
relationship between the density and the flux, depending on
some model parameter θ ∈ Rm, m ≥ 1, specific of the road
section under consideration.
Since solutions of (6) are generally discontinuous, resulting
in poor performance of classical PINN algorithms employing
automatic differentiation, we will consider the viscous approx-
imation of LWR model including a diffusive correction

∂tρ+ ∂xQ(ρ; θ) = ϵ ∂xxρ, (7)

where ϵ > 0 is the (small) diffusion coefficient.

https://www.tensorflow.org/


For our study, we consider synthetic data generated by
numerical approximation of the following Cauchy problem on
an interval with periodic boundary conditions

∂tρ+ ∂xQ(ρ; θ) = ϵ∂xxρ,

ρ(0, x) = ρ0(x),

ρ(t, 0) = ρ(t, 1),

x ∈ [0, 1] , t ∈ [0, T ] , (8)

where θ = (V,R) and

Q(ρ; θ) = V ρ
(
1− ρ

R

)
.

Above, V denotes the maximal speed and R the maximal
density corresponding to a bump-to-bump situation, for which
the average traffic speed is zero.

Given an initial condition ρ0 = ρ0(x), we apply the Go-
dunov scheme [18] to solve (8) on M×N (space × time) grid
points G evenly deployed throughout the [0, 1]×[0, T ] domain.
Thus, the total number of grid points G is Ng = M ×N .

Based on (7), we define the residual value of PINN’s traffic
density estimation ρ̂(t, x) as

f̂(t, x;λ) := ∂tρ̂(t, x) + ∂xQ(ρ̂(t, x); θ)− ϵ∂xxρ̂(t, x), (9)

where we have set λ := (θ, ϵ).
For the tests, we define the following loss functions:

CaseA : Loss1 = ωo MSEo + ωa MSEa , (10a)
CaseB : Loss2 = ωq MSEq + ωa MSEa , (10b)

where

MSEo =
1

No

No∑
i=1

|ρ̂(t(i)o , x(i)
o )− ρ(i)|2, (11a)

MSEa(λ) =
1

Na

Na∑
j=1

|f̂(t(j)a , x(j)
a ;λ)|2, (11b)

MSEq(λ) =
1

No

No∑
i=1

|Q(ρ̂(t(i)o , x(i)
o ); θ)−Q(i)|2, (11c)

and the weight values ωo, ωa and ωq are to be specified.
In (11a) and (11c), ρ(i) and Q(i) denote the density and flow
observations, respectively.

IV. EXPERIMENTS

We apply the PINN method to compute the traffic state
estimation, using as input data the information obtained from
loop detectors at fixed locations. In particular, we will analyze
how the performance evolves as the number of loops increases.

Our neural network is fully connected feed-forward con-
sisting of 8 hidden layers with 20 neurons in each layer, with
tanh as the activation function. The activation functions and
the connecting structure of neurons in the PINN are designed
to conduct the differential operations in (2), see [5, Fig. 1] for a
visual representation of the employed PINN architecture. The
optimizing procedure consists of the Adam optimizer with an
initial learning rate 0.001 for 20 000 steps, followed by the
L-BFGS-B optimizer.

TABLE I
PARAMETERS USED IN OUR EXPERIMENTS

Layers and neurons [2,20,20,20,20,20,20,20,20,1]
Activation function tanh
Learning rate 0.001
Optimizer Adam + L-BFGS-B
Number of iterations (Adam) 20.000
Maximum number of iterations (L-BFGS-B) 50.000
Number of observation points N0 = 2880 × mloop

Number of observation points (averaged) N0 = 40 × mloop

Number of auxiliary points Na = 20.000
Maximal speed (label value) V = 1
Maximal density (label value) R = 1
Diffusive correction (label value) ϵ = 0.005

As in [5], [9], we construct the reference solution ρ and
the data-sets by Godunov numerical approximation of (8) on
the time interval [0, 3] with initial datum ρ0(x) = 0.1 +
0.8 exp(−25(x − 0.5)2), shown in Fig. 1, on a grid of
Ng = 2880× 240 points, setting

λ = (V,R, ϵ) = (1, 1, 0.005),

see Fig 2. The data-sets are constructed by extracting the com-
puted density and flow values at given space coordinates x̄ℓ,
ℓ = 1, . . . ,mloop, corresponding to the fictive loop positions,
for all time steps tn = n∆t, n = 1, . . . , 2880, eventually
averaged on time sub-intervals of length 0.075. In all the
experiments, the residual is evaluated at Na = 20 000 auxiliary
points randomly selected. Moreover, we set the weights in (10)
to ωo = ωa = ωq = 1 in all tests. The above information is
summarized in Table I.
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Fig. 1. Initial traffic density ρ0(x) = 0.1 + 0.8 exp(−25(x− 0.5)2).
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Fig. 2. Reference solution of (8) corresponding to λ = (V,R, ϵ) =
(1, 1, 0.005) computed by Godunov’s scheme.

As a measure of performance, we compute the L2 relative



error on G

Err(ρ̂, ρ) =

√√√√∑Ng

r=1 |ρ̂(t(r), x(r))− ρ(t(r), x(r))|2∑Ng

r=1 |ρ(t(r), x(r))|2

to quantify the estimation error on the entire domain.
We detail below the different tests we carried out. In all

the situations, we compare the performances of the PINN
approach using density and flow data, respectively. Indeed, the
analysis carried out in [5], [8], [9] relied on (synthetic) density
data measured at fixed positions. Nevertheless, loop detectors
primarily measure flow rates, giving accurate information on
the number of vehicles passing at their locations. Moreover, in
many cases, raw data are not available, and only aggregated
quantities are recorded, resulting in less precise information.

A. State estimation using full loop detector observation

We consider N0 = 2880×mloop observation points, where
mloop = 3, . . . , 9 denotes the number of equally spaced
loop detectors considered, and their corresponding target den-
sity/flow values P (setting φ(u) = u and φ(u) = Q(u; (1, 1))
respectively). The results are presented in Table II and Figures
3 and 4. As expected, flow data give worse results, but the gap
reduces strongly increasing the number of loop detectors.
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Fig. 3. Comparison of the predicted and exact solutions corresponding to
three temporal snapshots for mloop = 4, obtained with state reconstruction
using full loop detector observation for Case A (top) and B (bottom).

TABLE II
ERROR ON ESTIMATED TRAFFIC DENSITY FOR CASES A AND B USING

FULL DATA INFORMATION

mloop Error Case A Error Case B Relative Error
3 1.172e-02 3.090e-01 25.356
4 9.271e-03 6.979e-02 6.528
5 1.887e-02 2.971e-02 0.575
6 6.767e-03 1.610e-02 1.379
7 9.302e-03 1.120e-02 0.204
8 6.454e-03 7.850e-02 11.164
9 8.378e-03 8.632e-03 0.030
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Fig. 4. Sparse presentation of the deployment of observation points O
(red triangles) and auxiliary points A (black crosses) for mloop = 4, and
comparison of state estimation for Case A (top) and Case B (bottom).

B. State estimation using averaged loop detector observation

We now apply the framework of Section IV-A to averaged
data information, which are those usually available in real
world situations. For this, we divide the time interval [0, 3] into
40 sub-intervals of 72 time grid points each, and we consider
the corresponding density and flow averages on each interval
as the new target points. We then replace ρ̂(t

(i)
o , x

(i)
o ), ρ(i),

Q(ρ̂(t
(i)
o , x

(i)
o ); θ) and Q(i) in (11b) and (11c) by

ρ(t
(i)
o , x(i)

o ) :=
1

R

R∑
k=1

ρ̂(t(R(i−1)+k
o , x(i)

o ), (12a)

ρ(i) :=
1

R

R∑
k=1

ρ(R(i−1)+k), (12b)

and

Q(ρ(t
(i)
o , x(i)

o ); θ) :=

R∑
k=1

1

R
Q(ρ̂(t(R(i−1)+k

o , x(i)
o ); θ), (12c)

Q
(i)

:=
1

R

R∑
k=1

Q(R(i−1)+k), (12d)

for i = 1, . . . , No, with N0 = 40×mloop and R = 72, where

t
(i)
o :=

1

R

∑R
k=1 t

(R(i−1)+k
o .

The results obtained are shown in Table III and Fig.6.
We can notice that the estimation error oscillates for both
cases as the number of loops increases, reaching satisfactory
performances for higher loop numbers in both cases A and
B, but in general with better results for case A, as shown in
Fig. 5.

C. Parameter identification using full loop detector observa-
tion

This subsection investigates the ability of PINN method to
reconstruct the solution of (8) and at the same time to identify
the parameter λ associated with the model. Here we solve



TABLE III
ERROR ON ESTIMATED TRAFFIC DENSITY FOR CASE A AND B FOR

AVERAGED DATA

mloop Error Case A Error Case B Relative Error
3 2.818e-02 3.087e-01 9.953
4 1.274e-02 7.002e-02 4.497
5 1.955e-02 2.903e-02 0.485
6 1.666e-02 8.817e-03 0.471
7 1.834e-02 1.005e-02 0.452
8 6.823e-03 7.790e-02 10.418
9 6.569e-03 1.688e-02 1.569
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Number of loop detectors
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Fig. 5. Estimation error vs number of loops detectors for Cases A and B
with averaged loop detector observations.
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Fig. 6. Comparison of the predicted and exact solutions corresponding to
three temporal snapshots for mloop = 4, obtained with state reconstruction
using averaged loop detector observation for Case A (top) and B (bottom).

λ∗ = argminλLoss(λ) for mloop loop detectors, where λ∗ =
(V ∗, R∗, ϵ∗) are the estimated model parameters (which are
constraint by setting them equal to zero if they are negative
during the training process). The relative error for the density
and the estimated parameters for different numbers of loop
detectors are shows in Tables IV and V, and the comparison
of the density profiles are shown in Fig. 7, showing again
better performances with density observations.

TABLE IV
ERROR ON ESTIMATED TRAFFIC DENSITY AND MODEL PARAMETERS FOR

CASE A

mloop Error Case A V ∗
max(%) ρ∗max(%) ϵ∗(%)

3 2.133e-02 1.346 0.078 13.299
4 1.212e-02 1.988 0.273 16.114
5 9.051e-03 1.151 0.349 14.298
6 4.296e-03 0.957 0.141 15.983
7 8.483e-03 1.080 0.401 17.000
8 4.034e-03 0.604 0.159 14.235
9 5.291e-03 0.322 0.041 12.001

TABLE V
ERROR ON ESTIMATED TRAFFIC DENSITY AND MODEL PARAMETERS FOR

CASE B

mloop Error Case B V ∗
max(%) ρ∗max(%) ϵ∗(%)

3 2.960e-01 16.801 18.892 58.169
4 9.109e-02 7.611 7.786 54.087
5 3.436e-01 21.815 22.005 8.448
6 2.484e-02 2.215 2.213 22.031
7 1.969e-02 1.293 1.364 15.478
8 9.378e-02 8.327 9.048 7.882
9 1.694e-02 0.510 0.573 44.487
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Fig. 7. Comparison of the predicted and exact solutions corresponding to three
temporal snapshots for mloop = 4, obtained with parameter identification
using full loop detector observation for Case A (top) and B (bottom).

D. Parameter identification using averaged loop detector ob-
servation

We apply the same architecture of Section IV-C using
averaged data for cases A and B respectively. Compared to
those of the previous section, the results in Tables VI and VII
are generally worse, especially concerning parameter identi-
fication, but become comparable, when not better, for high
loop numbers. See also Fig. 8 for an example of reconstructed
density profiles.

V. CONCLUSION

We have shown that PINN strategy successfully applies
to realistic traffic flow situations using possibly aggregated
density and flow measurements at fixed locations. This paves
the way to the application of this methodology to real loop



TABLE VI
ERROR ON ESTIMATED TRAFFIC DENSITY AND MODEL PARAMETERS FOR

CASE A WITH AVERAGED DATA

mloop Error Case A V ∗
max(%) ρ∗max(%) ϵ∗(%)

3 2.336e-02 2.364 0.345 17.035
4 2.442e-02 2.607 0.184 13.646
5 4.157e-03 0.504 0.127 16.450
6 5.464e-03 0.451 0.039 15.835
7 3.420e-03 0.764 0.257 15.672
8 5.781e-03 0.596 0.317 19.678
9 4.147e-03 0.253 0.085 15.397

TABLE VII
ERROR ON ESTIMATED TRAFFIC DENSITY AND MODEL PARAMETERS FOR

CASE B WITH AVERAGED DATA

mloop Error Case B V ∗
max(%) ρ∗max(%) ϵ∗(%)

3 3.438e-01 26.492 30.134 64.919
4 2.404e-01 22.530 23.851 23.715
5 3.226e-01 18.661 18.762 27.376
6 2.174e-02 0.797 0.740 34.759
7 3.556e-02 3.054 3.094 53.834
8 9.068e-02 7.468 8.230 17.141
9 1.184e-02 0.282 0.253 25.536
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Fig. 8. Comparison of the predicted and exact solutions corresponding to three
temporal snapshots for mloop = 4, obtained with parameter identification
using averaged loop detector observation for Case A (top) and B (bottom).

detector data. Future work includes the use of speed mea-
surements, possibly along vehicle trajectories or non-evenly
distributed loop detectors, and the extension to second order
models [15]. To complete the analysis, performances in the
case of noisy data need to be evaluated.

Concerning the PINN architecture, improved results could
be obtained by a careful calibration of loss weights in (10),
see e.g. [4].

The comparison with more established calibration tech-
niques, see e.g. [10]–[15], will complete the assessment of
the methodology.
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